

Exercise #1

The student council for a school of science and math has one representative from each of the five academic departments: Biology (B), Chemistry (C), Mathematics (M), Physics (P), and Statistics (S). Two of these students are to be randomly selected for inclusion on a university-wide student committee (by placing five slips of paper in a bowl, mixing and drawing out two of them).

- a) What are the 10 possible outcomes?
- b) From the description of the selection process, all outcomes are equally likely. What is the probability of each event?
- c) What is the probability that one of the committee members is the statistics department representative?
- d) What is the probability that both committee members come from laboratory science departments?

Exercise #2

DUTM

A large department store offers online ordering. When a purchase is made online, the customer can select one of four different delivery options: expedited overnight delivery, expedited second-business-day delivery, standard delivery, or delivery to the nearest store for customer pick-up. Consider the chance experiment that consists of observing the selected delivery option for a randomly selected online purchase.

What are the events that make-up the sample space for this experiment? Suppose that the probability of an overnight delivery selection is 0.1, the probability of a second-day delivery selection is 0.3, and the probability of a standard-delivery selection is 0.4. Find the following probabilities:

- i) The probability that a randomly selected online purchase selects delivery to the nearest store for customer pick-up.
- ii) The probability that the customer selects a form of expedited delivery.
- iii) The probability that either standard delivery or delivery to the nearest store is selected. ntrenreneurial 🖕 g

18

Example

Suppose that a counsellor plans to select a random sample of 50 seniors at a large high school and to as each student in the sample whether he or she plans to attend college after graduation. The process of sampling is a chance experiment. The sample space for this experiment consists of all different possible random samples of size 50 that might result (there is a very large number of these) and for simple random sampling, each of these outcomes is equally likely.

Let *x* is the random variable.

DUTM

• *x* represent the number of successes in the sample (who plans to attend college after graduation).

• Thus, x is discrete random variable (counting).

GUTM Example											
A coin is tossed four times. Find the mean and variance of											
the number of heads that will be obtained? Given the											
distribution as follows.											
	No of head, x	0	1	2	3	4					
	Probability	1/16	4/16	6/16	4/16	1/16					
Solution (1):											
	$\mathbf{\Sigma}$	$\sigma^2 - \Sigma ($	$\sigma^2 = \sum (x - \mu)^2 p(x)$								
$\mu_x =$	$\sum xp(x)$	$O_x - \sum_x ($	$O_x = \sum_x (x - \mu_x) P(x)$								
=	x = 0(1/16) + 1(4/16) +	=((0	$= ((0-2)^{2}(1/16)) + ((1-2)^{2}(4/16)) + + ((4-2)^{2}(1/16))$								
=	=2	=1									
	-2										
50											
innovative • entrepreneurial • global www.utm.my											

Solution (2): $n = 4, p = \frac{1}{2}, q = 1 - p = \frac{1}{2},$ $\mu = np = 4(\frac{1}{2}) = 2,$ $\sigma_{x}^{2} = npq = 4(\frac{1}{2})(\frac{1}{2}) = 1$

UTTM UNE THE RECORD HAVEN	E	xam	ple	Ρ	2.9	l ≤)	X ≤	7.1)	
$Z = \frac{X - \mu}{10} = \frac{2.9 - \mu}{10}$	$\frac{5}{-} = -0.21$			Z =	$=\frac{X-\mu}{=}=$	7.1-5	= 0.2	1	
σ 10	Fu	ill Z Table			σ	10		Ful	l Z Table
z .00 .0 <mark>1</mark>	.02	.03	z	.0	0.0	1	.02	.03	.04
-3.4 .0003 .0003	.0003	.0003	0.0	.50	00 .50	40.	5080	.5120	.5160
-3.3 .0005 .0005	5 .0005	.0004	0.1	.53	98 .54	38 .	5478	.5517	.5557
··· ·· 🔅			-0:2	.57	9 3 > (.58)	32) .	5871	.5910	.5948
0. 2 42 0 7- > .4168	.4129	.4090	0.3	.61	79 .62	17 .	6255	.6293	.6331
-0.1 .4602 .4562	.4522	.4483	0.4	.65	54 .65	91.	6628	.6664	.6700
-0.0 .5000 .4960 P(Z = - 0.21) = 0.5 -	.4920 0.4168 = 0	.4880).0832	P(Z :	= 0.2	21) = 0.5	5832 -	0.5=	0.0832	
						Half 2	Z Table		
	$\sigma = $		z		.00	.01		.02	.03
			0.0		.0000	.0040	.0	0080	0120
	0.1		.0398	0438	.()478 .	0517		
	832		0.2		.0793 >	.0832).()871 .	0910
0.0832			0.3		.1179	.1217	.1	. 255	1293
			0.4		.1554	.1591	.1	. 628	1664
21 0	.21		0.083	32	+ 0.0	832	2 = 0	0.166	54
innovative • entrepreneurial • global								www	w.utm.my

40

