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Preface

Finite Element Method (FEM) has become a compulsory knowledge for
present day engineers as it allows (what used to be) very complex behav-
ior of physical phenomenon to be known (approximately) and exploited.
However, the teaching and learning of the subject are still difficult, as usu-
ally described by the learners. In the authors’ opinion, the difficulties can
be blamed on the fragmentation (of the discussions) between mathemat-
ics, engineering fundamentals and the basic concepts of numerical method.
Realizing this, the authors are promoting a new approach in this book by
insisting for a “close-loop” type of discussion in each topic or chapter. A
topic always begins with the derivation of the differential equation/s (of
the problem). It is followed by the conversion of the equation/s into matrix
forms through finite element argument. A worked example is then imme-
diately given (in a very detailed manner) before it is closed by a MATLAB
source code.

This book is neither designed to be a complete book on FEM nor intended to
dwell on the practice of FEM modelling (using on-shelf software). Instead,
it is prepared with a specific idea in mind; the book is about easy tracing of
the evolution of the finite element formulation and thus has the following
features:

1. A complete loop in each formulation (from the derivation of the par-
tial/ordinary differential equations to the discretization of the equa-
tions into matrix system to the computer programming)

2. Increasing complexity from one formulation to another (that is, from
bar element to beam element to truss element to frame to free vibra-
tion and buckling problems and finally to forced vibration of the
structures)
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For the above reasons, this book does not have abundant worked exam-
ples but focusing on a few examples, detailing every step so as to make
obvious what has been discussed in the preceding text and what awaits in
succeeding source code. Also (with the specific example per chapter), the
evolution and the continuity of arguments can be clearly established from
one chapter to another (It is the authors’ opinion that too many examples
per chapter would make the relationship between examples in different
chapters less obvious). Nevertheless, there are plenty of solved exercises
provided.

This book has evolved from a series of lecture notes of the first author re-
fined over the period of ten years with the co-authors. It revolves around
frame structural analysis, both statics and dynamics. In Chapter 1, the
book begins with the basic concepts of numerical methods before intro-
ducing the concept of Galerkin weighted residual method towards the end.
Chapter 2 focuses on bar finite element. The formulation of beam element
is discussed in Chapter 3. Chapter 4 discusses the concept of space orien-
tation and the assembly of elements for plane structures (truss and frame).
Chapter 5 discusses two classes of eigenvalue problems; free vibration and
buckling of structures. Chapter 6 details the formulation of forced vibra-
tion of bar, beam and plane frame. In this final chapter, time discretization
by finite difference method is introduced.

Airil Yasreen Mohd Yassin
October, 2018

Putrajaya, Malaysia
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1 Basic Concept of Numerical
Techniques

1.1 Introduction: What is Finite Element
Method?

Finite Element Method or FEM can be both “everything” and “nothing”. At
one end, FEM is everything when it allows engineers to get information
(i.e. stresses, displacements, forces) of complex physical phenomenon for
design purposes. At the other end, FEM is nothing because the information
obtained is actually nothing but a solution to a partial differential equation
(PDE) or ordinary differential equations (ODE). In other words, FEM is noth-
ing but another numerical method to solve PDE or ODE.

Realizing how FEM can be “everything” is important as it can motivate the
study. But realizing how FEM can be “nothing” is just as important as it can
guide the proper learning of FEM that is, any discussion must begin from
the first principle (i.e. PDE or ODE) if strong understanding is desired.

To note, sinceODE is a special case of PDE, from now on, PDEwill be quoted
when references to both class of equations are made.

A formal description of FEM can be given as follows. FEM is a numerical
method that approximates the solution of a PDE by breaking up the phys-
ical domain into smaller elements where adjacent elements are connected
at nodes to form a mesh. Such a mesh formation process is technically
termed as element assembly. In FEM, the dependent variables at nodal lo-
cations (referred as the degree of freedoms) are interpolated by shape func-
tions. Insertion of these interpolation functions into the PDE produces a
residual error functionwhich, when forced to zerowith the employment of
weighted residual method, in turn, produces a matrix system. Imposition

sa
m

pl
e.

..



2 Basic Concept of Numerical Techniques

of boundary conditions can be done directly before the unknown degree
of freedoms be solved.

1.2 Basic Concept of Numerical Techniques

Having said how FEM is just another numerical method, below is the list
of established numerical methods.

i. Finite Element Method (FEM)
ii. Finite Difference Method (FDM)
iii. Boundary Element Method (BEM)
iv. Meshless or Meshfree Methods (Meshfree)

However, despite their variations, all the methods share similar concept
that is;

“to convert the continuous nature of PDE (or ODE) into ‘equiva-
lent’ simultaneous algebraic equations in the form of a matrix
system”.

L

q(x)

P

Figure 1.1: Bar element / structure.

In elaborating the concept, we discuss herein the solution of the simplest
forms of ODE, that is of a bar element. By leaving the derivation for later,
the ODE of a bar element (as shown in Fig. 1.1) can be given as:

Domain equation

EA
d2u

dx2 = −q (1.1)
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1.2 Basic Concept of Numerical Techniques 3

where u and q are the axial displacement of the bar and the external dis-
tributed load acting on the bar, respectively. E and A are the Young’s
modulus and the cross-sectional area of the bar respectively which both
are constant for a linear problem. L is the length of the bar and P is an
external point load acting at the end of the bar as shown in the Fig. 1.1.

Complementing the domain ODE are the boundary conditions given as fol-
lows (which detailed derivation and discussion are delayed until Chapter
2)

Boundary conditions (equations)

EA
du

dx

∣∣∣∣
x=L

= P (1.2)

u|x=0 = 0 (1.3)

The ODE is considered solved when a solution, u = f(x) is found which
satisfies all the equations above (i.e. Eqs. (1.2) and (1.3)).

In fact, the exact (closed-formed) solution of the problem can already be
obtained by direct integration, thus:

u =
(

− q

2EA

)
x2 +

(
P + ql

EA

)
x (1.4)

However, despite the availability of Eq. (1.4), the ODEs of the problem
(Eqs. (1.1) to (1.3)) are still discretised numerically herein so as to demon-
strate the basic concept of numerical techniques. The problem is chosen
due to its simplicity allowing for easy tracing of the discussion.

To convert the ODEs (i.e. Eqs. (1.1) to (1.3)) to its ‘equivalent’ simultaneous
algebraic equations, we start by assuming a guessed solution in the forms
of polynomials. In our case, we guess:

u = a1 + a2x + a3x2 + a4x3 + a5x4 (1.5)
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4 Basic Concept of Numerical Techniques

Then, we satisfy Eq. (1.3) by inserting Eq. (1.5) into the equation to give:

u|x=0 = a1 + a2(0) + a3(0)2 + a4(0)3 + a5(0)4 = 0 (1.6)

which gives:
a1 = 0 (1.7)

Next we satisfy Eq. (1.2) by inserting Eq. (1.5) into the equation to obtain:

EA
du

dx

∣∣∣∣
x=L

= EA
(
a2 + 2a3L + 3a4L2 + 4a5L3)

= P (1.8)

Finally, by inserting Eq. (1.5) into Eq. (1.1), the following is obtained:

EA
d2u

dx2 + q = EA
(
2a3 + 6a4x + 12a5x2)

+ q ̸= 0 (1.9)

Observing Eq. (1.9), it must be noted that, whilst each of Eqs. (1.6) to (1.8) is
an act of forcing the equation to a certain values (i.e 0 and P , respectively),
hence the “satisfaction” of the equations, the insertion of the guess func-
tion (Eq. (1.5)) into the domain equation (Eq. (1.1)) is yet a satisfaction of
the original equation hence the use of the inequality symbol (̸=). As we are
going to see, the forcing of Eq. (1.8) at several locations within the domain
to a null value is what satisfies the equation and what creates sufficient
number of equations.

By grouping Eqs. (1.7) to (1.9) together, we can see that, so far, we have
established three simultaneous equations as follows:

a1 = 0 (1.10a)

EA
(
a2 + 2a3L + 3a4L2 + 4a5L3)

= P (1.10b)

EA
(
2a3 + 6a4x + 12a5x2)

+ q ̸= 0 (1.10c)

However, observing Eq. (1.10) we can notice that:

1. We have five (5) unknown constants, a1, a2, a3, a4 and a5 but with
only three (3) simultaneous equations.
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1.2 Basic Concept of Numerical Techniques 5

2. The last equation that is Eq. (1.10c) (previously Eq. (1.9)) is still not
algebraic but continuous in x. Also, the left hand side of the equation
is not equal to (̸=) the right hand side because the guessed function
is yet the solution of the ODE, as mentioned previously.

So to get the sufficient number of equations (and to convert Eq. (1.10c)
into algebraic) we argue that, since Eq. (1.10c) is obtained from domain
equation, the equation must hold (must be true) throughout the domain
thus we can evaluate Eq. (1.10c) everywhere in the domain as much as
we need. In our case, to complement Eqs. (1.10a) and (1.10b), we evaluate
Eq. (1.10c) at three (3) locations in the bar, says at x = L/3, L/2, 2L/3 to
obtain:

2EAa3 + 6EAa4

(
L

3

)
+ 12EAa5

(
L

3

)2

+ q = 0 (1.11a)

2EAa3 + 6EAa4

(
L

2

)
+ 12EAa5

(
L

2

)2

+ q = 0 (1.11b)

2EAa3 + 6EAa4

(
2L

3

)
+ 12EAa5

(
2L

3

)2

+ q = 0 (1.11c)

Eq. (1.11) are the results of forcing Eq. (1.10c) to a null value at several
locations within the domain as mentioned previously. Also, as can be seen,
such an act does not only represent the satisfaction of the originalODE, but
also convert the ODE into a set of algebraic equations.

Now, by re-grouping Eqs. (1.10a), (1.10b) and (1.11), we then have a suffi-
cient number of algebraic equations, given as:sa
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6 Basic Concept of Numerical Techniques

a1 = 0 (1.12a)

EAa2 + 2EAa3L + 3EAa4L2 + 4EAa5L3 = P (1.12b)

2EAa3 + 6EAa4

(
L

3

)
+ 12EAa5

(
L

3

)2

+ q = 0 (1.12c)

2EAa3 + 6EAa4

(
L

2

)
+ 12EAa5

(
L

2

)2

+ q = 0 (1.12d)

2EAa3 + 6EAa4

(
2L

3

)
+ 12EAa5

(
2L

3

)2

+ q = 0 (1.12e)

Eq. (1.12) is thus the ‘equivalent’ simultaneous algebraic equations of the
ODE of the problemwhich are given originally in Eqs. (1.1) to (1.3). In other
words, we can say that:

“Eq. (1.12) are the ‘equivalent’ algebraic forms of Eqs. (1.1)
to (1.3)”.

So this is basically the main concept shared by all numerical techniques
such as FEM, FDM, BEM and Meshfree. But it is also the character of a
numerical technique to treat the equations in matrix forms as this what
suits computer programming. In this context, Eq. (1.12) can be arranged
in matrix forms as:

1 0 0 0 0

0 EA 2EAL 3EAL2 4EAL3

0 0 2EA 6EA

(
L

3

)
12EA

(
L

3

)2

0 0 2EA 6EA

(
L

2

)
12EA

(
L

2

)2

0 0 2EA 6EA

(
2L

3

)
12EA

(
2L

3

)2





a1

a2

a3

a4

a5


=



0

p

−q

−q

−q


(1.13)

or [
k
] {

u
}

=
{

r
}

(1.14)
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1.2 Basic Concept of Numerical Techniques 7

where

[
k
]

= kij =



1 0 0 0 0

0 EA 2EAL 3EAL2 4EAL3

0 0 2EA 6EA

(
L

3

)
12EA

(
L

3

)2

0 0 2EA 6EA

(
L

2

)
12EA

(
L

2

)2

0 0 2EA 6EA

(
2L

3

)
12EA

(
2L

3

)2


(1.15a)

{
u

}
= uj =



a1

a2

a3

a4

a5


(1.15b)

{
r
}

= rj =



0

P

−q

−q

−q


(1.15c)

Note: kij , uj , and rj are the alternative notations known as indicial/ten-
sorial notations. We are going to use this notation system and the matrix
forms interchangeably.

By solving Eq. (1.12) or Eq. (1.13), we would then obtain the numerical val-
ues of a1, a2, a3, a4 and a5, and by inserting these values into the original
guessed function, Eq. (1.5) we thus obtain the numerical solution of the
problem.
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2 Galerkin Formulation: Bar
Element

2.1 Introduction

In the previous chapter, we have discussed the basic concept of numerical
technique and the basic concept of WRM. In this chapter, we are going to
discuss on the specific form of WRM that is employed in the present day
of FEM that is Galerkin WRM. However, since it has also been mentioned
earlier that FEM is nothing but a numerical solution to a PDE, it is important
in any FEM endeavour for the analyst to be familiar with the relevant PDE
including its derivation and its closed-form solution (if available). Thisway,
when the analyst is required to embark on a new project or study, he or
she is already being trained to look at the problem from the first principle,
and identify all the relevant aspects or concerns, before he or she employs
FEM in getting the solution of the problem.

2.2 Ordinary Differential Equation of Bar
Problem

As mentioned, it is vital for an analyst to get into the problem from the
first principle and in many cases; this would mean from the derivation of
the relevant PDE (or ODE). Since in the previous chapter, we have been
introduced to the ODE of bar problem, herein we are going to show the
derivation of the ODE. Fig. 2.1(a) shows a bar element subjected to an ex-
ternal distributed load, q(x) and an end load, P and its differential element.
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22 Galerkin Formulation: Bar Element

(a)

L

q(x)

P

(b)

dx

q(x)

F + ∂F

∂x
dx + 1

2!
∂2F

∂x2 dx2 + ...F

(c)

dx

q(x)

F + dFF

Figure 2.1: Bar structure and its differential element.

It can be argued that, although we have an axial force, F at the left side
of the differential element, due to the ‘disturbance’ along the differential
length, dx (due to external load, for example) the magnitude of the axial
force at the right side of the differential element must change. However
we don’t know the exact change of this force, else we would not have
this problem in the first place, would we? But by assuming the change is
continuous, we can say that the force at the right-side of the differential
element can be represented by Taylor series, as shown in Fig. 2.1(b).

But by assuming higher order terms as insignificant and since this is a 1D
problem (i.e. ∂( ) = d( )), a state as shown in Fig. 2.1(c) is considered.
This is an important argument thusmust be grasped by the readers because
as we going to see later, the derivation of PDE (or ODE) for other problems
will be based on the same argument as well.
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2.2 Ordinary Differential Equation of Bar Problem 23

Having established the differential element and the corresponding forces
acting on it, we are in the position to derive the ODE for the bar problem.
Since the bar only deform in axial direction, only equilibrium inx-direction
need to be considered thus:∑

Fx = 0 = −F + (F + dF ) + q dx (2.1)

By rearranging gives:
dF

dx
= −q (2.2)

From Hooke’s Law, we know that:

σ = Eϵ (2.3)

where σ is the axial stress, E is the Modulus Young and ϵ is the axial strain.
Since

From Hooke’s Law, we know that:

σ = F

A
(2.4)

and
ϵ = du

dx
(2.5)

By inserting Eq. (2.4) and Eq. (2.5) into Eq. (2.3) gives:

F = EA
du

dx
(2.6)

By differentiating Eq. (2.6) once gives:

dF

dx
= EA

d2u

dx2 (2.7)

By inserting Eq. (2.7) into Eq. (2.2) would then give the ODEwhich we have
previously encountered in Chapter 1 (Eq. (1.1)), that is:

EA
d2u

dx2 = −q (2.8)
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24 Galerkin Formulation: Bar Element

In obtaining a unique solution, for every ODE (or PDE for that matter), the
domain equation/s must be supplemented by boundary equations, and for
this particular case, the equations are given as below:

Natural/force boundary conditions

EA
du(x)

dx

∣∣∣∣
x=0

= F0 (2.9a)

EA
du(x)

dx

∣∣∣∣
x=L

= −FL (2.9b)

Essential/displacement boundary conditions

u|x=0 = u0 (2.9c)

u|x=L = uL (2.9d)

Note that the sign convention for the natural (force) boundary conditions
above is based on the assumption that the boundary conditions are the
reactions at support hence the opposite directions to the internal forces.
Since Eq. (2.8) is a 2nd order ODE, two boundary conditions out of the four
given above must be known in prior so as to have a well-posed problem.

Having established the bar ODE, we are now all set to discuss the basic
concept of Galerkin WRM. This is given next.

2.3 Fundamental of Galerkin WRM

We have discussed the basic concept of WRM that is, the integration of a
function consists of a product of the residual function and a weight func-
tion and forcing this integrated value to zero in getting an algebraic func-
tion.

The Galerkin WRM differs in the following aspects:

1. The guessed solution is expressed in terms of shape functions, Ni

and degree of freedoms, ui instead of interpolation functions and its
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2.4 Degree of Freedom and Shape Functions for Bar Element 29

(a)

(b)

1

x = 0 x = L

1 2

1

x = 0 x = L

1 2

Figure 2.3: Linear shape functions (a) N1 (b) N2. The distance, x is measured from
node 1.

Both N1 and N2 take the shapes as shown in Fig. 2.3. Take note of the
shapes as they will be referred later in the discussion of integration by
parts and the resulting boundary terms. For example, note that in both
cases the shape functions, Ni has a value of unity at node i and zero at
other nodes.

2.4.2 Derivation of Quadratic Bar Shape Function

Evaluate Eq. (2.10b) at the location of the nodes (i.e. at both ends, x = 0,
x = L/2 and x = L) and equate them according to the dof give:

u(x)|x=0 = a1 + a2(0) + a3(0)2 = u1

u(x)|x= L
2

= a1 + a2(L

2
) + a3(L

2
)2 = u2

u(x)|x=L = a1 + a2(L) + a3(L)2 = u3

(2.17)
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2.5 Discretization by Galerkin Method 31

(a)

(b)

(c)

1

x = 0 x = L/2 x = L

1 2 3

1

x = 0 x = L/2 x = L

1 2 3

1

x = 0 x = L/2 x = L

1 2 3

Figure 2.4: Quadratic shape functions (a) N1 (b) N2 (c) N3. The distance, x is
measured from node 1.
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2.9 Worked Example 2.1 47

2.9 Worked Example 2.1

Now, we are going to solve the previous problem of Worked Example 1.1
by considering FEM as illustrated in Fig. 2.7. The problem is solved by
the assembly of two bar elements. Both linear and quadratic bars are con-
sidered. The results are then verified against the closed-form solution of
Eq. (1.4).

L = 5 m

q = 2 kN m−1

P = 10 kN

Figure 2.7: Cantilever bar with uniformly distributed load, q and a single point
load, P . (E = 200×106 kN m−2 and A = 0.04 m2).

2.9.1 Linear Bar Element

Due to the symmetricality, element 1 and element 2 would have a similar
local stiffness matrix and load vector, thus:

k1
ij = k2

ij =

 3.2 −3.2

−3.2 3.2

 × 106 (2.55)

and

r1
i =

2.5 + b1
1

2.5 + 0

 (2.56)

r2
i =

 2.5 + 0

2.5 + 10

 (2.57)

Note that b1
1 is the local reaction at the support of element 1.
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48 Galerkin Formulation: Bar Element

The assembled global stiffness matrix, [K] is given as:

[
K

]
=


K11 K12 K13

K21 K22 K23

K31 K32 K33



=


k1

11 k1
12 0

k1
21 k1

22 + k2
11 k2

12

0 k2
21 k2

22



=


3.2 −3.2 0

−3.2 6.4 −3.2

0 −3.2 3.2

 × 106

(2.58)

and the assembled load vector, {R} is given as:

{
R

}
=


R1

R2

R3

 =


r1

1

r1
2 + r2

1

r2
2

 =


2.5 + b1

1

2.5 + 2.5

2.5 + 10

 =


2.5 + B1

5.0

12.5

 (2.59)

To emphasize the global reactions forces, b1
1 is expressed as B1. This is

unknown variable because its corresponding dof is the essential boundary
conditionwhich in turn, is a known value. Thewhole equilibrium equation
can thus be given as:

3.2 −3.2 0

−3.2 6.4 −3.2

0 −3.2 3.2

 × 106


U1

U2

U3

 =


2.5 + B1

5.0

12.5

 (2.60)

By imposing the essential boundary conditions (U1 = 0), the assembled
global equilibrium equation is reduced to: 6.4 −3.2

−3.2 3.2

 × 106

U2

U3

 =

 5.0 − 0

12.5 − 0

 (2.61)
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58 Galerkin Formulation: Bar Element

0 1 2 3 4 5
0

2

4

6

8

10

x[m]

u
(x

)×
10

−
6 [

m
]

Exact
FEM-Linear
FEM-Quadratic

Figure 2.8: Comparison between uexact, ulinear and uquadratic

{
σ2}

= {b2}
A

= 1
0.04


−15

0

10


=


−375

0

250



(2.86)

The validity of both results thus formulation can be assessed by comparing
their values with those previously obtained in Worked Example 1.2. The
plot of FEM results against the closed-form solution (Eq. (1.4)) are shown
in Fig. 2.8 which numerical values at several locations along the bar are
given in Table 2.3.

Based on the plot and the table, for the first time the convergence nature of
a numerical analysis becomes obvious. As can be seen, the assembled two
linear elements provide quite a poor approximation except at the location
of the nodes where the results agree with the closed-form solution. A bet-
ter hence a converged solution is provided by the quadratic elements thus
an immediate demonstration of the beneficial effect of the use of higher or-
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2.10 Matlab Source Codes 59

Table 2.3: Comparison of values between uexact, ulinear and uquadratic

x 0 m 1.25 m 2.5 m 3.75 m 5 m
ulinear - 5.47×10−6 - 9.38×10−6

uquadratic 0 2.93×10−6 5.47×10−6 7.62×10−6 9.38×10−6

uexact 0 2.93×10−6 5.47×10−6 7.62×10−6 9.38×10−6

der elements. This is an immediate demonstration to the statement “FEM
converges to the ‘accurate’ solution with the increase in the order of polyno-
mial of the guessed functions (or degree of freedom and mesh density later
on)” which was mentioned in the previous chapter.

2.10 Matlab Source Codes

2.10.1 Linear Bar Element

% Clear data
clc; clear; close all

% Input
E = 200e6; % Young's modulus (kN/m)
A = 0.04; % Area (m^2)
L = 5; % Bar length [m]
P = 10; % Point load [kN]
q = 2; % Distributed load [kN/m]

% --------------------------------------------
% FEM solution - Displacement
% --------------------------------------------

% Elements length
L1 = L/2; L2 = L/2;

% Matrix k & force r
k1 = A*E/L1*[ 1 -1;

-1 1];
k2 = A*E/L2*[ 1 -1;

-1 1];

r1 = [q*L1/2; q*L1/2];
r2 = [q*L1/2; q*L1/2];

% Assemble global matrix, K and vector, R
K = zeros(3);
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60 Galerkin Formulation: Bar Element

K(1:2, 1:2) = K(1:2, 1:2) + k1;
K(2:3, 2:3) = K(2:3, 2:3) + k2;

R = zeros(3,1);
R(1:2) = R(1:2) + r1;
R(2:3) = R(2:3) + r2;

% Point load, P at the bar end
R(3) = R(3)+P;

% Solve for global displacement
U = zeros(3,1);
U(2:3) = K(2:3,2:3)\R(2:3);

% --------------------------------------------
% FEM solution - Reaction, b & stress, sig
% --------------------------------------------

% Internal force or reaction
b1 = k1*[U(1); U(2)] - r1;
b2 = k2*[U(2); U(3)] - r2;

% Internal stress
sig1 = b1/A;
sig2 = b2/A;

2.10.2 Quadratic Bar Element

% Clear data
clc; clear; close all

% Input
E = 200e6; % Young's modulus (kN/m)
A = 0.04; % Area (m^2)
L = 5; % Bar length [m]
P = 10; % Point load [kN]
q = 2; % Distributed load [kN/m]

% --------------------------------------------
% FEM solution - Displacement
% --------------------------------------------

% Elements length
L1 = L/2; L2 = L/2;

% Matrix k & force r
k1 = A*E*[ 7/(3*L1) -8/(3*L1) 1/(3*L1);

-8/(3*L1) 16/(3*L1) -8/(3*L1);
1/(3*L1) -8/(3*L1) 7/(3*L1)];

k2 = A*E*[ 7/(3*L2) -8/(3*L2) 1/(3*L2);
-8/(3*L2) 16/(3*L2) -8/(3*L2);
1/(3*L2) -8/(3*L2) 7/(3*L2)];

r1 = [q*L1/6; 2*q*L1/3; q*L1/6];
r2 = [q*L2/6; 2*q*L2/3; q*L2/6];
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2.11 Excercises 61

% Assemble global matrix, K and vector, R
K = zeros(5);
K(1:3, 1:3) = K(1:3, 1:3) + k1;
K(3:5, 3:5) = K(3:5, 3:5) + k2;

R = zeros(5,1);
R(1:3) = R(1:3) + r1;
R(3:5) = R(3:5) + r2;

% Point load, P at the bar end
R(5) = R(5)+P;

% Solve for global displacement
U = zeros(5,1);
U(2:5) = K(2:5,2:5)\R(2:5);

% --------------------------------------------
% FEM solution - Reaction, b & stress, sig
% --------------------------------------------

% Internal force or reaction
b1 = k1*[U(1); U(2); U(3)] - r1;
b2 = k2*[U(3); U(4); U(5)] - r2;

% Internal stress
sig1 = b1/A;
sig2 = b2/A;

2.11 Excercises

110 mm 90 mm 90 mm

10
0

m
m 50

m
m

12.5 kN m−1

100 kN

1 2 3 4

1
2 3

Figure 2.9

1. The rod structure of circular cross section shown in Fig. 2.9 is sub-
jected to a concentrated force of 100 kN and a traction force of
12.5 kN m−1. The material for all rods is aluminium with E =
70 GPa. By using three 2-node bar elements, determine;
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3 Galerkin Formulation: Beam
Element

3.1 Introduction

In the previous chapter, we have discussed the concept of Galerkin
WRM hence FEM and formulated the discretised equation for bar element.
Herein, we are going to continue our discussion by formulating the discre-
tised equation for beam problem. We begin by deriving the Euler-Bernoulli
differential equation of beam which is given next.

3.2 Ordinary Differential Equation of
Euler-Bernoulli Beam

An Euler-Bernoulli beam is a structural member that resists loads by bend-
ing and shearing. The corresponding deformation would be rotation and
translation. Consider a structural beam which is subjected to a distributed
load, q(x) as shown in Fig. 3.1(a). The differential equation for such a beam
can be derived for static loading by considering its differential element as
shown in Fig. 3.1(b). Also shown is the typical arrangement of a beam
structure.

As argued previously for bar element (in Chapter 2), although we have mo-
ment force, M and shear force, V at the left side of the differential element,
due to the ‘disturbance’ along the differential length, dx (due to external
load, for example) the magnitude of these forces at the right side of the dif-
ferential element must change. However we don’t know the exact change
of these forces, else we would not have the problem in the first place would
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66 Galerkin Formulation: Beam Element

we? But by assuming the change is continuous, we can say that the forces
at the right-side of the differential element can be represented by a Taylor
series, as shown in Fig. 3.1(b).

By assuming higher order terms as insignificant and since this is a 1D prob-
lem (i.e.∂( ) = d( )), a state as shown in Fig. 3.1(c) is considered. This
is an important argument thus must be grasped by the readers because as
we are going to see later, the derivation of PDE (or ODE) for other problems
will be based on the same argument as well.

Having established the differential element and the corresponding forces
acting on it, we are in the position to derive the ODE for beam problem.
However, it must be noted again that the following differential equation
does not consider axial deformation thus the absent of axial forces. Beams
allowing such forces are called beam-column , of which the FEM formula-
tion is given in the next chapter. Also, present formulation assumes slope
is equalled to rotation. A more general formulation would be the Timo-
shenko Beam Theory as it allows different values for the two entities, but
it is not included in our discussion.

Based on Fig. 3.1(c), the following equilibrium of forces can be employed:∑
Fx = 0 (3.1)∑
Fy = 0 (3.2)∑
Mz = 0 (3.3)

which yield

V − (V + dV ) − q dx = 0 (3.4)

− M + (M + dM) − V dx − q
dx2

2
= 0 (3.5)

where q is the distributed transverse external loading and w the deflection
of the beam.
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3.7 Imposition of Essential Boundary Conditions 85

3.7 Imposition of Essential Boundary
Conditions

Essential (or displacement) boundary conditions must be imposed before
the equilibrium equation of the beam can be solved. Basic concept of direct
imposition of boundary conditions has been described in detail in previous
chapter.

Eq. (3.12) give all the possible essential boundary conditions of a beam,
reproduced herein for ease of reading as:

dw

dx
(x)

∣∣∣∣
x=0

= θ0 (3.50a)

dw

dx
(x)

∣∣∣∣
x=L

= θL (3.50b)

w(x)|x=0 = w0 (3.50c)

w(x)|x=L = wL (3.50d)

Graphical representations of these boundary conditions are given in
Fig. 3.6.

w = 0
θ = 0

w = 0 w = 0

Figure 3.6: Various beam’s essential boundary conditions.

3.8 Worked Example 3.1

Let’s put what we have learned so far into practice. Fig. 3.7 shows a can-
tilever beam subjected to a distributed load of 2 kN m−1 and an edge point
load of −5 kN.
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86 Galerkin Formulation: Beam Element

4 m

2 kN m−1

5 kN

Figure 3.7: Beam with distributed and point loads. (E = 200×106 kN m−1 and
I = 1.333×10−4 m4).

An analytical solution for the beam can be obtained by conducting inte-
gration directly on the ODE given by Eq. (3.10) and satisfying the all the
relevant boundary conditions (both force and displacement in Eqs. (3.11)
and (3.12), which are:

EI
d3w

dx3

∣∣∣∣
x=4

= −VL = −(−5 kN) (3.51a)

EI
d2w

dx2

∣∣∣∣
x=4

= −ML = 0 (3.51b)

dw

dx
(x)

∣∣∣∣
x=0

= θ0 = 0 (3.51c)

w(x)|x=0 = w0 = 0 (3.51d)

The analytical or the closed form solution of the beam can be given as:

wexact = qx4

24EI
+ (−P − qL)x3

6EI
− qL2x2

4EI
− (−P − qL)Lx2

2EI
(3.52)

Herein, we are going to solve the problem by the assembly of two beam ele-
ments of equal length and compare the results against Eq. (3.52) to validate
the FEM formulation. Due to the symmetrically, element 1 and element 2
would have a similar local stiffness matrix thus:

k1
ij = k2

ij =


4.00 4.00 −4.00 4.00

4.00 5.33 −4.00 2.67

−4.00 −4.00 4.00 −4.00

4.00 2.67 −4.00 5.33

 × 104 (3.53)
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94 Galerkin Formulation: Beam Element

0 1 2 3 4

−8

−6

−4

−2

0
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w
(x

)×
10

−
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m
]

Exact
FEM - 2 elements
FEM - 4 elements

Figure 3.9: Plot of wFEM and wexact.

Table 3.4: Comparison of values of reaction forces (in kN) at fix support.

B1 B2

wFEM-2 elements 13 36
wFEM-4 elements 13 36
Software (converged) 13 36

with the increase in the order of polynomial of the guessed functions (or de-
gree of freedom and mesh density later on)” which was stated in previous
chapter.

3.9 Matlab Source Codes

% Clear data
clc; clear; close all

%Input
E = 200e6; % Young's modulus [kN/m]
I = 1.333e-4; % Moment of inertia [m^4]
L = 4; % Bar length [m]
P = -5; % Point load [kN]
q = -2; % Distributed load [kN/m]
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3.10 Exercises 95

% --------------------------------------------
% FEM solution - Displacement
% --------------------------------------------

% Elements length
L1 = L/2; L2 = L/2;

% Matrix k & force r
k1 = [12*E*I/L1^3 6*E*I/L1^2 -12*E*I/L1^3 6*E*I/L1^2;

6*E*I/L1^2 4*E*I/L1 -6*E*I/L1^2 2*E*I/L1;
-12*E*I/L1^3 -6*E*I/L1^2 12*E*I/L1^3 -6*E*I/L1^2;

6*E*I/L1^2 2*E*I/L1 -6*E*I/L1^2 4*E*I/L1];
k2 = [12*E*I/L1^3 6*E*I/L1^2 -12*E*I/L1^3 6*E*I/L1^2;

6*E*I/L1^2 4*E*I/L1 -6*E*I/L1^2 2*E*I/L1;
-12*E*I/L1^3 -6*E*I/L1^2 12*E*I/L1^3 -6*E*I/L1^2;

6*E*I/L1^2 2*E*I/L1 -6*E*I/L1^2 4*E*I/L1];

r1 = [q*L1/2; q*L1^2/12; q*L1/2; -q*L1^2/12];
r2 = [q*L2/2; q*L2^2/12; q*L2/2; -q*L2^2/12];

% Assemble global matrix, K and vector, R
K = zeros(6);
K(1:4,1:4) = K(1:4,1:4) + k1;
K(3:6,3:6) = K(3:6,3:6) + k2;

R = zeros(6,1);
R(1:4) = R(1:4) + r1;
R(3:6) = R(3:6) + r1;

% Point load, P
R(5) = R(5) + P;

% Solve for global displacement
D = zeros(6,1);
D(3:6) = K(3:6,3:6)\R(3:6);

% --------------------------------------------
% FEM solution - Internal reaction, b
% --------------------------------------------

% Internal force or reaction
b1 = k1*[D(1); D(2); D(3); D(4)] - r1;
b2 = k2*[D(3); D(4); D(5); D(6)] - r2;

3.10 Exercises

1. The displacement function for beam element as shown in Fig. 3.10(a)
is assumed as:

v = a1 + a2x + a3x2 + a4x3

i. Explain the steps that need to be taken to determine the values
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4 Plane Structures: Truss and
Frame

4.1 Introduction

In the previous chapters, we have discussed the derivation of FEM formu-
lation for bar and beam elements. However, these elements were arranged
and assembled in a line. A more general arrangement would require the
elements to be arbitrarily oriented and assembled. Assembly of such ori-
ented elements would make up a truss system and a frame system, respec-
tively. As we are going to see, the orientation process requires the intro-
duction of the transformationmatrix. The use of this matrix is to transform
local entities into global entities. Another point to emphasize is the intro-
duction of two degree of freedoms and two load components into the bar
element’s global representation. Also, since the construction of a frame
would require the transfer of axial load/force, a beam element is supplied
with extra degree of freedoms in the axial direction. As can be seen, this
will involve the combination of previously derived bar and beam elements
to form what is called beam-column element.

4.2 Truss System

A truss system is an assembly of inclined bar elements. Figure 4.1 shows
a typical arrangement of a plane truss system.

To allow for the inclination of the truss members and the corresponding
assembly, a bar element formulation must be re-expressed in a global man-
ner. In a global axis, a bar element would have two degree of freedoms per
node. Such a transformation requires us to establish what is known as a
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102 Plane Structures: Truss and Frame

P2

P1

Figure 4.1: A typical truss system.

transformation matrix as discussed next.

4.2.1 Bar Transformation Matrix

Consider an inclined bar as shown in Fig. 4.2, together with the newly
introduced elemental global direction dofs and previously defined local
dofs. Note that, to distinguish between local and elemental global direction
dofs, the former is primed.

For a linear bar (two-nodes bar), by considering the geometry of Fig. 4.2
the relationship between the local and the elemental global dofs can be
given as:

u′
1 = u1 cos β + u2 sin β (4.1a)

u′
2 = u3 cos β + u4 sin β (4.1b)

In matrix forms, Eq. (4.1a) can be given as:

u′
1

u′
2

 =

cos β sin β 0 0

0 0 cos β sin β




u1

u2

u3

u4


(4.2)

or {
u′} =

[
T

] {
u

}
(4.3)
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4.2 Truss System 103

x

y

β

x′
y′

u′
1

u′
2

u1

u2

u3

u4

1

2

u1

u2

β

u′
1 = u1 cos β + u2 sin β

Figure 4.2: Degree of freedoms of inclined bar element

where {u′} is the vector of local dofs, [T ] is from now on is called the bar
transformation matrix and {u} is the vector of the elemental global dofs
of the bar element.

To simplify the expression, [T ]s is expressed as:

[
T

]
=

c s 0 0

0 0 c s

 (4.4)

where

c = cos β

s = sin β

So far, we have established the relationship between local dofs of bar and
its elemental global dofs. Nowwe are going to establish the relationship be-
tween local forces and the elemental global forces. By referring to Fig. 4.3,
the relationship can be given as:

r1 = r′
1 cos β (4.5a)

r2 = r′
1 sin β (4.5b)

r3 = r′
2 cos β (4.5c)

r4 = r′
2 sin β (4.5d)
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5 Eigenproblems: Free
Vibration and Buckling

5.1 Introduction

In previous chapters, we have been dealing with structures which are
loaded in the direction of the degree of freedoms; point loads (either equiv-
alent or nodal loads) in the direction of the translational dof or applied mo-
ment in the direction of the rotational dof. Herein, we are going to discuss
a quite different situation that is, the deformation which is ‘ungoverned’
by loads that are acting on the structure.

5.2 “Ungoverned by the Loads” and
Eigenproblems

The word “ungoverned”, however, requires further elaboration. The word
refers to the statement that the load vector, {r} or {R} is set to zero. Math-
ematically this means solving only the homogenous part of the differential
equation of the problem. The resulting values would be some properties
of the structure and their corresponding deformation.

For example, free vibration refers to the “vibration” of a structure which is
described by the natural frequencies and the corresponding mode shapes,
without any explicit consideration on the type of external loading. Only
during the discussion of resonance, these frequencies would then be com-
pared with the incoming frequencies (external loads).

Same goes to the discussion of buckling of a structure. The load that would
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152 Eigenproblems: Free Vibration and Buckling

cause the buckling will be specific critical values of compressive axial force
termed as buckling loads . As will be seen, since Euler-Bernoulli beam for-
mulation able to capture such a phenomenon and determine the buckling
loads and their corresponding buckling modes without the need to intro-
duce axial dofs, it should be obvious that the bucking loads and their modes
are not governed by the external applied loads.

Since both values (natural frequencies, buckling loads) are not governed
by the loads, they must be some properties of the structure hence the name
“eigen” which means “inherent” or “characteristic” in German. Then, what
governs their values? Something must affect their values, must not they?
As some properties, they are governed by other properties of the struc-
tures; material and geometrical properties. In our discussion on bar, beam
and their inclined elements, these would be Young’s modulus, E, cross-
sectional area, A, second moment of area, I and element’s length, L.

Also, since these values are “ungoverned” by the loads, we will see that the
FEM formulation for both problems will involve with the discretization of
their differential equations without the forcing terms hence the setting up
of load vector, {r} or {R} to zero.

Accordingly, all physical problems that fall under the same argument are
called eigenproblems as their equilibrium equations can all be arranged
into a standard mathematical statement. If [A] and [B] are square matrices
with known coefficients and λ is an unknown constant, an eigenproblem
is a problem that can be described by the following typical mathematical
statement:

([A] + λ[B]){d} = 0 (5.1)

where λ is termed as eigenvalue and {d} is termed as eigenvector.

For free vibration analysis, matrix [A] represents the stiffness matrix, [K],
matrix [B] represents the mass matrix, [M ], constant λ represents the
square of natural frequencies and vector {d} represents the vector of mode
shape dofs {d̂}.

For buckling problem, matrix [A] represents the stiffness matrix, [K], ma-
trix [B] represents the stress stiffness matrix [KG], constant λ represents
the buckling load, P and vector {d} represents the buckling modes . Ta-
ble 5.1 summarizes these.
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5.2 “Ungoverned by the Loads” and Eigenproblems 153

Table 5.1: Eigenproblem grouping

Free vibration Buckling

[A] [K] [K]

[B] [M ] [KG]

λ λ P

{d} {d} {d}

([A] + λ[B]){d} = 0 ([K] − λ[M ]){d} = 0 ([K] + P [KG]){d} = 0

Besides having a typical statement, eigenproblem also has a typical argu-
ment for the solution that is;

“The solution of Eq. (5.1) has two solutions, the trivial solution
when {d} = 0 and the non-trivial solution when the determi-
nant of the coefficient matrices is zero i.e. [A]+λ[B] = 0. Since
a trivial solution would also mean that there will be no deforma-
tion, a non-trivial solution is therefore the solution of interest.”

Since the non-trivial solution is of interest, the setting up of

|[A] + λ[B]| = 0 (5.2)

will result in a characteristic polynomial. If the coefficient matrices are
4 × 4 matrix, the resulting characteristic polynomial will be in the forms:

λ4 + Φ4λ3 + Φ3λ2 + Φ2λ + Φ1 = 0 (5.3)

whereΦ1, Φ2, Φ3, andΦ4 are constants resulted from the process of setting
up the determinant to zero. For n × n matrices, the resulting polynomial
would be

λn + Φnλn−1 + ... + Φ1λ0 = 0 (5.4)

The four roots of Eq. (5.3) and the n roots of Eq. (5.4) are thus the eigenval-
ues for the problem. For free vibration, these would be the natural frequen-
cies and for buckling problem, these would be the buckling loads. Inserting
one of the roots (or eigenvalues) back into Eq. (5.1) will allow the eigen-
vector for that particular eigenvalue to be solved hence determined. For
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172 Eigenproblems: Free Vibration and Buckling

Table 5.2: Comparison of ω values between FEM and exact solution

FEM Exact2 elements 4 elements 8 elements
1st mode 20.59 20.58 20.58 20.58
2nd mode 130.08 129.13 128.99 128.96

1 2 3 4

−1

−0.5

0

0.5

1

L [m]

M
ag

ni
tu
de

Mode 1 Mode 2
Mode 3 Mode 4

Figure 5.4: Mode shapes of beam’s free vibration

5.5 Buckling of Beam

Beam buckling is a phenomenon of instability. The phenomenon is charac-
terized by the out-of-plane deformation; a deformation that is away from
the plane in which the buckling load is acting.

The analysis of buckling of structures, on the other hand, refers to the
determination of buckling (critical) load, P and its corresponding mode
shape, {d}. If the compressive load within a structure equals this buckling
load, buckling will occur. In the context of ultimate limit state design, oc-
currence of buckling is considered as premature failure as it prevents the
attainment of the ultimate resistances of the structure.

The determination of buckling load and its corresponding mode will be
done in the same manner as outlined previously for free vibration of beam
as the analysis falls under the same category of eigenproblem. By refer-
ring to Table 5.1, it can be seen that the process requires the derivation of
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5.6 Eigenproblem for Plane Frame (Free Vibration) 183
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Figure 5.7: The first four buckling modes of a column with pinned at both ends.

is primed so as to distinguish them from their elemental):

[m′] = ρAL

420



140 0 0 70 0 0

0 156 22L 0 54 −13L

0 22L 4L2 0 13L −3L2

70 0 0 140 0 0

0 54 13L 0 156 −22L

0 −13L −3L2 0 −22L 4L2


(5.90)

Having established the beam-column’s mass matrix, [m′] as given by
Eq. (5.90), whereas the beam-column’s stiffness matrix, [k′] is already
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6 Dynamic: Forced Vibration

6.1 Introduction

Dynamic analysis is a topic where the main concern is to determine
structure’s responses or motions when subjected to time-varying loading
(or/and time-varying boundary conditions ). It is an act of solving the
equation of motion of a problem. Accordingly, in this chapter, we are go-
ing to focus our discussion on the solution of forced vibration problems
for bar and beam elements, as well as frame structures. Although we have
derived the discretised equation of motion of beam element in Chapter 5,
for completeness, we are going to begin this chapter with the derivation of
the discretised equation for bar element, starting from its PDE derivation.

6.2 Bar’s PDE of Motion

Derivation of the bar’s PDE of motion has been given in Section 5.3.1. We
are not going to repeat the procedure but to give directly the PDE as (pre-
viously given by Eq. (5.10)):

EA
∂2u

∂x2 − ρA
∂2u

∂t2 = −q(x, t) (6.1)

Although we have discretised this PDE in Section 5.3.2, but for complete-
ness, we are going to detail the discretization all over again, this time with
the existence of the forcing terms i.e. q(x, t). As a reminder, in previous
discretization, this forcing term was omitted because we were considering
the homogenous solution only (eigenproblem). Before we proceed, below
are the natural and essential boundary conditions of the problem (previ-
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204 Dynamic: Forced Vibration

ously given by Eq. (2.9a)). However, since this is a dynamic analysis, there
is a possibility for the boundary conditions to vary with time, thus:

Natural/force boundary conditions

EA
du

dx

∣∣∣∣
x=0

= F0(t) (6.2a)

EA
du

dx

∣∣∣∣
x=L

= −FL(t) (6.2b)

Essential/displacement boundary conditions

u|x=0 = u0(t) (6.3a)

u|x=L = uL(t) (6.3b)

Note that the sign convention for the natural (force) boundary conditions
above is based on the assumption that the boundary conditions are the
reactions at support hence the opposite directions to the internal forces.
Since Eq. (6.1) is a second order ODE in x, two boundary conditions out of
the four given above must be known in prior so as to have a well-posed
problem. Also, since Eq. (6.1) consists of a second order time derivative,
two initial conditions must be known. We are going to detail on this later
during the discussion of time integration by finite difference method.

6.2.1 Discretization of Bar’s PDE of Motion by
Galerkin Method

Like previous elements, the discretization process begins with the provi-
sion of the interpolation function (for linear bar element):

u(x) = N1u1 + N2u2 (6.4a)

or in component forms as:

u(x) = Njuj (6.4b)

where Njand uj are the shape functions and degree of freedoms as already
discussed in previous chapter for linear bar element (Eq. (2.16)).
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6.2 Bar’s PDE of Motion 205

By inserting Eq. (6.4a) into Eq. (6.1) gives:

EA
∂2(N1u1 + N2u2)

∂x2 − ρA
∂2(N1u1 + N2u2)

∂t2 ̸= −q(x, t) (6.5a)

or in component forms as:

EA
∂2(Njuj)

∂x2 − ρA
∂2(Njuj)

∂t2 ̸= −q(x, t) (6.5b)

Having established the PDE in terms of shape functions and dofs, we then
multiply Eq. (6.5a) with weight functions, Ni consecutively and integrate
the inner product so as to obtain the discretised equation.

Thus:∫ L

0
Ni

(
EA

∂2(Njuj)
∂x2 − ρA

∂2(Njuj)
∂t2 + q(x, t)

)
dx = 0

⇒
∫ L

0
NiEA

∂2(Njuj)
∂x2 − ρA

∫ L

0
Ni

∂2(Njuj)
∂t2 +

∫ L

0
Niq(x, t) dx = 0

(6.6)

Next, we conduct integration by parts (IBP) to the first term. It must be
noted that, no IBP is conducted to the second term because the term is not
a spatial x derivative, but a time, t derivative instead. By conducting the
IBP, we obtain:∫ L

0

∂Ni

∂x
EA

∂(Njuj)
∂x

+ ρA

∫ L

0
NiNj

∂2uj

∂t2 =
∫ L

0
Niq(x, t) dx + bi(t)

(6.7)
where bi(t) is the boundary terms (conditions) which can be either
Eqs. (6.2) and (6.3) as already explained in detailed in Section 2.5 (Eqs. (2.27)
and (2.33)) except that, this time, they can vary with time, t.

While the first integral term of Eq. (6.7) is familiar to us from the discussion
of bar element (static problem) in Chapter 2, the second term, asmentioned,
deserves further explanation. In this term, the shape functions, Nj is taken
out from the derivative since it would not involve with the differentiation
because the shape functions are not a function of time, t but instead, a
function of x only. But something must be a function of time else the
second term would vanish. This leaves us with nothing but the degree of
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224 Dynamic: Forced Vibration

and solve for {D}4 gives:

{D}4 =



−4.35×10−8

1.25×10−8

−1.22×10−8

−9.40×10−8

2.98×10−7

4.94×10−8

−1.07×10−6

−9.14×10−7

2.72×10−8

−3.98×10−7

3.47×10−6

−2.10×10−7



0

1

2

3

4

t × 10−2 [s]

θ
×

10
−

3
[r
ad

]

FEM
Cook et.al (2002)

Figure 6.3: Vibration (rotation) of the frame.

These steps can be continued until a specific period of time by repeating
the same procedure.

Fig. 6.3 shows the vibration (rotation) of the frame taken at x = 1 m from
the roller support. The results is compared with Cook et.al (2002)†.

†Cook, R. D., Malkus, D. S., Plesha, M. E., & Witt, R. J. (1974). Concepts and applications of finite
element analysis (Vol. 4). New York: Wiley. (Figure 11.18-2(d), page 441)

sa
m

pl
e.

..



6.7 Matlab Source Code 225

6.7 Matlab Source Code

% Clear data
clc; clear; close all

%Input
E = 200e9; % Young's modulus [N/m]
A = 0.01; % Area [m^2]
I = 8.33e-6; % Moment of inertia [m^4]
rho = 7860; % Density [kg/m^3]
P = 1e5; % Point load [N]

dt = 0.00001; % Time step [s]
t = 0:dt:0.1; % Time vector [s]

% --------------------------------------------
% FEM solution - Forced vibration
% --------------------------------------------

% Elements length [m]
L1 = 1.5; L2 = 1.5; L3 = 1.0; L4 = 1.0;

% Elements angle [degree]
th1 = 90; th2 = 90; th3 = 0; th4 = 0;

% Calculate Stifness
k1 = [
A*E/L1 0 0 -A*E/L1 0 0;
0 12*E*I/L1^3 6*E*I/L1^2 0 -12*E*I/L1^3 6*E*I/L1^2;
0 6*E*I/L1^2 4*E*I/L1 0 -6*E*I/L1^2 2*E*I/L1;

-A*E/L1 0 0 A*E/L1 0 0;
0 -12*E*I/L1^3 -6*E*I/L1^2 0 12*E*I/L1^3 -6*E*I/L1^2;
0 6*E*I/L1^2 2*E*I/L1 0 -6*E*I/L1^2 4*E*I/L1];

k2 = [
A*E/L2 0 0 -A*E/L2 0 0;
0 12*E*I/L2^3 6*E*I/L2^2 0 -12*E*I/L2^3 6*E*I/L2^2;
0 6*E*I/L2^2 4*E*I/L2 0 -6*E*I/L2^2 2*E*I/L2;

-A*E/L2 0 0 A*E/L2 0 0;
0 -12*E*I/L2^3 -6*E*I/L2^2 0 12*E*I/L2^3 -6*E*I/L2^2;
0 6*E*I/L2^2 2*E*I/L2 0 -6*E*I/L2^2 4*E*I/L2];

k3 = [
A*E/L3 0 0 -A*E/L3 0 0;
0 12*E*I/L3^3 6*E*I/L3^2 0 -12*E*I/L3^3 6*E*I/L3^2;
0 6*E*I/L3^2 4*E*I/L3 0 -6*E*I/L3^2 2*E*I/L3;

-A*E/L3 0 0 A*E/L3 0 0;
0 -12*E*I/L3^3 -6*E*I/L3^2 0 12*E*I/L3^3 -6*E*I/L3^2;
0 6*E*I/L3^2 2*E*I/L3 0 -6*E*I/L3^2 4*E*I/L3];

k4 = [
A*E/L4 0 0 -A*E/L4 0 0;
0 12*E*I/L4^3 6*E*I/L4^2 0 -12*E*I/L4^3 6*E*I/L4^2;
0 6*E*I/L4^2 4*E*I/L4 0 -6*E*I/L4^2 2*E*I/L4;

-A*E/L4 0 0 A*E/L4 0 0;
0 -12*E*I/L4^3 -6*E*I/L4^2 0 12*E*I/L4^3 -6*E*I/L4^2;
0 6*E*I/L4^2 2*E*I/L4 0 -6*E*I/L4^2 4*E*I/L4];

%Calculate Consistent Mass Matrix
m1 = rho*A*L1/420* [140 0 0 70 0 0;
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167
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77
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Hooke’s Law, 23, 155
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213
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165–167, 177, 178
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linear element, 26, 32, 34, 45
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168, 183, 206, 209, 210

mesh, 1, 40, 143
mode shapes, 151, 154, 161, 184
moment force, 65, 68, 69, 76, 207

natural frequencies, 151–154,
160, 161, 168, 184

nodes, 1, 26, 28, 29, 34, 35, 40, 41,
70, 71, 82

Petrov–Galerkin, 26
plane, 101, 121, 154, 172, 184,

209, 210
point load, 3, 85, 121, 126, 151,

207, 213, 215
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41, 45

reaction forces, 35, 109, 130
residual error, 1, 11, 12
resonance, 151, 154, 161
roots, 153, 160, 168, 179
rotation, 65, 66, 69, 164, 207

separation of variable, 160, 167
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32, 34, 69–72, 74, 76,
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177, 204, 205, 208, 209
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shear force, 65, 69, 75, 207
shearing, 65, 121, 123
simultaneous algebraic, 3, 19
stiffness matrix, 37–41, 43, 45,

47, 48, 51, 52, 79–82,
105, 108, 109, 112, 122,
124, 126, 128, 132, 152,
159, 161, 166, 168, 173,
177–179, 182, 183, 206,
209–211

strong statement, 25

Taylor series, 22, 66
tensorial, 7
Time Integration, 204, 207, 210,

211
time-varying loading, 157, 164,

203
Timoshenko beam, 66
transformation matrix, 101–105,

124, 184, 210
translation, 65
truss, 101, 106, 109, 121, 123, 126,

209, 210

Variational, 10

weak statement, 25, 76
weight function, 24, 26, 32, 74,

158, 165, 177, 205, 208
weighted residual, 1, 10, 16

Young’s modulus, 3, 68, 152, 164,
175
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