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Preface

This book can be considered as an extension to the previous publication (Fi-
nite Element Formulations for Statics and Dynamics of Frame Structures)
as it dwells on two-dimensional formulation of continuum. Also, the dis-
cussion has been extended to nonlinear formulation to cater for the non-
linearity of Navier-Stokes equations. However, in ensuring it to be self-
contained, the discussions on the basic concept of numerical method from
the previous publication have been combined, shortened and included in
the introduction chapter of this book (Chapter 1). The book is still pre-
pared based on the similar approach that a topic always begins with the
derivation of the partial differential equation/s of the problem and followed
by the discretization into matrix forms using Galerkin Weighted Residual
method hence FEM. At the end of a chapter, worked example and Matlab
source code are provided.

Chapter 2 is dedicated to heat transfer. The general unsteady partial dif-
ferential equation is derived based on energy balance but later reduced
to steady during the discretization as the main purpose of the chapter is
to highlight the extension of 1D formulation in Chapter 1 to 2D. The un-
steady formulation is reserved for Chapter 5 where fluid flow is discussed.
The scalar formulation of heat transfer is extended to vector-valued formu-
lation of plane stress in Chapter 3. The partial differential equations are
derived based on the conservation of momentum and matrix representa-
tion is employed as early as at the derivation stage. As preparation for the
nonlinear nature of Navier-Stokes, an introduction to nonlinear formula-
tion is given in Chapter 4 where a hypothetical 1D nonlinear differential
equation is discretized and iteratively solved by employing two schemes;
Picard and Newton-Raphson. In Chapter 5, the unsteady Navier-Stokes
equations for fluid flow are derived and solved using Picard method. In all
aforementioned chapters, the integrations are done analytically as the in-
tention is not to distract readers from observing smoothly the conversion
of the partial differential equation/s into matrix forms. However, since
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viii

the actual practice is to integrate numerically, discussion on numerical in-
tegration based on Gauss quadrature is given in the last chapter (Chapter
6) where the determination of the plane stress matrices is demonstrated.

Similar to the previous publication, this book is not intended to be a com-
plete book on FEM but to introduce the concept in the way which the au-
thors believe as more effective. In fact, it is the authors’ intention for this
book to be the first book on FEM that prepares the readers for themore com-
prehensive texts on FEM and hence the rather straightforward manner of
the discussion and the lack of worked examples and the very minimal dis-
cussion on the wider practice of finite element modelling. The idea is this,
the ‘thinner’ the book, the quicker it to be finished and thus the quicker
the reading of the next more comprehensive book…on FEM.

Airil Yasreen Mohd Yassin
January, 2020

Putrajaya, Malaysia
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1 The Basic Idea

1.1 Introduction

One of the roles of an engineer is to determine the magnitude and the
distribution of physical variables of interest such as forces, displacements,
temperature and their derivatives for design and construction purposes. In
a simple arrangement, this can be done in a close-formed hand-calculation
manner. However, of late, such a degree of simplicity is no longer suffice
as engineers are striving for better yet cheaper, safer and more sustainable
performance of their technologies,. The need to meet such ideals, however,
is what causing the increase in the complexity of the mathematical repre-
sentation of the problemwe are seeing in present days where the equations
are becoming more difficult to solve.

In short;

“The more we want to know (or to produce), the more complex
the maths and the equations will become”.

To highlight this, let’s take a structural beam as an example. In the simplest
manner, a beam, as shown in Fig. 1.1(a), can be treated as a line element,
that is, spatially one-dimensional. However, as we zoom-in (in knowing
more), we will realize that the incorporation of the effect of Poison ratio
would require the beam to be modelled, at the least, as two-dimensional
continuum. If the beam is a steel section, due to its “thinness”, this can be
accomplished by combining plane stress element (for the web) and plate
elements (for the flanges) together, as shown in Fig. 1.1(b). However, if the
beam is a reinforced concrete, due to the “bulkiness”, it is best to model it
spatially in three-dimension (e.g. Fig. 1.1(c)).

What we have just discussed is just one of the possible causes for complex-
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2 Basic Idea

(a)

(b)

(c)

Figure 1.1: Increasing complexity of FEM modelling; (a) 1D beam line element
model, (b) Combination of 2D elements of plane stress and plate and
(c) 3D element for reinforced concrete modelling
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1.2 Basic Concept of Numerical Techniques 3

ity that is, the increase in the order of the spatial dimensions; from 1D to 2D
then 3D. We are yet to discuss time dependency, coupling of equations due
to various laws and interactions, nonlinearity and the stability of solutions,
complex prescription of boundary and initial conditions as well as material
properties andmanymore numerical challenges. Too complex, modern en-
gineering problems are no longer solvable except approximately and not
without the help of computers. Finite element method (FEM) is one of the
numerical technique and the most written procedure in today’s engineer-
ing analysis and design software.

It is therefore the intention of this manuscript to introduce the readers to
the basic concepts of finite element method for continuum, as an extension
to the one-dimensional formulations of previous publication [1]. Specifi-
cally, we will focus on the two-dimensional formulations of heat, solid and
fluid. Although this manuscript can be seen and treated as an extension, it
is important for it to be self-contained. Therefore, some few important top-
ics and subtopics from previous publication are repeated here and there in
this manuscript. For readers who have read them before, feel free to skip
these parts.

1.2 Basic Concept of Numerical Techniques

The basic idea of any numerical methods can be summarized as;

“To covert the partial or ordinary differential equation/s (PDE or
ODE) of a physical problem into ‘equivalent’ simultaneous alge-
braic equations in the form of a matrix system”.

In elaborating the concept, we discuss the solution of the simplest forms of
ODE that is of a bar element. We start by deriving the governing equation.
Fig. 1.2 shows a bar structure and its differential element.

By assuming any changes as continuous, the axial force, F on the left-
side of the differential element can be expanded by Taylor series on the
right-side, as shown in Fig. 1.2(b). Next, by assuming higher order terms
as insignificant thus can be ignored, and since this is a 1D problem (i.e.
∂( ) = d( )), the state as shown in Fig. 1.2(c) is established.
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4 Basic Idea

(a)

L

q(x)

P

(b)

dx

q(x)

F + ∂F

∂x
dx + 1

2!
∂2F

∂x2 dx2 + ...F

(c)

dx

q(x)

F + dFF

Figure 1.2: Bar structure and its differential element.

Having established the differential element and the corresponding forces
acting on it, we are ready to derive the ODE for the bar problem. Since the
bar deforms in the axial direction, only equilibrium in x-direction needed
to be considered thus;∑

Fx = 0 = −F + (F + dF ) + q dx (1.1)

where q is the axially distributed load. By rearranging gives:

dF

dx
= −q (1.2)

From Hooke’s Law, we know that

σ = Eϵ (1.3)

sa
m

pl
e 

...



1.2 Basic Concept of Numerical Techniques 5

where σ is the axial stress, E is the Young’s modulus and ϵ is the axial
strain. Since

σ = F

A
(1.4)

and
ϵ = du

dx
(1.5)

where A is the cross-sectional area of the bar and u is the axial displace-
ment. Inserting Eq. (1.4) and Eq. (1.5) into Eq. (1.3) gives

F = EA
du

dx
(1.6)

By differentiating Eq. (1.6) once gives

dF

dx
= EA

d2u

dx2 (1.7)

By inserting Eq. (1.7) into Eq. (1.2) would then give

EA
d2u

dx2 = −q (1.8)

Eq. (1.8) is the ODE for the bar problem or also known as the domain equa-
tion. For every domain differential equation such as Eq. (1.8), theremust be
boundary equations to complete it and for our particular case, all possible
boundary equations are given as below:

Natural/force boundary conditions

EA
du(x)

dx

∣∣∣∣
x=0

= F0 (1.9a)

EA
du(x)

dx

∣∣∣∣
x=L

= −FL (1.9b)

Essential/displacement boundary conditions

u|x=0 = u0 (1.9c)

u|x=L = uL (1.9d)
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6 Basic Idea

Note that the sign convention for the natural (force) boundary conditions
above is based on the assumption that the boundary conditions are the
reactions at support hence the opposite directions to the internal forces.
Since Eq. (1.8) is a second-order ODE, two out of the four given boundary
conditions must be known in prior so as to have a well-posed problem.

Having established the bar ODE, we are now all set to discuss the basic
concept of numerical methods.

1.2.1 Collocation Method

The collocation method can be considered as the most basic approach to
numerical techniques. To demonstrate the application of the method, we
re-write the domain equation of the problem and the accompanying bound-
ary conditions that are specific for the case of a bar fixed at the left end and
loaded by a point load, P at the right end as in Fig. 1.2(a).

Domain equation

EA
d2u

dx2 = −q (1.10)

Boundary conditions (equations)

EA
du

dx

∣∣∣
x=L

= P (1.11)

u|x=0 = 0 (1.12)

The ODE is considered solved when a solution, u = f(x) is found which
satisfies all the equations above. Approximately, this can be done by first
converting all the equations (i.e. Eqs. (1.10) to (1.12)) to ‘equivalent’ simul-
taneous algebraic equations. We start by assuming a solution in the forms
of polynomials. Let’s assume

u = a1 + a2x + a3x2 + a4x3 + a5x4 (1.13)

Then, we satisfy Eq. (1.12) by inserting Eq. (1.13) into the equation to give;

u|x=0 = a1 + a2(0) + a3(0)2 + a4(0)3 + a5(0)4 = 0 (1.14)
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1.3 Fundamental of Galerkin-WRM 21

(a)

(b)

u1 u2

u1 u2 u2

x = 0 x = L

x = 0 x = L/2 x = L

1 2

1 2 3

Figure 1.8: Degree of freedoms of (a) linear (b) quadratic bar elements.

For quadratic bar element

u = a1 + a2x + a3x2 (1.38b)

Despite the familiar use of polynomial functions, it is preferable to deal
with a special set of functions, known as shape functions, Ni and a special
sets of coefficient, known as translational degree of freedoms (dof), ui. This
means, Eq. (1.38) must be equivalently expressed as:

For linear bar element

u = N1u1 + N2u2 (1.39a)

For quadratic bar element

u = N1u1 + N2u2 + N3u3 (1.39b)

The equations can be expressed compactly in components forms as:

u(x) = Niui (1.40)

where i = 1, 2 and i = 1, 2, 3 for linear and quadratic bar elements respec-
tively.
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2 Scalar Element: Heat
Transfer

2.1 Introduction

This chapter marks the beginning of the discussion on two-dimensional el-
ements hence continuum mechanics. Whilst the previous chapter mainly
discussed line element, herein we are going to discuss the first type of con-
tinuum element that is scalar element. Scalar element is an element which
node has only one degree of freedom. It is employed in various physical
problems such as heat transfer, potential flow, groundwater flow, electro-
statics and magnetostatics. Despite its various applications, herein, for
demonstration purposes on the use of scalar element and its correspond-
ing FEM formulation, heat transfer problem is considered.

2.1.1 Derivation of Heat Transfer Partial Differential
Equation

Heat transfer analysis concerns with the determination of temperature dis-
tribution within a body due to internal heat generation and temperature
differences (as well external flux, convection and radiation) at the bound-
aries.

Since it is customary in this book to start a discussion from first principle,
we begin our discussion by deriving the partial differential equation (PDE)
of the problem. We limit our derivation to two-dimensional only.

The PDE can be derived by employing the conservation of energy principle
to the differential element as shown in Fig. 2.1.
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56 Scalar Element: Heat Transfer

dx
d
y

qy + ∂qy

∂y
dy

qy

qx qx + ∂qx
∂x

dxqh

Figure 2.1: Heat flow differential element.

As shown in the figure, the dependent variables to be considered are the
heat flux in x-direction, qx and in y-direction, qy . Similar to the previous
chapter (i.e. Fig. 1.1), the variables are expanded by Taylor series at all
sides (surfaces).

The conservation of energy principle requires that the time rate of change
of internal energy inside the differential element must be equal to the net
heat flowing into the differential element due to conduction plus the heat
generated inside the differential element.

The first can be given as the time rate of change of internal energy:

QE = ρC
∂T

∂t
dxdy (2.1)

where ρ is the density, C is the specific heat and T is temperature.

Next, the determination of the net heat flow can be done by considering
first the net heat flow in each direction.

In x-direction, by balancing terms on the right and left sides of the differ-
ential element, we obtain;

Qx = qxdy −
(

qx + ∂qx

∂x
dx
)

dy = −∂qx

∂x
dxdy (2.2)

sa
m

pl
e 

...



2.1 Introduction 57

By similar argument, the net heat flow in y-direction is given as;

Qy = qydx −
(

qy + ∂qy

∂y
dy

)
dx = −∂qy

∂y
dxdy (2.3)

Having established the net heat flow in both directions, the net heat flow-
ing into the differential element due to conduction through its surface can
thus be given as

Qxy = −∂qx

∂x
dxdy − ∂qy

∂y
dxdy (2.4)

Finally, if qH is the rate of heat generation per unit volume, for the differ-
ential element, the heat generated inside the element can be given as

Qh = qhdxdy (2.5)

The principle of energy conservation requires Eq. (2.1) to be balanced
Eqs. (2.4) and (2.5) thus;

ρC
∂T

∂t
dxdy = −∂qx

∂x
dxdy − ∂qy

∂y
dxdy + qhdxdy (2.6)

which, by cancelling terms gives

ρC
∂T

∂t
= −∂qx

∂x
− ∂qy

∂y
+ qh (2.7)

Eq. (2.7) describes the problem in terms of heat fluxes (qx, qy) as the depen-
dent variables as well as the temperature, T . To completely describe the
problem in terms of temperature alone, we employ Fourier’s law of heat
conduction where

qx = −kx
∂T

∂x
(2.8)

and
qy = −ky

∂T

∂y
(2.9)

where kx and ky are thermal conductivity in x-direction and in y-direction,
respectively. By differentiating Eqs. (2.8) and (2.9) once and inserting into
Eq. (2.7), we obtain;

ρC
∂T

∂t
= ∂

∂x

(
kx

∂T

∂x

)
+ ∂

∂y

(
ky

∂T

∂y

)
+ qh (2.10)
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58 Scalar Element: Heat Transfer

2.1.2 Steady Heat Transfer

For time independent problem, hence steady heat transfer, the time deriva-
tive terms on the left hand side of Eq. (2.10) can be omitted thus reducing
the equation to

∂

∂x

(
kx

∂T

∂x

)
+ ∂

∂y

(
ky

∂T

∂y

)
= −qh (2.11)

It is convenient to express Eq. (2.11) in matrix forms especially for the later
FEM formulation, as follows.

{
∂

∂x

∂

∂y

}[
kx 0
0 ky

]
∂

∂x

∂

∂y

T = −qh (2.12)

or
{∂} [ E ] {∂}T T = −qh (2.13)

where
{∂} =

{
∂

∂x

∂

∂y

}
and [ E ] =

[
kx 0
0 ky

]
(2.14)

2.1.3 Boundary Condition Equations

Like other PDEs, the heat transfer as given by Eq. (2.11) (or Eq. (2.13)) must
be supplemented by boundary condition equations so as to have a well-
posed problem. There are two types of boundary conditions; Neumann
(natural) and Dirichlet (essential) boundary conditions.

Neumann (natural) boundary conditions

For general heat transfer problem, Neumann (natural) boundary condi-
tions can be either (or combination of) specified flux, convection or/and
radiation. However, for simplicity, only specified flux is considered herein.(

kx
∂T

∂x

∣∣∣
b

)
nx +

(
ky

∂T

∂y

∣∣∣∣
b

)
ny = qb (2.15)
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2.2 FEM Formulation for Steady Heat Transfer 59

where, qb is the specified (known) flux at the boundary whilst nx, and ny

are the components of the unit normal vector of the surface of the bound-
ary. Symbol |b means evaluated the boundary.

It worth to note that, for rectangular domain hence rectangular elements
(meshes), simplification to the above equations can be obtained as for this
case, in x-direction, nx = 1 or −1 and ny = 0 whilst in y-direction, ny = 1
or −1 and nx = 0.

It can be shown that the secondary terms produced by the integration by
parts conducted on Eq. (2.11) (or Eq. (2.13)) will be in similar forms as in
Eq. (2.15). Due to this, boundary equation above is also known as natural
boundary condition

Dirichlet (essential) boundary conditions

Dirichlet boundary condition requires that the temperature at the bound-
ary where natural conditions are unknown (to be solved) must be known
and specified. Thus;

T |b = T̄ (2.16)

where T̄ is the specified value of the temperature.

2.2 FEM Formulation for Steady Heat
Transfer

Having established the PDE of the problem, we are all set to discretize
Eq. (2.11) so as to obtain the FEM algebraic formulation. To do this, we
must first derive the shape functions.

2.2.1 Degree of Freedoms and Shape Functions for
Scalar Element

Herein, we are going to derive shape function for scalar element (heat
transfer) having 4 nodes and 8 nodes.
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60 Scalar Element: Heat Transfer

4-Nodes Element

Fig. 2.2 shows a rectangular element with four nodes;

a

b

1 2

34

1

T̂1 T̂2

T̂3T̂4

Figure 2.2: 4-nodes scalar element.

For this element, we take a polynomial interpolation function as

T = a1 + a2x + a3y + a4xy (2.17)

Next we evaluate the polynomial function above at the location of the
nodes and equate the evaluated values to the corresponding degree of free-
dom, Ti, as follows.

T |x=0,y=0 = a1 + a2(0) + a3(0) + a4(0)(0) = T̂1 (2.18a)

T |x=a,y=0 = a1 + a2(a) + a3(0) + a4(a)(0) = T̂2 (2.18b)

T |x=a,y=b = a1 + a2(a) + a3(b) + a4(a)(b) = T̂3 (2.18c)

T |x=0,y=b = a1 + a2(0) + a3(b) + a4(0)(b) = T̂4 (2.18d)

By solving the simultaneous equations above, the polynomial coefficients
can be obtained as

a1 = T̂1 (2.19a)

a2 = −T̂1 + T̂2
a

(2.19b)

a3 = −T̂1 + T̂4
b

(2.19c)

a4 = T̂1 − T̂2 + T̂3 − T̂4
a b

(2.19d)
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68 Scalar Element: Heat Transfer

where:

s1 = 26 b kx

45 a
+ 26 a ky

45 b

s2 = 14 b kx

45 a
+ 17 a ky

90 b

s3 = 23 b kx

90 a
+ 23 a ky

90 b

s4 = 17 b kx

90 a
+ 14 a ky

45 b

s5 = −8 b kx

9 a
+ a ky

15 b

s6 = − b kx

15 a
− 4 a ky

9 b

s7 = −4 b kx

9 a
− a ky

15 b

s8 = b kx

15 a
− 8 a ky

9 b

s9 = 16 b kx

9 a
+ 8 a ky

15 b

s10 = 8 b kx

9 a
− 8 a ky

15 b

s11 = 8 b kx

15 a
+ 16 a ky

9 b

s12 = −8 b kx

15 a
+ 8 a ky

9 b

2.3 Worked Example

1 m

1
m

T = 0 ◦C

T
=

0
◦ C

Figure 2.5: Plate with heat source, Q = 600 W m−3 and thermal conductivity,
kx = ky = 400 W m−1 ◦C−1. Shaded region is the insulated bound-
ary.

Herein, we are going to demonstrate the FEM formulation for heat transfer
equations by solving the problem as shown in Fig. 2.5. For a step-by-step
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74 Scalar Element: Heat Transfer

Table 2.1: Validation of global temperature (◦C) at the bottom of the domain

x = L

2 x = L

4-noded (2x2) 0.4821 0.6214
8-noded (2x1) 0.4448 0.5836
Software 0.4589 0.5897

environment.

Figure 2.8: Temperature variation over the whole domain for (a)4-nodes element
(2 × 2), (b)8-nodes element (1 × 2), and (c)software (5 × 5)

2.3.1 Source Code for Heat Transfer with 4-Noded
Elements
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2.3 Worked Example 75

% Clear data
clc; clear; close all

% --------------------
% Input parameters
% --------------------

% Domain and material properties
L = 1; % Plate length [m]
H = 1; % Plate height [m]
kx = 300; % Thermal conductivity in x direction [W/(m.degC)]
ky = 300; % Thermal conductivity in y direction [W/(m.degC)]
Q = 600; % Rate of heat generation [W/m^3]

% Dirichlet boundary condition
To = 0; % Temperature at left & top wall [degC]

% Meshing
Nx = 2; % Mesh in x direction
Ny = 2; % Mesh in y direction
ndof = 9; % Total number of degree of freedom (dof)

% --------------------
% Calculate the local matrix and force vector
% --------------------

% Elemental lengths
a = L/Nx;
b = H/Ny;

% Local conductivity matrix, k
s3 = -b*kx/(6*a) - a*ky/(6*b);
s2 = a*ky/(6*b) - b*kx/(3*a);
s4 = b*kx/(6*a) - a*ky/(3*b);
s1 = b*kx/(3*a) + a*ky/(3*b);
k = [ s1 s2 s3 s4;

s2 s1 s4 s3;
s3 s4 s1 s2;
s4 s3 s2 s1];

% Local load vector due to heat generation, Q
fQ = a*b*Q/4*[1; 1; 1; 1];

% --------------------
% Assemble the global matrix & vector
% --------------------

% Initialize matrix and vector
K = zeros(ndof,ndof);
F = zeros(ndof,1);

% Manual assembly of global matrix
K([1 2 5 4],[1 2 5 4]) = K([1 2 5 4],[1 2 5 4]) + k; % Element 1
K([2 3 6 5],[2 3 6 5]) = K([2 3 6 5],[2 3 6 5]) + k; % Element 2
K([4 5 8 7],[4 5 8 7]) = K([4 5 8 7],[4 5 8 7]) + k; % Element 3
K([5 6 9 8],[5 6 9 8]) = K([5 6 9 8],[5 6 9 8]) + k; % Element 4

% Manual assembly of global vector
F([1 2 5 4]) = F([1 2 5 4]) + fQ; % Element 1
F([2 3 6 5]) = F([2 3 6 5]) + fQ; % Element 2
F([4 5 8 7]) = F([4 5 8 7]) + fQ; % Element 3
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76 Scalar Element: Heat Transfer

F([5 6 9 8]) = F([5 6 9 8]) + fQ; % Element 4

% --------------------
% Impose boundary conditions
% --------------------

% Initialize dof
T = zeros(ndof,1);

% Manual identification of known dof index
dof_k = [1 4 7 8 9];

% Manual application of boundary condition for known dof
T([1 4 7 8 9]) = To;

% Manual modification of F vector for known boundary condition
F = F - K(:,1)*To - K(:,4)*To - K(:,7)*To ...

- K(:,8)*To - K(:,9)*To;

% --------------------
% Solve the matrix system
% --------------------

% Unknown degree of freedom
dof_u = setdiff(1:ndof,dof_k);

% Solve for the unknown
T(dof_u) = K(dof_u,dof_u)\F(dof_u);

2.3.2 Source Code for Heat Transfer with 8-Noded
Elements

% Clear data
clc; clear; close all

% --------------------
% Input parameters
% --------------------

% Domain and material properties
L = 1; % Plate length [m]
H = 1; % Plate height [m]
kx = 300; % Thermal conductivity in x direction [W/(m.degC)]
ky = 300; % Thermal conductivity in y direction [W/(m.degC)]
Q = 600; % Rate of heat generation [W/m^3]

% Dirichlet boundary condition
To = 0; % Temperature at left & top wall [degC]

% Meshing
Nx = 2; % Mesh in x direction
Ny = 1; % Mesh in y direction
ndof = 13; % Total number of degree of freedom (dof)

% --------------------
% Calculate the local matrix and force vector
% --------------------
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2.3 Worked Example 77

% Elemental lengths
a = L/Nx;
b = H/Ny;

% Local conductivity matrix, k
s1 = (26*b*kx)/(45*a) + (26*a*ky)/(45*b);
s2 = (14*b*kx)/(45*a) + (17*a*ky)/(90*b);
s3 = (23*b*kx)/(90*a) + (23*a*ky)/(90*b);
s4 = (17*b*kx)/(90*a) + (14*a*ky)/(45*b);
s5 = (a*ky)/(15*b) - (8*b*kx)/(9*a);
s6 = - (b*kx)/(15*a) - (4*a*ky)/(9*b);
s7 = - (4*b*kx)/(9*a) - (a*ky)/(15*b);
s8 = (b*kx)/(15*a) - (8*a*ky)/(9*b);
s9 = (16*b*kx)/(9*a) + (8*a*ky)/(15*b);
s10 = (8*b*kx)/(9*a) - (8*a*ky)/(15*b);
s11 = (8*b*kx)/(15*a) + (16*a*ky)/(9*b);
s12 = (8*a*ky)/(9*b) - (8*b*kx)/(15*a);
k=[ s1, s2, s3, s4, s5, s6, s7, s8;

s2, s1, s4, s3, s5, s8, s7, s6;
s3, s4, s1, s2, s7, s8, s5, s6;
s4, s3, s2, s1, s7, s6, s5, s8;
s5, s5, s7, s7, s9, 0,s10, 0;
s6, s8, s8, s6, 0,s11, 0, s12;
s7, s7, s5, s5,s10, 0, s9, 0;
s8, s6, s6, s8, 0,s12, 0, s11];

% Local load vector due to heat generation, Q
fQ = a*b*Q/12*[-1;-1;-1;-1; 4; 4; 4; 4];

% --------------------
% Assemble the global matrix & vector
% --------------------

% Initialize matrix and vector
K = zeros(ndof,ndof);
F = zeros(ndof,1);

% Manual assembly of global matrix
K([1 3 11 9 2 7 10 6],[1 3 11 9 2 7 10 6]) = ...
K([1 3 11 9 2 7 10 6],[1 3 11 9 2 7 10 6]) + k; % Element 1
K([3 5 13 11 4 8 12 7],[3 5 13 11 4 8 12 7]) = ...
K([3 5 13 11 4 8 12 7],[3 5 13 11 4 8 12 7]) + k; % Element 2

% Manual assembly of global vector
F([1 3 11 9 2 7 10 6]) = F([1 3 11 9 2 7 10 6]) + fQ; % Element 1
F([3 5 13 11 4 8 12 7]) = F([3 5 13 11 4 8 12 7]) + fQ; % Element 2

% --------------------
% Impose boundary conditions
% --------------------

% Initialize dof
T = zeros(ndof,1);

% Manual identification of known dof index
dof_k = [1 6 9 10 11 12 13];

% Manual application of boundary condition for known dof
T(dof_k) = To;

% Manual modification of F vector for known boundary condition
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3 Plane Elasticity: Plane Stress

3.1 Introduction

Plane stress element is used to model thin body or structure that is sub-
jected to in plane loading (or boundary stresses) thus correspondingly
stressed only in the plane direction. In practice, the element is employed
to model load bearing wall and the web of steel beam, amongst others.

The study of plane stress FEM formulation is important, not only for its
direct application to physical problems but also to further the study of
FEM itself. For example, in the discussion of shell elements, the formulation
can be viewed as combining the plane stress element and the plate element
together. Also, in fluid dynamics, with somemodifications, the plane stress
element can be used to model fluid flow.

Herein, partial differential equation (PDE) of plane stress elasticity will be
first derived followed by the FEM formulation.

3.1.1 Derivation of Plane Stress Partial Differential
Equation

The PDE can be derived by employing the law of the conservation of linear
momentum to the differential element shown in Fig. 3.1.

As shown in the figure, the dependent variables to be considered are the
normal stresses (i.e. σxx, σyy) and the shear stresses (i.e. σyx, σxy). fx

and fy , are the known body forces in x-direction and y-direction, respec-
tively. Similar to previous chapters, the dependent variables are expanded
by Taylor series at all sides (surfaces).
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82 Plane Elasticity: Plane Stress

dx
d
y σxx

σyy

σxy

σyx

σxx + ∂σxx
∂x

dx

σyy + ∂σyy

∂y
dy

σxy + ∂σxy

∂x
dx

σyx + ∂σyx

∂y
dy

fx

fy

Figure 3.1: Plane stress differential element.

The conservation of linear momentum principle requires that, for a static
condition, the total forces should be summed to zero; thus∑

Fx = 0 (3.1)∑
Fy = 0 (3.2)

In x-direction, by taking equilibrium of forces, Eq. (3.1) gives∑
Fx =

((
σxx + ∂σxx

∂x
dx
)

− σxx

)
dy +((

σyx + ∂σyx

∂y
dy

)
− σyx

)
dx + fx dx dy = 0

(3.3)

By expanding and cancelling, the following is obtained;

∂σxx

∂x
+ ∂σyx

∂y
+ fx = 0 (3.4)
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3.1 Introduction 83

In y-direction, by taking equilibrium of forces, Eq. (3.2) gives∑
Fy =

((
σyy + ∂σyy

∂y
dy

)
− σyy

)
dx +((

σxy + ∂σxy

∂‘x dx

)
− σxy

)
dy + fy dx dy = 0

(3.5)

By expanding and cancelling, the following is obtained;

∂σxy

∂x
+ ∂σyy

∂y
+ fy = 0 (3.6)

Eqs. (3.4) and (3.6) are the PDEs for the plane stress problem, described in
terms of stresses as the dependent variables. Inmatrix forms, the equations
can be given as 

∂σxx

∂x
+ ∂σyx

∂y

∂σxy

∂x
+ ∂σyy

∂y

 =


−fx

−fy

 (3.7)

Based on conservation of angular momentum, it can be shown that σxy =
σyx. Thus, Eq. (3.7) can further be expressed as

∂σxx

∂x
+ ∂σyx

∂y

∂σxy

∂x
+ ∂σyy

∂y

 =


∂

∂x
0 ∂

∂y

0 ∂

∂y

∂

∂x




σxx

σyy

σxy

 =


−fx

−fy

 (3.8)

or
[ ∂ ] {σ}T = −{f} (3.9)

where [ ∂ ] is termed from now on as differential operator matrix.

Eq. (3.9) (or Eqs. (3.4) and (3.6)) describes the problem in terms of stresses
as the dependent variables. Since we are focusing on the displacement-
based formulation, it would be necessary to express the equation in terms
of displacement variables. This can be done by considering the following
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84 Plane Elasticity: Plane Stress

constitutive relationship for plane stress,

σxx = E

1 − ν2 ϵxx + E ν

1 − ν2 ϵyy (3.10a)

σyy = E ν

1 − ν2 ϵxx + E

1 − ν2 ϵyy (3.10b)

σxy = E (1 − ν)
2 (1 − ν2)

ϵxy (3.10c)

which can be arranged in matrix forms as

{σ}T =


σxx

σyy

σxy

 = E

1 − ν2

1 ν 0
ν 1 0

0 0 (1 − ν)
2




ϵxx

ϵyy

ϵxy

 (3.11)

or
{σ}T = [ E ] {ϵ}T (3.12)

where E is the Young’s modulus and ν is the Poisson’s ratio of the material.
σxx and σyy are the axial strain in x and y directions, respectively whilst
σxy is the shear strain. The strains can, on the other hand, be expressed
in terms of displacements by employing the following strain-displacement
relationship;

ϵxx = ∂u

∂x
(3.13a)

ϵyy = ∂v

∂y
(3.13b)

ϵxy = ∂u

∂y
+ ∂v

∂x
(3.13c)

which can be arranged in matrix forms as

{ϵ}T =


ϵxx

ϵyy

ϵxy

 =



∂

∂x
0

0 ∂

∂y

∂

∂y

∂

∂x


{

u

v

}
(3.14)

where u and v are the displacement components in x and y-direction, re-
spectively.
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4 Introduction to Nonlinear
Formulation

4.1 Introduction

In previous chapters, discussions were made only for linear problems.
However, in the next chapter, we will discuss the Navier-Stokes equations
for fluid flow which are inherently nonlinear. It is, therefore, essential to
establish our understanding on the concept of nonlinearity and the corre-
sponding iterative solvers in preparing ourselves for the upcoming chapter.
Being introductory, in this chapter, we establish our understanding by dis-
cussing 1D nonlinear formulation of a hypothetical bar ODE.

4.2 A Hypothetical Nonlinear Ordinary
Differential Equation (ODE) of Bar
Element

To start our discussion, the bar ODE previously given by Eq. (1.8) is rewrit-
ten here

EA
d2 u

dx2 = −q (4.1)

Eq. (4.1) is linear which can be made nonlinear if we assume that the coef-
ficient E is no longer a constant but a function of the axial displacement,
u i.e. E(u). Let’s simply assume that,

E(u) = α u (4.2)
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116 Introduction to Nonlinear Formulation

where α is constant. Inserting Eq. (5.44) into Eq. (4.1) makes the latter a
nonlinear equation, given as

α u A
d2 u

dx2 = −q (4.3)

4.3 Discretization by Galerkin Method

Discretizing Eq. (4.3) using the same shape functions as given by Eq. (1.39),
we get

αA Nkuk

d2 (Njuj

)
dx2 ̸= −q (4.4)

Weighting Eq. (4.4) by shape functions, Ni we then obtain

Ni

(
αA Nkuk

d2 (Njuj

)
dx2 + q

)
̸= 0 (4.5)

As usual, the equivalent algebraic forms for Eq. (4.5) can be established by
integrating the equation over the length of the bar, thus∫ L

0
Ni

(
αA Nkuk

d2 (Njuj

)
dx2 + q

)
dx = 0 (4.6)

Employing IBP to Eq. (4.6) gives:∫ L

0

(
αA Nkuk

dNi

dx

dNj

dx

)
dx uj =

∫ L

0
q Ni dx + bi (4.7)

where bi refers to boundary terms or nodal loads.

4.4 stiffness matrix, [k] and the Nonlinearity

Eq. (4.7) can be given in matrix forms as,

kij uj = fi (4.8)
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4.4 stiffness matrix, [k] and the Nonlinearity 117

or
[ k ]{u} = {f} (4.9)

where kij or [k] is termed as the local stiffness matrix of the bar element.
Thus,

kij = [ k ] =
∫ L

0

(
αA Nkuk

dNi

dx

dNj

dx

)
dx (4.10)

In an expanded matrix forms, it can be given that,

For linear bar element

[ k ] =
[

k11 k12
k21 k22

]
(4.11)

where
k11 =

∫ L

0
αA (N1u1 + N2u2)

(
dN1
dx

dN1
dx

)
dx

k12 =
∫ L

0
αA (N1u1 + N2u2)

(
dN1
dx

dN2
dx

)
dx

k21 =
∫ L

0
αA (N1u1 + N2u2)

(
dN2
dx

dN1
dx

)
dx

k22 =
∫ L

0
αA (N1u1 + N2u2)

(
dN2
dx

dN2
dx

)
dx

For quadratic bar element

[ k ] =

k11 k12 k13
k21 k22 k23
k31 k32 k33

 (4.12)sa
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Start

Input

{U}r−1

{U}initial

[ K ]r−1

Impose essential
boundary conditions

{U}r = [ K ]r−1\{F }

{R}r−1

Print

Message

{U}r−1 = {U}r

r = r + 1

End

NO

YES

YES

NO

NO

YES

r = 1?

error< ϵ?

r < m?

Figure 4.1: Picard flowchart
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4.6 Worked Example 131

Start

Input

{U}r−1

{U}initial

[ K ]r−1 and [ T ]r−1

{R}r−1

Impose essential
boundary conditions

{∆U} = [ T ]r−1\−{R}r−1

{U}r = {U}r−1 + {∆U}

Print

Message

{U}r−1 = {U}r

r = r + 1

End

NO

YES

YES

NO

NO

YES

r = 1?

error< ϵ?

r < m?

Figure 4.2: Newton-Raphson flowchart
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5 Fluid Dynamics:
Navier-Stokes Equation

5.1 Introduction

The behaviour of flow of fluids and gases obey the three conservation laws;
mass, momentum and energy, all must conserve. The complete modelling
of these laws hence the actual flow behaviour is extremely difficult. It is the
practice, therefore, to reduce the complexity of the problem by introducing
appropriate assumptions. Herein, it is assumed that;

i. flow is incompressible
ii. flow is isothermal
iii. flow behaviour in width direction is constant
iv. fluid is materially linear (Newtonian) and homogenous isotropic.

These assumptions allow us to deal with a simpler set of equations but
sufficient enough for its expansion to the more general cases becomes ob-
vious.

5.2 Derivation of Navier-Stokes Partial
Differential Equations

By employing assumption ii. whichmeans that there is no variation in tem-
perature within the flow, a flow problem can be completely described by
the mass (continuity) and momentum equations alone as the energy equa-
tion is now uncoupled from the latter. The derivation of mass (continuity)
equation is given next, followed by the derivation of the momentum equa-
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142 Fluid Dynamics: Navier-Stokes Equation

tion. To note, from now on, mass equation will be referred as continuity
equation.

5.2.1 Continuity Equation

The continuity equation can be derived by considering a differential ele-
ment of the flow as shown in Fig. 5.1. As shown in the figure, the variables
to be considered are the density, ρ, velocity components in x-direction, u,
in y-direction, v and in z-direction, w. Similar to previous chapters, the
variables are expanded by Taylor series at all sides (surfaces).

The conservation of mass principle requires that the time rate of decrease
of mass inside the differential element must be equal to the net mass flow-
ing out of the differential element through its surface. The former can be
given as

The time rate of decrease of mass = ∂ρ

∂t
(dx dy dz) (5.1)

In x-direction, by balancing terms on the right and left sides of the differ-
ential element, we obtain(

ρu + ∂(ρu)
∂x

dx

)
dy dz − (ρu) dy dz = ∂(ρu)

∂x
dx dy dz (5.2)

By similar argument, the net outflow in y-direction is given as(
ρv + ∂(ρv)

∂y
dy

)
dx dz − (ρv) dx dz = ∂(ρv)

∂y
dx dy dz (5.3)

and in z-direction as(
ρw + ∂(ρw)

∂z
dz

)
dx dy − (ρw) dx dy = ∂(ρw)

∂z
dx dy dz (5.4)

Having established the net flow in all direction, the net mass flow of the
fluid out of the differential element through its surfaces can thus be given
as

Net mass flow =
(

∂(ρu)
∂x

+ ∂(ρv)
∂y

+ ∂(ρw)
∂z

)
dx dy dz (5.5)
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x

y

z

i

j

k

dx

d
y

dz

(a)

(pu) dy dz

[
(pu) + ∂(pu)

∂x
dx

]
dy dz

(pv) dx dz

[
(pv) + ∂(pv)

∂y
dy

]
dx dz

(pw) dx dy

[
(pw) + ∂(pw)

∂z
dz

]
dx dy

(b)

Figure 5.1: Flow mass differential element

Theprinciple of mass conservation requires Eq. (5.5) to be equal to Eq. (5.1),
thus,

−∂ρ

∂t
dx dy dz =

(
∂(ρu)

∂x
+ ∂(ρv)

∂y
+ ∂(ρw)

∂z

)
dx dy dz (5.6)
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144 Fluid Dynamics: Navier-Stokes Equation

or
∂ρ

∂t
+ ∂(ρu)

∂x
+ ∂(ρv)

∂y
+ ∂(ρw)

∂z
= 0 (5.7)

or in vector forms as
∂ρ

∂t
+ {∂}{ρu}T = 0 (5.8)

where
{∂} =

{
∂

∂x

∂

∂y

∂

∂z

}
(5.9)

{ρu} =
{

ρu ρv ρw
}

(5.10)

Eqs. (5.7) and (5.8) are the continuity equation for the flow given in the
form termed as conservation forms. In this form, the product of ρu, ρv and
ρw are themselves treated as the dependent variables. However, sometime,
it would be more convenient to deal directly with the velocity components,
u, v and w, termed as primitive variables as this would be the more familiar
forms we have encountered so far.

To express Eqs. (5.7) and (5.8) explicitly in terms of the primitive variables,
we employ the following derivative called material derivative. We omit
the theoretical derivation and discussion of this derivative but suffice to
say, it is a natural product of Eulerian formulation; a formulation usually
employed in fluid mechanics whilst its counterpart, the Lagrangian being
usually employed in solid mechanics. The material derivative is given as

D

Dt
= ∂

∂t
+ {u}{∂}T (5.11)

Now, since Eqs. (5.7) and (5.8) involves the derivative of the product of two
functions, we can expand this derivative by chain-rule as

∂ρ

∂t
+ ρ{∂}{u}T + {u}{∂}T ρ = 0 (5.12)

If we observe carefully, we will notice that the differential operators in
Eq. (5.12) which operates on the density, ρ, can be replaced by the material
derivative. By inserting Eq. (5.11) into Eq. (5.12) we obtain

Dρ

Dt
+ ρ{∂}{u}T = 0 (5.13)
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Fig. 5.9 and Fig. 5.10 show the plot of velocity and pressure profiles at
x = 0.5 unit and y = 0.5 unit, respectively.

Figure 5.7: Velocity contour of (a) 8-nodes element (10 × 10) and (b)software

Figure 5.8: Pressure contour of (a) 8-nodes element (10 × 10) and (b)softwaresa
m
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Figure 5.9: Velocity profile at x = 0.5
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Figure 5.10: Pressure profile at y = 0.5

5.7.1 Source Code for Navier Stokes Equations

% Clear data
clc; clear; close all

% --------------------
% Input (fluid properties)
% --------------------

rho = 1; % Density [kg/m^3]
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6 Numerical Integration

6.1 Introduction

All the integrations in previous chapters are done analytically. As men-
tioned, this is to allow for easy tracing of the procedure and immediate
determination of the matrices and vectors. However, in practice, numeri-
cal integration is employed, for the following reasons (among others),

i. to cater for the irregular shape of elements hence domains
ii. to employ reduced integration in reducing the effect of “overstiff-

ness” and speeding up computing time

The basic concept of numerical integration is to map a “distorted” element
in the physical domain into a regular shape element in the natural domain.
If Gauss-Legendre quadrature is employed, this natural element is usually
in the particular form of a rectangular with a side length of 2 units for two-
dimensional problem and a line of 2 units of length for one-dimensional
problem. This mapping is shown in Fig. 6.1.

As can be seen, the mapping process requires the coordinates of the physi-
cal element to be expressed as an interpolated functions in terms of shape
functions and nodal coordinates, which, for one-dimensional problem, can
be given as,

x = {N(ξ)}{x̂}T (6.1)
and for two-dimensional as,

x = {N(ξ, η)}{x̂}T (6.2a)

y = {N(ξ, η)}{ŷ}T (6.2b)

where N(ξ) and N(ξ, η) are the shape functions derived in the natural co-
ordinates for 1D and 2D formulations, respectively whilst {x̂}T and {ŷ}T
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Figure 6.1: (a) Two-dimensional, and (b) one-dimensional mapping of element

are the nodal coordinates of the element in the physical domain. The
procedures for the derivation of the natural shape functions are similar
to those outlined previously except that, the variables are evaluated at
a specific set of values of, say, at ξ = −1, 1 for a linear bar element
and at ξ = −1, 0, 1 for a quadratic bar element. For a bilinear 2D ele-
ment, the variables are evaluated at (ξ, η) = (−1, −1), (1, −1), (1, 1), (−1, 1)
while for quadratic 2D element, evaluation is carried out at (ξ, η) =
(−1, −1), (1, −1), (1, 1), (−1, 1), (0, −1), (1, 0), (0, 1), (−1, 0).

Omitting the detailed derivation, the shape functions for each type of ele-
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The final numerical values of the stiffness matrix [ k ] is thus

[ k ] = [ k ]|1,1 + [ k ]|1,2 + [ k ]|2,1 + [ k ]|2,2

=



1 2 3 ··· 7 8

1 0.239 0.080 −0.160 . . . 0.007 0.164
2 0.080 0.459 −0.086 . . . 0.097 −0.211
3 −0.160 −0.086 0.724 . . . −0.451 0.136
4 −0.153 0.066 −0.156 . . . 0.136 −0.180
5 −0.086 −0.091 −0.113 . . . −0.259 −0.145
6 −0.091 −0.314 0.106 . . . −0.079 −0.027
7 0.007 0.097 −0.451 . . . 0.703 −0.155
8 0.164 −0.211 0.136 . . . −0.155 0.418


(6.51)

6.4.1 Source Code for Numerical Integration with
2-by-2 Gauss points

%Clear data
clc; clear; close all

% --------------------
% Input parameters
% --------------------

% Domain and material properties
E = 1; % Young's Modulus [Pa]
nu = 0.25; % Poison ratio

% Gauss points & their weight
GP_xi = [-0.577 -0.577 0.577 0.577];
GP_eta = [-0.577 0.577 -0.577 0.577];
W_xi = [1 1 1 1];
W_eta = [1 1 1 1];

% Physical coordinates
coor_xy = [3 5;

8 9;
6 12;
2 11];

% --------------------
% Calculate the local k matrix using numerical integration
% --------------------

% Initialize k matrix
k = zeros(8,8);

% Loop over Gauss points
for i = 1:4

% Gauss point
xi = GP_xi(i);
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eta = GP_eta(i);

% Weight
phi_xi = W_xi(i);
phi_eta = W_eta(i);

% Jacobian matrix
dN = [-(1-eta) (1-eta) (1+eta) -(1+eta);

-(1-xi) -(1+xi) (1+xi) (1-xi)];
J = (1/4) * dN * coor_xy;

% B matrix
s1 = (xi - 3*eta + 2) / (9*eta + 11*xi - 48);
s2 = -(2*eta + 4*xi - 6) / (9*eta + 11*xi - 48);
s3 = -(xi - 6*eta + 7) / (9*eta + 11*xi - 48);
s4 = (eta + 4*xi + 3) / (9*eta + 11*xi - 48);
s5 = -(6*eta - 4*xi + 2) / (9*eta + 11*xi - 48);
s6 = -(eta + 5*xi + 6) / (9*eta + 11*xi - 48);
s7 = (3*eta - 4*xi + 7) / (9*eta + 11*xi - 48);
s8 = (2*eta + 5*xi - 3) / (9*eta + 11*xi - 48);

B = [s1 0 s3 0 s5 0 s7 0;
0 s2 0 s4 0 s6 0 s8;

s2 s1 s4 s3 s6 s5 s8 s7];

% Constitutive matrix
D = E/(1-nu^2) * [ 1 nu 0;

nu 1 0;
0 0 (1-nu)/2];

% Stiffness matrix
k = k + phi_xi*phi_eta*B'*D*B*det(J);

end

6.4.2 Source Code for Numerical Integration with
3-by-3 Gauss points

%Clear data
clc; clear; close all

% --------------------
% Input parameters
% --------------------

% Domain and material properties
E = 1; % Young's Modulus [Pa]
nu = 0.25; % Poison ratio

% Gauss points & their weight
GP_xi = [-0.775 -0.775 -0.775 0 0 0 0.775 0.775 0.775];
GP_eta = [-0.775 0 0.775 -0.775 0 0.775 -0.775 0 0.775];
W_xi = [ 0.555 0.555 0.555 0.889 0.889 0.889 0.555 0.555 0.555];
W_eta = [ 0.555 0.889 0.555 0.555 0.889 0.555 0.555 0.889 0.555];

% Physical coordinates
coor_xy = [3 5;

8 9;
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6 12;
2 11];

% --------------------
% Calculate the local k matrix using numerical integration
% --------------------

% Initialize k matrix
k = zeros(8,8);

% Loop over Gauss points
for i = 1:9

% Gauss point
xi = GP_xi(i);
eta = GP_eta(i);

% Weight
phi_xi = W_xi(i);
phi_eta = W_eta(i);

% Jacobian matrix
dN = [-(1-eta) (1-eta) (1+eta) -(1+eta);

-(1-xi) -(1+xi) (1+xi) (1-xi)];
J = (1/4) * dN * coor_xy;

% B matrix
s1 = (xi - 3*eta + 2) / (9*eta + 11*xi - 48);
s2 = -(2*eta + 4*xi - 6) / (9*eta + 11*xi - 48);
s3 = -(xi - 6*eta + 7) / (9*eta + 11*xi - 48);
s4 = (eta + 4*xi + 3) / (9*eta + 11*xi - 48);
s5 = -(6*eta - 4*xi + 2) / (9*eta + 11*xi - 48);
s6 = -(eta + 5*xi + 6) / (9*eta + 11*xi - 48);
s7 = (3*eta - 4*xi + 7) / (9*eta + 11*xi - 48);
s8 = (2*eta + 5*xi - 3) / (9*eta + 11*xi - 48);

B = [s1 0 s3 0 s5 0 s7 0;
0 s2 0 s4 0 s6 0 s8;

s2 s1 s4 s3 s6 s5 s8 s7];

% Constitutive matrix
D = E/(1-nu^2) * [ 1 nu 0;

nu 1 0;
0 0 (1-nu)/2];

% Stiffness matrix
k = k + phi_xi*phi_eta*B'*D*B*det(J);
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