
Chapter 3

Markov Chain

3.1 Introduction

In the previous chapter independently and identically distributed (iid) random sequences
generated from discrete value stochastic process had been discussed. However, this chapter
considers discrete-value random sequence {Xn|n = 0, 1, 2...} that is not iid. The consid-
eration is on a system in which, Xn+1 depends on Xn but not on earlier values of the
random sequence, X0, ..., Xn−1. Keep in mind that each Xn is a discrete random variable
with range SX = {0, 1, 2...}.

The system that behaves as above can also be explained in a probabilistic sense in a way
that, the present state of the system contains all the relevant information needed to pre-
dict the future. This kind of behaviour is formulated mathematically by Andrey Markov,
that is why this kind of property is named Markovian property.

In the following section, the definition of discrete-time Markov Chain and some examples
will be given.

3.2 Discrete-time Markov Chain

Definition (Definition 12.1 Yates & Goodman 2005)
A discrete time Markov chain Xn|n = 0, 1, 2, ... is a discrete-time discrete value random
sequence such that given X0, X1, ..., Xn the next random variable Xn+1 depends only on
Xn which can be described by the following transition probability

P [Xn+1 = j|Xn = i,Xn−1 = in−1, ..., X0 = i0] = P [Xn+1 = j|Xn = i] = Pij

The value of Xn contains all the relevant information that is it summarises all of past
history of the system needed to predict the variable Xn+1 in the random sequence. Xn is
called the current or present state of the system at time n, and its sample space is called
the set of states or state space. In general, there is a fixed transition probability Pij that
the next state will be j given the current state is i. The following theorem state this result.
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Theorem 1 (Theorem 12.1 Yates & Goodman 2005)
The transition probabilities Pij of a Markov Chain satisfy

Pij ≥ 0,
∞∑

j=0

pij = 1.

A Markov chain can be represented by a graph with nodes representing the sample space
of Xn and directed arcs (i, j) for all pairs of states (i, j) such that Pij > 0.

Example 1 (Example 12.1 Yates & Goodman 2005)
The two state Markov chain can be used to model a wide variety of systems that alter-
nate between ON and OFF states. After each unit of time in the OFF state, the system
turns on with probability p. After each unit of time in the ON state, the system turns
OFF with probability q. Using 0 and 1 as states, what is the Markov chain for the system?

Solution
The MC for the above system

Thus the transition probabilities are P00 = P01 = P10 = P11 =

Example 2(Example 12.2 Yates & Goodman 2005)
A packet voice communications system transmits digitised speech only during “talk-
spurts” when the speaker is talking. In every 10ms interval (referred as time slot) the
system decides whether the speaker is talking or silent. When the speaker is talking, a
speech packet is generated; otherwise no packet is generated. If the speaker is silent in a
slot, then the speaker is talking in the next slot with probability p = 1/140. If the speaker
is talking in a slot, the speaker is silent in the next slot with probability q = 1/100. If
states 0 and 1 represent silent and talking, sketch the Markov chain for this packet voice
system.

Solution
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Example 3(Example 12.4 Yates & Goodman 2005)
In a discrete random walk, a person’s position is marked by an integer on the real line.
Each unit of time, the person randomly moves one step, either to the right(with probabil-
ity p) or to the left. Sketch the Markov chain.

Solution

Exercise

Consider a simple weather forecasting model in which we classify the day’s weather as
either sunny or rainy. On the basis of previous data we have determined that if it is
sunny today, there is an 80% chance that it will be sunny tomorrow regardless of the past
weather, whereas if it is rainy today there is a 30% chance that it will be rainy tomorrow,
regardless of the past. Let Xn be the weather on day n. By labelling sunny as state 1 and
rainy as state 2, draw the Markov chain and write down its transition probabilities.

Solution

The graphical representation of Markov chain encourages the use of special terminology
like branch probability, hop and path.

• Transition probability is also called a branch probability as it equals the probability
of following the branch from state i to j. The sum of branch probabilities leaving
any state i to j must equal to 1.

• A state transition is also called a hop as a transition from i to j can be viewed as
hopping form i to j on a Markov chain.

• A State sequence results from a sequence of hops in the Markov chainis called a path.
e.g. A state sequence of i, j, k corresponding to a sequence of statesXn = i,Xn+1 = j,
and Xn+2 = k is a two-hop from i to k. We consider the state sequence i, j, k as
a path in the Markov chain if each corresponding state transition has non zero
probability.
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We will focus on a finite state Markov chain first. Its one-step transition probabilities
can be represented by the matrix

P =





P00 P01 ... P0K

P10 P11
...

...
. . .

PK0 . . . PKK




.

This nonnegative matrix P with rows sum to 1 is called a state transition matrix or a
stochastic matrix.

Exercises

1. Quiz 12.1 Yates & Goodman 2005

2. Problem 12.3.1

3. Problem 12.3.5

3.3 Discrete Time Markov Chain Dynamics

The dynamics in Markov chain describes the variation of the state over a short time in-
terval starting from a given initial state. They are random processes and we cannot say
exactly which sequence of states will follow the initial state. However, there are many
applications that need the information of future state given the current state Xm. This
prediction of future state Xn+m conditioned on present state Xm requires knowledge of
conditional probability function of Xn+m given Xm. The n−step transition probabilities
that we will define next contains this information.

Definition (Definition 12.2 Yates & Goodman 2005 pg 448)
For a finite Markov chain, the n-step transition probabilities are given by the matrix P(n)
which has i, jth element

Pij(n) = P [Xn+m = j|Xm = i].

The following result known as Chapman-Kolmogorov equations give a recursive procedure
for calculating the n-step transition probabilities. It is based on the observation that going
from i to j in n+m steps passes through some state k after n-steps. The other result is
equivalent in matrix or vector form.

Theorem 2(Theorem 12.2 Yates & Goodman 2005)

For a finite Markov chain, the n-step transition probabilities satistfy

Pij(n+m) =
K∑

k=0

Pik(n)Pkj(m), P(n+m) = P(n)P(m)
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By the definition of n- step transition probability,

Pij(n+m) =
K∑

k=0

P [Xn+m = j,Xn = k|X0 = i] (3.1)

=
K∑

k=0

P [Xn = k|X0 = i]P [Xn+m = j|Xn = k,X0 = i] (3.2)

=
K∑

k=0

PikP [Xn+m = j|Xn = k,X0 = i] (3.3)

By Markov property, P [Xn+m = j|Xn = k,X0 = i] = P [Xn+m = j|Xn = k] = Pkj(m).
This completes the proof.

Theorem 3(Theorem 12.3 Yates & Goodman 2005)
For a finite Markov chain with transition matrix P, the n-th step transition matrix is

P(n) = Pn.

Example 4
Based on Example 2, calculate P2.

Solution
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The following example shows how to calculate the power of matrix using eigenvalues.
Given a square matrix m×m,P , there exists an eigenvalue called λ if there is a nonzero
vector x such that

xP = λx

and
det(λI − P ) = 0,

where x is called left eigenvector of P corresponding to λ. Since det(λI−P ) is a polynomial
of order m in λ, there are m eigenvalues of P . P is then can be written as P = X−1DX,
where D = diag[λ1...λm]. By the property of the matrix,

Pn = X−1DnX

.
Example 5 (Example 12.6 Yates & Goodman 2005)
Based on Example 1, find the n-step transition matrix Pn. Given the system is OFF at
time 0 what is the probability that the system is OFF at time n = 33. Comment on your
result.

Solution

The state transition matrix is

P =

[
1− p p
q 1− q

]
.

The eigenvalues of P are λ1 = 1 and λ2 = 1 − (p + q). Since p and q are probabilities,
|λ2| ≤ 1. P can be expressed in the diagonalised form

P = X−1DX =

[
1 −p

p+q

1 q
p+q

] [
λ1 0
0 λ2

] [ q
p+q

p
p+q

−1 1

]
.

The n-th step transition matrix is given by

Pn =

[
P00(n) P01(n)
P10(n) P11(n)

]
= X−1DnX =

1

p+ q

[
q p
q p

]
+

λn
2

p+ q

[
p −p
−q q

]

Given the system is OFF at time 0, the probability that the system will go OFF at n =
33 is as below

P00(33) =
q

p+ q
+

λ33
2 p

p+ q
=

q + (1− (p+ q))33p

p+ q

The nth step transition matrix describe the evolution of probabilities in a Markov chain.
The calculation of n step transition probability is nontrivial.

Sometimes, we do not need the complete set of n step transition probability but only a
few element in the n step transition matrix, for example we only need to know P [Xn = i].
Let use the following notation to represent the state probabilities at time n.

{pj(n)|j = 0, 1, 2, ....K} where pj(n) = P [Xn = j]
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equivalently,
p(n) = [p0(n) . . . pK(n)]T .

Definition (Defintion 12.3 Yates & Goodman, 2005)
A vector p= [p0(n) . . . pK(n)]T is a state probability vector if

∑K
j=0 pj = 1, and each ele-

ment pj is nonnegative.

The following theorem shows how to calculate the state probability vector p(n) at any
time n with initial state probability vector p(0) of a Markov chain.

Theorem 4(Theorem 12.4 Yates & Goodman, 2005)
The state probabilities pj(n) at time n can be found by either one iteration with n-step
transition probabilities:

pj(n) =
K∑

i=0

pi(0)Pij(n), pT (n) = pT (0)Pn

OR n iterations with one-step transition probabilities:

pj(n) =
K∑

i=0

pi(n− 1)Pij , pT (n) = pT (n− 1)P

Proof
From the definition of n-step transition probabilities,

pj(n) = P [Xn = j] =
K∑

i=0

P [Xn = j|X0 = i]P [X0 = i] =
K∑

i=0

Pij(n)pi(0)

From the defintion of transition probability,

pj(n) = P [Xn = j] =
K∑

i=0

P [Xn = j|Xn−1 = i]P [Xn−1 = i] =
K∑

i=0

Pijpi(n− 1)

Example 6(Example 12.7 Yates & Goodman 2005)
For the two state Markov chain in Example 1 with initial state probabilities p(0) = [p0p1],
find the state probability vector p(n).

Solution

pT (n) = pT (0)Pn and by using Pn found in Example 5, the state probabilities at time n
is

pT (n) = [p0(n)p1(n)] = [
q

p+ q

p

p+ q
] + λn

2 [
p0p− p1q

p+ q

−p0p− p1q

p+ q
]
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Exercises Quiz 12.2, Problem 12.2.1, Problem 12.2.2
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3.3.1 Limiting State Probabilities for a Finite Markov Chain

In this subsection we will analyse the Markov chain by studying the behaviour of state
probability vector p(n) in the long run that is as n → ∞.

Definition (Definition 12.4 )

Given a finite Markov chain with initial state probability vector p(0), the limiting state
probailities, when they exist, are defined as the vector, π = limn→∞ p(n).

Note The jth element, πj of pi is the probability the system will be in state j in the
distant future.

Example 7(Example 12.8 Yates & Goodman 2005)
Based on Example 2, what is the limiting state probability vector [π0π1]T = limn→∞ p(n).

Solution

Given pT (0) = [p0 p1]T ,

pT (n) = [p0(n)p1(n)] = [
q

p+ q

p

p+ q
] + λn

2 [
p0p− p1q

p+ q

−p0p − p1q

p+ q
]

substitute p = 1
140 and q = 1

100 , this gives the value of λ2 = 1− (p+ q) = 344
350 .

pT (n) =

[
7

12

5

12

]
+ λn

2

[
5

12
p0 −

7

12
p1

−5

12
p0 +

7

12
p1

]
.

Since |λ2| < 1, the limiting state probabilities are

lim
n→∞

pT (n) =

[
7

12

5

12

]

The limiting state probabilities are the same regardless of its initial state probabilities.

Theorem 5 (Theorem 12.5 Yates & Goodman 2005)
If a finite Markov chain with transition matrix P and initial state probability p(0) has
limiting state probability vector π = limn→∞ p(n) then

πT = πTP.

The limiting state probability vector need to satisfy certain constraints. Its existence
depends on the existence of the limit as well as whether or not depend on the initial state
probability vector. That is there are three possibilities of a finite Markov chain

1. limn→∞ p(n) exists, and independent of initial state probability vector p(0)

2. limn→∞ p(n) exists, but depends on p(0)

3. limn→∞ p(n) does not exist.
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All these depend on the stationary probability vector that we will see its definition below.

Definition(Definition Yates & Goodman 2005)

For a finite Markov chain with transition probability matrix P, a state probability vector
π is stationary if πT = πTP

Theorem 6 (Yates & Goodman 2005) shows that a finite Markov chain Xn is a stationary
stochastic process. ie at every time t, the same random variable can be observed.

For case (1) - Markov chain P has unique stationary probability vector
For case (2) - Markov chain P has multiple stationary probability vector
For case (3) - Markov chain P does not have stationary probability vector

Example 12.10 Yates & Goodman (2005) describes these three possibilities.

Exercises Quiz 12.3, Problem 12.3.1 [hint: |πj − pj | ≤ 0.01πj ; ans:267].
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3.3.2 State Classification

It is important for us to see the classification of the state in Markov chain as it helps us
to determine the class of its limiting state probability vector. That is we can see whether
the state probability vector converges to a unique stationary probability and independent
of the initial state probability vector p(0).

Definition (Defintion 12.6 Yates & Goodman 2005)
State j is accessible from state i, written as i → j, if Pij(n) > 0 for some n > 0.

Definition (Defintion 12.7 Yates & Goodman 2005)
States i and j communicate, written as i ↔ j, if i → j and j → i.

Note State i always communicate with itself.

Definition (Definition 12.8 Yates & Goodman 2005)
A communicating class is a nonempty subset of states C such that, if i ∈ C, then j ∈ C if
and only if i ↔ j.

Example 8 (Example 12.11 Yates & Goodman 2005)
In the following Markov Chain, the branches corresponding to transition probabilities
Pij > 0. For this chain, identify the communicating classes.

3 communicating classes: C1 = {0, 1, 2}, C2 = {4, 5, 6} C3 = {3}
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Definition (Definition 12.9 Yates & Goodman 2005) State i has period d if d is the largest
integer such that Pii(n) = 0 whenever n is not divisible by d. If d = 1, then state i is
called aperiodic.

Alternative definition: State i has period d if d is the largest integer such that Pii(n) > 0
whenever n is divisible by d. If d = 1, then state i is called aperiodic.

Theorem 8 Theorem 12.7 (Yates & Goodman 2005) says that all states in a communi-
cating class have the same period.

Example
Give an example to describe this theorem.
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Definition (Definition 12.10 Yates & Goodman 2005)
In a finite Markov chain, a state i is transient if there exists a state j such that i → j but
j → i(not accessible from j); otherwise, if no such state j exists, then state i is recurrent.

Definition (Definition 12.11 Yates & Goodman 2005)
A Markov chain is irreducible if there is only one communicating class.

The following theorems show some results on state classifications. Firstly, if the two states
communicate, then both must either be recurrent or transient.

Theorem 9(Theorem 12.8 Yates & Goodman, 2005)
If i is recurrent and i ↔ j, then j is recurrent.

Proof
Consider a state, k, need to show that j and k communicate [j → k ⇒ k → j].
Since i ↔ j and j → k,there is a path from i to k via j. Thus i → k. Since i is recurrent,
i must be accesible from k, (k → i).
Since i ↔ j, there is a path from j to i and then to k.

Think If i is transient and i ↔ j, then j is transient.
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Theorem 10(Theorem 12.9 Yates & Goodman, 2005)
If state i is transient, then Ni, the number of visits to state i over all time, has expected
value E[Ni] ≤ ∞.

Example 8(Example 12.14 Yates & Goodman, 2005)
For the following MC, identify each communicating class and indicate whether it is tran-
sient or recurrent.
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Theorem 11(Theorem 12.10 Yates & Goodman, 2005)
A finite state MC always has a recurrent communicating class.

Exercises Quiz 12.4

In the following MC, all transitions with nonzero probability are shown.

1. What are the communicating classes?

2. For each communicating class, identify whether the states are periodic or aperiodic.

3. For each communicating class, identify whether the states are transient or recurrent.
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3.3.3 Limit Theorems for Irreducible Finite MCs

Theorem 12 (Theorem 12.11 Yates & Goodman 2005)
For an irreducible, aperiodic, finite MC with states {0, 1, ...}, the limiting n-th step tran-
sition matrix

limn→Pn = 1πT





π0 π1 ... πK
π0 π1 ... πK
...

. . .

π0 π1 ... πK




.

where (1) is the column vector [1 ... 1]T and π = [π0 ... πK ]T is the unique vector satisfying
πT = πTP, πT1 = 1 .

Theorem 13(Theorem 12.12 Yates & Goodman 2005)
For an irreducible, aperiodic, finite Markov chain with transition matrix P and initial
state probability vector p(0), limn→∞ p(n) = π

Example 9(Example 12.16 Yates & Goodman 2005)
Based on MC for Example 6, use the above theorem to calculate the stationary probabil-
ities [π0 π1].
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Exercises

1. Problem 12.5.1
Based on the following state transition matrix, find the stationary distribution π,

P =




0.998 0.001 0.001
0.004 0.98 0.016
0.008 0.012 0.98



 .

[ans: [0.7536 0.1159 0.1304]

2. Problem 12.5.2
Based on the following stochastic matrix, find the stationary probability vector,

P =




0.5 0.5 0
0.5 0.5 0
0.25 0.25 0.5



 .

[ans: [0.5 0.5 0]]

3. Consider a customer who buys soft-drink at a regular intervals, say once a week,
and every time he has to decide among three brands: Fizi, Kola, and 8up. From his
buying records so far, it has been determined that his brand of choice in week n+1
depends only on his last week’s choice (week n−th) regardless of previous purchases.
Let Xn be the brand he purchases in week n. Then it is obvious that Xn for n ≥ 0
is a discrete time Markov chain. A transition probability matrix is as follows;

P =




0.1 0.2 0.7
0.2 0.4 0.4
0.1 0.3 0.6



 .

(a) Determine whether this Markov chain is irreducible and aperiodic.

(b) Find the limiting distribution of brands switching.

[ans: [0.132 0.319 0.549]]
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3.3.4 Branching Process

Stochastic processes have been used in sociology to study the issues of social mobility (how
the economic status of the n-th generation affects that of n + 1-st generation), effect of
social traditions and many others. Here we are going to study about the family names
propagation. The tool to model this phenomenen is discrete time Markov chain. It is
called branching process.
Consider the following family tree.

Figure 3.1: Family Tree

Xn- the number of individuals in the n-th generation starting with X0 = 1
Yi,n - the number of male offspring of the i-th person in the n-th generation

Xn+1 = Y1,n + Y2,n + ...+ YXn,n =
Xn∑

i=1

Yi,n

Suppose Yi,n are iid random variables, then Xn for n ≥ 0 is a discrete time Markov chain
with state space {0, 1, 2, ...} and transition probabilities

Pij = P [Xn+1 = j|Xn = i,Xn−1 = in−1, ..., X0 = 1]

= P [
Xn∑

r=1

Yr,n = j|Xn = i, ..., X0 = 1]

= P [
i∑

r=1

Yr,n = j]

This process Xn is called a branching process.
Among questions of interest are What is the probability that eventually the family names
become extinct?, How long does it take for the family name to become extinct? How many
total males are produced in this family? What is the distribution of the size of the n-th
generation?
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Some results concerning the expected family size at n+1st generation and the probability
of family name dies out.

E[Xn+1] = µn+1

where µ is the mean number of offspring per individual.

π0 =
∞∑

j=0

πj
0pj

where pj is the probability by the end of an individual lifetime of producing j offsprings.


