CHAPTER 7

PART 2:

LINEAR REGRESSION MODEL

UTM

Introduction to Regression Analysis

- Regression analysis is used to:
- Predict the value of a dependent variable based on the value of at least one independent variable
- Explain the impact of changes in an independent variable on the dependent variable
- Dependent variable: the variable we wish to explain
- Independent variable: the variable used to explain the dependent variable

Introduction to Regression Analysis

- A regression model that involves a single independent variable is called simple regression.
- Example: imagine that your company wants to understand how past advertising expenditures have related to sales in order to make future decisions about advertising. The dependent variable in this instance is sales and the independent variable is advertising expenditures.
- Usually, more than one independent variable influences the dependent variable.
- A regression model that involves two or more independent variables is called multiple regression.
- Example: Sales are influenced by advertising as well as other factors, such as the number of sales representatives and the commission percentage paid to sales representatives

(3) UTM

Introduction to Regression Analysis

- Regression models can be either linear or nonlinear.
- A linear model assumes the relationships between variables are straight-line relationships, while a nonlinear model assumes the relationships between variables are represented by curved lines.

www.utm.my

(3) UTM

Introduction to Regression

 Analysis- The most basic type of regression is that of simple linear regression.
- A simple linear regression uses only one independent variable, and it describes the relationship between the independent variable and dependent variable as a straight line.
- This chapter will focus on the basic case of a simple linear regression.

Simple Linear Regression

 Model- Only one independent variable, x.
- Relationship between x and y is described by a linear function.
- Changes in y are assumed to be caused by changes in x .

Types of Regression M odels

Linear Regression

 Assumptions- Error values (ε) are statistically independent
- Error values are normally distributed for any given value of x
- The probability distribution of the errors is normal
- The probability distribution of the errors has constant variance
- The underlying relationship between the x variable and the y variable is linear

Population Linear Regression

Estimated Regression Model

The individual random error terms e_{i} have a mean of zero.

Least Squares Criterion

- b_{0} and b_{1} are obtained by finding the values of b_{0} and b_{1} that minimize the sum of the squared residuals

$$
\begin{aligned}
\sum e^{2} & =\sum(y-\hat{y})^{2} \\
& =\sum\left(y-\left(b_{0}+b_{1} x\right)\right)^{2}
\end{aligned}
$$

UTM

The Least Squares Equation

- The formulas for b_{1} and b_{0} are:

$$
b_{1}=\frac{\sum(x-\bar{x})(y-\bar{y})}{\sum(x-\bar{x})^{2}}
$$

algebraic equivalent:

$$
b_{1}=\frac{\sum x y-\frac{\sum x \sum y}{n}}{\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}}
$$

$$
b_{0}=\bar{y}-b_{1} \bar{x}
$$

Interpretation of the Slope and the Intercept

- b_{0} is the estimated average value of y when the value of x is zero
- b_{1} is the estimated change in the average value of y as a result of a one-unit change in X

UTM

Finding the Least Squares Equation

- The coefficients b_{0} and b_{1} will usually be found using computer software, such as R, Excel or SPSS
- Other regression measures will also be computed as part of computer-based regression analysis

Example

- A real estate agent wishes to examine the relationship between the selling price of a home and its size (measured in square feet)
- A random sample of 10 houses is selected
- Dependent variable $(y)=$ house price in $\$ 1000 s$
- Independent variable (x) = square feet

Example

House Price in \$1000s $\mathbf{(y)}$	Square Feet $\mathbf{(x)}$
245	1400
312	1600
279	1700
308	1875
199	1100
219	1550
405	2350
324	2450
319	1425
255	1700

(C) UTM		
Example		
\mathbf{y} \mathbf{x} $\mathbf{x y}$ $\mathbf{x}^{\mathbf{2}}$ 245 1400 343000 1960000 312 1600 499200 2560000 279 1700 474300 2890000 308 1875 577500 3515625 199 1100 218900 1210000 219 1550 339450 2402500 405 2350 951750 5522500 324 2450 793800 6002500 319 1425 454575 2030625 255 1700 433500 289000 $\Sigma y=2865$ $\Sigma x=17150$ $\Sigma x y=5085975$ $\Sigma x^{2}=30983750$		

(0) UTM	Example
$b_{1}=\frac{\sum x y-\frac{\sum x \sum y}{n}}{\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}}$ b_{1} $=\frac{5085975-\frac{(17150)(2865)}{10}}{30983750-\frac{(17150)^{2}}{10}}$ $=\frac{172500}{1571500}=0.109767737$ $b_{0}=\bar{y}-b_{1} \bar{x}$ b_{0} $=286.5-0.109767737(1715)$ $=98.24832962$ 	
www.utm.my	

Graphical Presentation

- House price model: scatter plot and regression line

$\hat{y}=98.248+0.110 x$

Interpretation of the Intersection Coefficient, b_{0}

$$
\hat{y}=98.248+0.110 x
$$

- b_{0} is the estimated average value of Y when the value of X is zero (if $X=0$ is in the range of observed x values)
- Here, no houses had 0 square feet, so $b_{0}=98.248$ just indicates that, for houses within the range of sizes observed, $\$ 98,248.33$ is the portion of the house price not explained by square feet

Interpretation of the Slope Coefficient, b_{1}

$$
\hat{y}=98.248+0.110 x
$$

- b_{1} measures the estimated change in the average value of Y as a result of a one-unit change in X
- Here, $b_{1}=0.110$ tells us that the average value of a house increases by $0.110(\$ 1000)=\$ 110$, on average, for each additional one square foot of size

UTM

Least Squares Regression Properties

- The sum of the residuals from the least squares regression line is $0 \quad\left(\sum(y-\hat{y})=0\right)$
- The sum of the squared residuals is a minimum (minimized $\sum(y-\hat{y})^{2}$)
- The simple regression line always passes through the mean of the y variable and the mean of the x variable
- The least squares coefficients are unbiased estimates of β_{0} and β_{1}

Explained and Unexplained Variation

- SST = total sum of squares
- M easures the variation of the y_{i} values around their mean y
- SSE = error sum of squares
- Variation attributable to factors other than the relationship between x and y
- SSR = regression sum of squares
- Explained variation attributable to the relationship between x and y

Coefficient of Determination, R²

- The coefficient of determination is the portion of the total variation in the dependent variable that is explained by variation in the independent variable
- The coefficient of determination is also called Rsquared and is denoted as R^{2}

$$
R^{2}=\frac{S S R}{S S T} \text { where } 0 \leq R^{2} \leq 1
$$

Coefficient of Determination, R^{2}

Coefficient of determination

$R^{2}=\frac{S S R}{S S T}=\frac{\text { sum of squares explained by regression }}{\text { total } \text { sum of squares }}$
Note: In the single independent variable case, the coefficient of determination is

$$
R^{2}=r^{2}
$$

where:
$R^{2}=$ Coefficient of determination
$r=$ Simple correlation coefficient

(3) UTM Examples of Approximate | R^{2} Values |
| :--- |

| \begin{tabular}{\|c|c|c|c|}
\hline
\end{tabular}				
House Price in \$1000s (y)	Square Feet (x)	$\widehat{\boldsymbol{y}}$	$(\widehat{\boldsymbol{y}}-\overline{\boldsymbol{y}})^{\mathbf{2}}$	$\left(\boldsymbol{y}_{\boldsymbol{i}}-\overline{\boldsymbol{y}}\right)^{\mathbf{2}}$
245	1400	252.25	1173.06	1722.25
312	1600	274.25	150.06	650.25
279	1700	285.25	18.06	56.25
308	1875	304.50	324	462.25
199	1100	219.25	4522.56	7656.25
219	1550	268.75	315.05	4556.25
405	2350	356.75	4935.06	14042.25
324	2450	367.75	6601.56	1406.25
319	1425	255.00	992.25	1056.25
255	1700	285.25	1.56	992.25

Example

$$
\begin{gathered}
\hat{y}=98.248+0.110 x \\
\bar{y}=\frac{\sum y}{n}=\frac{2865}{10}=286.5 \\
S S R=\sum(\hat{y}-\bar{y})^{2}=19033.22 \\
S S T=\sum\left(y_{i}-\bar{y}\right)^{2}=13667.23 \\
R^{2}=\frac{S S R}{S S T}=\frac{19033.22}{31700.5}=0.60 \\
\begin{array}{c}
60 \% \text { of the variation in } \\
\text { house prices is explained by } \\
\text { variation in square feet }
\end{array} \\
\hline
\end{gathered}
$$

Standard Error of Estimate

- The standard deviation of the variation of observations around the regression line is estimated by

$$
s_{\varepsilon}=\sqrt{\frac{\mathrm{SSE}}{\mathrm{n}-\mathrm{k}-1}}
$$

Where
SSE =Sum of squares error
$\mathrm{n}=$ Sample size
$\mathrm{k}=$ number of independent variables in the model

UTM
 The Standard Deviation of the Regression Slope

- The standard error of the regression slope coefficient $\left(b_{1}\right)$ is estimated by

$$
\mathrm{s}_{\mathrm{b}_{1}}=\frac{\mathrm{s}_{\varepsilon}}{\sqrt{\sum(\mathrm{x}-\overline{\mathrm{x}})^{2}}}=\frac{\mathrm{s}_{\varepsilon}}{\sqrt{\sum \mathrm{x}^{2}-\frac{\left(\sum \mathrm{x}\right)^{2}}{\mathrm{n}}}}
$$

where:
$\mathrm{S}_{\mathrm{b}_{1}=\text { Estimate of the standard error of the least squares slope }}$
$s_{\varepsilon}=\sqrt{\frac{\text { SSE }}{n-2}}=$ Sample standard error of the estimate

UTM

Inference about the Slope: t Test

- t-test for a population slope
- Is there a linear relationship between x and y ?
- Null and alternative hypotheses
$-H_{0}: \beta_{1}=0 \quad$ (no linear relationship)
$-H_{1}: \beta_{1} \neq 0 \quad$ (linear relationship does exist)
- Test statistic
$t=\frac{b_{1}-\beta_{1}}{s_{b_{1}}}$
d.f. $=\mathrm{n}-2$
where:
$\mathrm{b}_{1}=$ Sample regression slope coefficient
$6_{1}=$ Hypothesized slope
$s_{b 1}=$ Estimator of the standard error of the slope

| (c)UTM | Inference about the Slope: |
| :---: | :---: | :---: |
| t Test | |

(3)UTM

Inferences about the Slope: t Test Example

$\mathrm{H}_{0}: \beta_{1}=0$
$\mathrm{H}_{\mathrm{A}}: \beta_{1} \neq 0$

$\hat{y}=98.248+0.110 x$
$s_{\varepsilon}=\sqrt{\frac{13667.23}{10-1-1}}=41.33$
$\mathrm{~s}_{\mathrm{b}_{1}}=\frac{41.33}{\sqrt{30983750-\frac{294122500}{10}}}=0.03$

House Price in \$1000s (y)	Square Feet (x)	\hat{y}	$\left(y_{i}-\hat{y}\right)^{2}$
245	1400	252.25	52.56
312	1600	274.25	1425.06
279	1700	285.25	39.06
308	1875	304.50	12.25
199	1100	219.25	410.06
219	1550	268.75	2475.06
405	2350	356.75	2328.06
324	2450	367.75	1914.06
319	1425	255.00	4096
255	1700	285.25	915.06

$\mathrm{SSE}=\sum\left(y_{i}-\hat{y}\right)^{2}=13667.23$
$t=\frac{b_{1}-\beta_{1}}{s_{b_{1}}}=\frac{0.110-0}{0.03}=3.67$
Test Statistic: $\mathrm{t}=3.67$

$$
\begin{aligned}
& \text { d.f. }=10-2=8 \\
& a=.05 \\
& a / 2=025 \\
& t_{\alpha / 2}=2.3060 \text { (refer to table) }
\end{aligned}
$$

Inferences about the Slope:
t Test Example
Inferences about the Slope:

Decision: \quad Reject H_{0}
Conclusion: There is sufficient evidence that square footage affects house price

Exercise 1

Representative data on $x=$ carbonation depth (in millimeters) and $y=$ strength (in mega pascals) for a sample of concrete core specimens taken from a particular building were read from a plot in the article "The Carbonation of Concrete Structures in the Tropical Environment of Singapore" (Magazine of Concrete Research [1996]: 293-300);

Depth, x	8	20	20	30	35	40	50	55	65
Strength, y	22.8	17.1	21.1	16.1	13.4	12.4	11.4	9.7	6.8

Exercise 1

- Construct a scatterplot. Does the relationship between carbonation depth and strength appear to be linear?
- Find the equation of the least-square line.
- What would you predict for strength when carbonation depth is 25 mm ?
- Explain why it would not be reasonable to use the least-square line to predict strength when carbonation depth is 100 mm .

Exercise 2

The following data on sale, size, and land-to-building ratio for 10 large industrial properties appeared in the paper "Using Multiple Regression Analysis in Real Estate Appraisal" (Appraisal Journal [2002]: 424-430):

Exercise 2

Property	Sale Price (millions of dollars)	Size (thousands of sq. ft.)	Land-to-Building Ratio
1	10.6	2166	2.0
2	2.6	751	3.5
3	30.5	2422	3.6
4	1.8	224	4.7
5	20.0	3917	1.7
6	8.0	2866	2.3
7	10.0	1698	3.1
8	6.7	1046	4.8
9	5.8	1108	7.6
10	4.5	405	17.2

www.utm.my
innovative • entrepreneurial • global

Exercise 2

a) Calculate and interpret the value of the correlation coefficient between sale price and size.
b) Calculate and interpret the value of the correlation coefficient between sale price and land-to-building ratio.
c) If you wanted to predict sale price and you could use either size or land-to-building ratio as the basis for making predictions, which would you use? Explain.
d) Based on your choice in Part (c), find the equation of the least-square regression line you would use for predicting $y=$ sale price.

