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Abstract. The present paper models the fundamental problems of fluid flow 
using a discretely improved finite difference method on a staggered 
computational grid. The developed finite difference formulation is applied to 
well-established benchmark problems, namely, the lid-driven cavity flow, the 
developing laminar flow in a straight rectangular duct and the backward-facing 
step flow. Excellent agreements have been found for all cases. Also, this 
approach has successfully handled the pressure of the flow that has been long 
considered as one of the main problems in using the finite difference method.  
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1   Introduction 

Over the past few decades, numerical modelling of fluid flow has been a major topic 
of research in modern science and engineering [1]. Computational fluid dynamics 
(CFD) occupies one of the key physical disciplines that involve the description of 
fluid flow in terms of mathematical models which comprise convective and diffusive 
transports of matters. Basically, it constitutes the groundwork covering the fields of 
mechanical engineering, marine engineering, aeronautics and astronautics, civil 
engineering and bioengineering, to name a few. Inherent in the core of fluid flow 
study are the mathematical models that consist of a set of governing equations in the 
form of ordinary or partial differential equations. Although a great account of 
analytical solutions for CFD is available, in practical applications, it is customary to 
resolve the solutions in numerical form. One of the chief techniques frequently used 
in the investigation of CFD is the finite difference method (FDM).  

In obtaining solutions for CFD problems, one of the main concerns of the FDM is 
the handling of the pressure of the flow. In general, physical specification of pressure is 
absent, as it is implicitly correlated to the problem description. Even though there are 
three equations for the three unknowns u, v, p, there is no explicit equation which can 
be used for pressure. In most finite difference solution schemes for incompressible 
steady flows, the pressure field is obtained from a Poisson equation which is derived 



 Staggered Grid Computation of Fluid Flow with an Improved Discretisation 83 

from the momentum equations and the continuity equation [2]. The difficulty inherited 
from this approach is the need to decide on additional boundary conditions on the 
pressure [3]. This problem has been discussed in details in [4].  

To overcome this issue, [5] recently presented a point based compact finite 
difference method on a staggered grid, using a fully explicit second-order accurate 
time marching scheme, where the pressure Poisson equation is solved by a pseudo-
time marching procedure. Elsewhere, a new scheme that is implemented with the 
SIMPLE-type algorithm for the pressure field calculation similar to that of finite 
volume methods was proposed by [6] to solve this problem. The discretised equations 
are developed as a purely finite difference formulation. The convective terms in the 
momentum equations are approximated using the first or second order finite 
difference formulae. [6] used unequally spaced grid points for handling u- and v-
momentum equations at a wall boundary, whereas an equally spaced grid points are 
chosen in this study for the same nodes.  

The present work concerns with the formulation of the scheme and the validation 
of the benchmark problems based on the improved model. First, the governing 
equations are presented in Section 2. Then, section 3 discusses the new scheme in 
details.  Finally, section 4 presents the validation of this method and its analysis.   

2   Governing Equations 

In the current study, we shall be interested in the standard Navier-Stokes governing 
equations and continuity of incompressible fluid flow given as follows 
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y-momentum equation 
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where u and v are the velocity components in the x and y directions respectively, p  is 
the pressure, ρ  is the constant density, and ν  is the viscosity. 

Using the dimensionless definitions as given by [7], the governing equations (1) to 
(3) become 
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where 
ν
Uh=Re  is the Reynolds number. 

3 Numerical Method 

The governing equations presented in the previous section are solved using a new 
numerical algorithm proposed by [6]. The methodology is finite difference based, but 
essentially takes advantage of the best features of two well-established numerical 
formulations, the finite difference and the finite volume methods. Some weaknesses 
of the finite difference approach are removed by exploiting the strengths of the finite 
volume method. 

 

Fig. 1. Staggered grid arrangement 
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3.1   Finite Differencing on a Staggered Grid 

We shall proceed next by considering a two-dimensional rectangular cavity flow 
domain which is subdivided using a regular Cartesian mesh as demonstrated in Figure 
1. The mesh is evenly distributed in x and y directions. Here, a staggered grid is used 
to store the velocity components u and v and the pressure p. 

We can see in Figure 1 that the values of u and v are stored at the i-1,j and i,j+1 
locations respectively and p is stored at i,j. A direct indication of such an arrangement 
is that the u-momentum (equation 5) is discretised at i-1,j, the v-momentum (equation 
6) at i,j+1, and the continuity (equation 1) at i,j. Here, a first-order upwind 
differencing scheme has been employed to approximate the convective terms in the 
momentum equations, while a second-order central differencing is adopted for the 
diffusion terms. The pressure gradients are approximated by a second order central 
difference scheme. 

3.2   Discretisation of the Momentum Equations 

Unequally spaced grid points have been subscripted for the handling of u- and v-
momentum equations at the wall boundary in [6]. As a result, the convective term is 
approximated using a second order accurate expression while the diffusion term takes the 
first order accurate expression, both of which lead to the formation of different formulae 
at different node location. For convenience, equally spaced grid points are chosen in this 
study. The advantage here is that the discretisation of the u- and v-momentum equations 
at interior nodes can be used at the wall boundary. To demonstrate the scheme, the 
discretisation of the momentum equations is summarized as below.  

3.2.1   u-Momentum Equation  
The discrete u-momentum equations at interior nodes are given by 
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It shall be pointed out that the variables with the carets above them are the quantities 
to be calculated at the previous iteration. Because of the use of a staggered grid, the 
values of v in the u-momentum equation and u in the v-momentum equation, 
appearing as the coefficients of the convective derivatives, are not available at the 
desired points.  

Consequently, these velocities are computed to a second order accuracy using the 
velocities of four surrounding grid points described as the followings,  
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Additional modifications have been made for the discrete u-momentum equations of 
interior nodes which are otherwise identical to those of boundary nodes. For example, 
the discrete u-momentum equations at the inlet nodes is the same as interior node 

except that the value of ju ,1  is known.  

    The u-momentum equation along the bottom of the wall ( )2=j takes the form    
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In a refined form, the current method presents the u-momentum equation along the 
bottom of the wall as 
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Here, all other coefficients are the same as defined at the interior nodes.  

3.2.2   v-Momentum Equation 
Similar to the discrete u-momentum equations, the discrete v-momentum equations at 
the interior nodes take the following form 
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3.3   Discretisation of the Continuity Equation 

For present model, the pressure correction equations that are identical to those given 
in [6] are employed for all boundary nodes. The pressure correction equations for the 
interior nodes are 
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3.4   Solution Algorithm 

For convenience, we customarily use the SIMPLE scheme for the pressure-velocity 
coupling in the overall solution. The numerical algorithm for one complete cycle is 
given in the flow chart below. 

 

Fig. 2. Flow chart for the SIMPLE-type algorithm 
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    It shall be stressed that the pressure-correction equation is prone to diverge from 
desired solution path unless an under-relaxation is implemented. For such a purpose, 
the following is used. 

'* ppp Pα+=  

where Pα  is the pressure under-relaxation parameter. Due to expensive computational 

time in achieving convergence, the Tri-Diagonal Matrix Algorithm (TDMA) used by 
[6] to solve the system of discretised equations is avoided. In the present algorithm, a 
modification is provided in the form of a direct method to remedy such a problem. It has 
been shown that a rapid convergence can be obtained through this method [8].      

4   Test Problem 

To measure the validity of current model, the developed finite difference formulation 
is used to simulate the well-established benchmark problems. In the following 
sections, we shall be interested in the comparison of currently modeled solution to 
those of classical problems, namely, the lid-driven cavity flow, the developing 
laminar flow in a straight rectangular duct and the backward-facing step flow. Note 
the comparisons are restricted to those of low Re numbers. Turbulent flow is not 
considered in the current study. 

4.1   Lid-Driven Cavity Flow  

The lid-driven cavity problem has long been considered as the test or validation case 
for new codes or new solution methods. Among the reasons for such popularity are 
the problem geometry is simple and two-dimensional. Furthermore, the boundary 
conditions are considerably simple. The standard case is fluid contained in a square 
domain with the Dirichlet boundary conditions on all sides, with three stationary sides 
and one moving side (with a prescribed velocity tangent to the side). The boundary 
conditions for the present problem are illustrated in Figure 3.  

 

Fig. 3. Boundary conditions for the lid-driven cavity 



90 N. Rusli, A.B.H. Kueh, and E.H. Kasiman 

    Since this problem case has been solved and used frequently for verification, there 
exists a great deal of data to compare with. A good set of data for comparison is the 
data given in [1]. It includes tabulated results for various Reynolds numbers.  

In the comparison, we shall consider the flow for aforementioned problem for 
100Re = . Figure 4(a) illustrates the velocity component u along the vertical line 

through the geometric centre of cavity. Figure 4(b) shows the velocity component v 
along the horizontal line through the geometric centre of cavity. Obviously, one can 
see in the figures that very good agreements are demonstrated from the comparison of 
the present model with those obtained by [1] and [6].    
 

 
(a) Vertical           (b) Horizontal  

Fig. 4. Velocity along the vertical and horizontal lines through the geometric centre of cavity 
for 100Re =  

The velocity vector plot and contour for 100Re =  are shown in Figure 5. One can 
see that the features of the cavity flow are excellently captured. 

 
(a) Velocity plot                               (b) velocity contour 

Fig. 5. Velocity plot and contour of the cavity flow for 100Re =  
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4.2   Developing Flow in a Rectangular Duct 

Next, consider a developing flow in a straight two-dimensional channel as shown in 
Figure 6. The length L of the channel is taken to be ten times the width D, and we 
take 1=D .  

 

Fig. 6. Geometry of the channel with the prescribed boundary conditions 

At the entrance of the channel, a uniform flow ( )1=u  is specified as the inlet 

velocity profile. The transverse velocity is set equal to zero at the inlet. A parallel flow 
condition is specified at the outlet, i.e. 0=∂∂ xu  and 0=∂∂ xv . The no-slip 

condition is applied at the lower and upper walls. As the fluid enters the channel, the 
wall boundary conditions distort the uniform flow due to the growth of boundary layers 
on the walls. The flow develops along the channel for some distance, until it becomes 
fully developed. At this point, the flow field is that described by the Poiseuille flow.  

The numerical model is verified against the exact solution and Zogheib model for a 
fully developed flow formed at the outlet. Also, the predicted fully developed streamwise 
velocity profile for 50Re =  is compared and the agreement is excellent, as given in 
Figure 7. In Figure 8, the result obtained for the present method closely matches  
the result from [6] and the agreement is better than that obtained from [9] where the 
parabolic profile of [9] starts further downstream, around 4=x . Velocity contour of the 
channel flow can be seen in Figure 9. Again, one can notice that it is considerably 
consistent with the behavior of the benchmark case (the latter is not shown here). 

 

Fig. 7. Fully developed velocity profile 
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Fig. 8. Centreline velocity for 50Re =  

 

Fig. 9. Velocity contour of the flow 

4.3   Backward-Facing Step Flow  

The backward-facing step is one of the most fundamental geometries causing flow 
separation and is an important validation test for any numerical model.  

Sketch of the geometry and boundary conditions for backward-facing step flow 
model is illustrated in Figure 10. The channel was defined to have height 2h, with a step 
height and upstream inlet equal to h. In this work, we have taken 2h = 1. The length L 
from the step to the end of the channel domain depends on Re. This length must be 
chosen to ensure the reattachment length is independent of the length of the calculation 
domain. Figure 11 shows the development of flow velocity vector in the channel.  

 

Fig. 10. Sketch of geometry for backward-facing step flow 
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Fig. 11. Velocity plot of the flow 

Table 12 gives a comparison of the reattachment length predicted by the present 
method with experimental and numerical results of [10] and [11]. It is clear that the 
computed results agree very well with those found in the literature. 

 
Re [10] 

(Experimental) 
[11] 

(Numerical) 
Present method 

(Numerical) 
50 0.90 1.00 1.00 

100 1.40 1.50 1.50 
200 2.50 2.60 2.00 

Fig. 12. Reattachment length as a function of Re 

For demonstration purpose, we show next the contour and streamline plots for the 
channel for Re = 50 and Re = 100, respectively in Figures 13 and 14. It is obvious that 
an increase in Re boosts the velocity of flow especially near the entrance of channel. 
Nevertheless, the streamline plots display practically identical pattern for both flows.   

 

Fig. 13. u velocity contour and streamlines for Re=50 

 

Fig. 14. u velocity contour and streamlines for Re=100 
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5   Conclusions 

An improved finite difference discretisation method for solving the two-dimensional, 
steady, incompressible, laminar, viscous flow equations on a staggered grid is 
presented. The validation is done for the fundamental fluid flow problems, namely, 
the lid-driven cavity flow, the developing laminar flow in a straight rectangular duct 
and the backward-facing step flow. Good agreements are demonstrated by the current 
model with respect to these benchmark tests. 

References 

1. Ghia, U., Ghia, K.N., Shin, C.T.: High-Re Solutions for Incompressible Flow Using the 
Navier-Stokes Equations and a Multigrid Method. Journal of Computational Physics 48, 
387–411 (1982) 

2. Johnston, H., Liu, J.G.: Finite Difference Schemes for Incompressible Flow Based on 
Local Pressure Boundary Condition. Journal of Computational Physics 180, 120–154 
(2002) 

3. Strikwerda, J.C.: High Order-accurate Schemes for Incompressible Viscous Flow. 
International Journal for Numerical Methods in Fluids 24, 715–734 (1997) 

4. Petersson, N.A.: Stability of Pressure Boundary Conditions for Stokes and Navier-Stokes 
Equations. Journal of Computational Physics 172, 40–70 (2001) 

5. Zhang, K.K.Q., Shotorban, B., Minkowycz, W.J., Mashayek, F.A.: Compact Finite 
Difference Method on Staggered Grid for Navier–Stokes Flows. International Journal for 
Numerical Methods in Fluids 52, 867–881 (2006) 

6. Zogheib, B.: Velocity-Pressure Coupling in Finite Difference Formulations for the Navier-
Stokes Equations, Windsor, Ontario, Canada (2006) 

7. Midya, C., Layek, G.C., Gupta, A.S., Mahapatra, T.R.: Magnetohydrodynamic Viscous 
Flow Separated in a Channel With Constrictions. Journal of Fluid Engineering 125, 952–
962 (2003) 

8. Ferziger, J.H., Peric, M.: Computational Methods for Fluid Dynamics, 3rd edn. Springer, 
USA (2002) 

9. Reggio, M., Camarero, R.: Numerical Solution Procedure for Viscous Incompressible 
Flows. Numerical Heat Transfer 10, 131–146 (1986) 

10. Armaly, B.F., Durst, F., Pereira, J.C.F., Schonung, B.: Experimental and Theoretical 
Investigation of Backward-facing Step Flow. Journal of Fluid Mechanics 127, 473–496 
(1983) 

11. Barber, R.W., Fonty, A.: Comparison of Vortex-element and Finite-volume Simulations of 
Low Reynolds Number Flow over a Confined Backward Facing Step. In: Proceedings of 
11th Annual Conference of the CFD Society of Canada, CFD 2003, vol. 2, pp. 780–787 
(2003) 


	Staggered Grid Computation of Fluid Flow with an Improved Discretisation of Finite Differencing
	Introduction
	Governing Equations
	Numerical Method
	Finite Differencing on a Staggered Grid
	Discretisation of the Momentum Equations
	Discretisation of the Continuity Equation
	Solution Algorithm

	Test Problem
	Lid-Driven Cavity Flow
	Developing Flow in a Rectangular Duct
	Backward-Facing Step Flow

	Conclusions
	References




