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ABSTRACT

The accuracy of software development effort estimation is one of the vital
factors that leads to successful or failed projects. Most of the current estimation models
are not adaptable enough according to the nature of software projects due to their
special characteristics, such as intangibility and non-normality of project attributes.
Localization-based estimation models solve the issues, but are unable to compare
software projects, based on Language Type for accurate effort estimation. Secondly,
these models use Analogy-Based Estimation (ABE), which completely depends upon
past projects and any missing values that may cause unrealistic estimation results. This
study extended the domain of localization to estimate the development effort according
to the nature of software and introduced accurate missing data imputation techniques
to prevent losing the most similar project. This study focused on ABE, which is a
widely accepted non-algorithmic model incorporated in localized estimation. Five
estimation models such as Localized Analogy Based Estimation (LABE), artificial Bee
colony guided Analogy Based Estimation (BABE), Localized BABE (LBABE),
Imputation and Optimization based Effort Estimation (IMOEE), Localized Imputation
and Optimization based Effort Estimation (LImMOEE) and three missing data
imputation techniques such as Median Imputation of the Nearest Neighbours (MINN),
Localized Imputation Technique (LIT), and Identical Project based Imputation (IPI)
were developed in this study for accurate and unbiased development effort estimation.
The techniques accurately filled the missing information in the past projects and the
models dealt with the attribute weight optimization, project attribute selection in local
space and model comparison. Imputation techniques consist of distance calculation
and impute value calibrations with localization. The models are commonly composed
by introducing the missing data imputation and soft computing techniques, and ABE.
In this research, the models were evaluated using six real datasets. The results were
compared with prominent estimation models. A comparative study of the developed
models was performed to further validate the accuracy of the results. LImOEE model
outperformed the other developed models. LImMOEE showed 51%, 25%, 11%, and
31% improvements on Mean Magnitude of Relative Error (MMRE), Percentage of
Prediction (PRED), Standard Accuracy (SA) and Effect Size (A) respectively for the
BABE model. For, LBABE, it showed 37% improvement on MMRE, 12%
improvement on PRED (0.25), 5% improvement on SA and 18% improvement on A.
For the IMOEE model, it showed 26%, 8 %, 9% and 28% improvements on MMRE,
PRED, SA and A respectively. The results revealed that, accurately imputing the
missing data for ABE, optimizing the attribute weights, and extending the scope of
localization to the important attributes have significantly improved the accuracy of
software development effort estimation.



ABSTRAK

Ketepatan anggaran pembangunan perisian adalah salah satu faktor penting
yang menyumbang kepada kejayaan dan kegagalan sesebuah projek. Kebanyakan
model angaran terkini tidak sesuai berdasarkan sifat sebenar sesebuah projek
berdasarkan ciri-ciri khas seperti atribut projek yang tidak ketara dan tidak normal.
Model anggaran berasaskan tempatan telah menyelesaikan isu ini, tetapi tidak dapat
membandingkan projek perisian, berdasar kepada jenis bahasa, untuk anggaran usaha
yang tepat. Kedua, model ini menggunakan Anggaran Berasaskan-Analogi (ABE)
yang keseluruhannya bergantung kepada projek lepas dan sebarang nilai yang hilang
yang mungkin menyebabkan hasil anggaran yang tidak realistik. Kajian ini
memperluaskan domain tempatan untuk menganggarkan usaha pembangunan
berdasarkan sifat semulajadi perisian dan memperkenalkan teknik mengenal pasti
taksiran data hilang untuk mengelakkan dari kehilangan kebanyakan projek yang
sama. Kajian ini memberi tumpuan kepada ABE, yang merupakan model bukan
beralgoritma dan berkerjasama dengan angaran tempatan. Lima model anggaran
seperti Localized Analogy Based Estimation (LABE), artificial Bee colony guided
Analogy Based Estimation (BABE), Localized BABE (LBABE), Imputation and
Optimization based Effort Estimation (IMOEE), Localized Imputation and
Optimization based Effort Estimation (LIMOEE) dan tiga teknik taksiran data hilang
seperti Median Imputation of the Nearest Neighbours (MINN), Localized Imputation
Technique (LIT), and Identical Project based Imputation (IPI) dicadangkan dalam
kajian ini untuk ketepatan dan anggaran perkembangan usaha yang tidak berat sebelah.
Teknik yang betul memenuhi taksiran data yang hilang dalam projek lepas dan model
yang mengendalikan atribut mengurangkan berat, pemilihan atribut tempatan dan
perbandingan model. Teknik taksiran terdiri daripada pengiraan jarak dan menaksir
nilai dengan penempatan. Model ini biasanya dibuat dengan memperkenalkan teknik
menaksir data hilang dan teknik komputeran lembut, ABE. Dalam kajian ini model
telah dinilai menggunakan enam data set asal. Hasil kajian telah dibandingkan dengan
model anggaran yang terkenal. Kajian perbandingan untuk model yang dibangunkan
telah dilakukan untuk mengesahkan ketepatan hasil kajian. Model LImMOEE telah
mengatasi model lain yang telah dibangunkan. LImOEE menunjukkan peningkatan
sebanyak 51%, 25%, 11% dan 31% untuk Mean Magnitude of Relative Error
(MMRE), Percentage of Prediction (PRED), Standard Accuracy (SA) dan Effect Size
(A) untuk model artificial Bee colony guided Analogy Based Estimation (BABE).
Untuk LBABE, ia menunjukkan peningkatan 37% ke atas MMRE, peningkatan 12%
ke atas PRED (0.25), peningkatan 5% ke atas SA dan peningkatan 18% ke atas A.
Untuk model ImOEE, ia menunjukkan peningkatan sebanyak 26%, 8%, 9% dan 28%
ke atas MMRE, PRED, SA dan A. Hasil kajian menunjukkan bahawa ketepatan
taksiran data hilang untuk ABE, mengoptimumkan berat atribut dan memperluaskan
skop tempatan kepada atribut penting telah meningkatkan ketepatan anggaran
pembangunan perisian.
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