
Programming Technique II
SECJ1023

Hazilah Mad Kaidi (PhD, P.Eng, SMIEEE)

Razak Faculty of Technology and Informatics, UTM
hazilah.kl@utm.my

https://people.utm.my/hazilah

mailto:hazilah.kl@utm.my
https://people.utm.my/hazilah

Course Overview

 The course covers another concept of programming: Object-
Oriented Programming (OOP)

 Language used: C++

Course Topics

 Overview of Programming Paradigms

 Introduction to OOP

 Introduction to Classes and Objects

 Constructors and Destructors

 Class and Object Manipulations

 String Manipulations

 Associations, Aggregations and Compositions

 Inheritance

 Polymorphisms

 Exceptions and Templates

 Containers and Iterators

01: Introduction to Object-
oriented Programming

Programming Technique II

(SECJ1023)

Adapted from Tony Gaddis and Barret Krupnow (2016), Starting out with
C++: From Control Structures through Objects

Procedural Programming (PP)

 Traditional programming languages were procedural.
 C, Pascal, BASIC, Ada and COBOL

 Programming in procedural languages involves choosing data
structures (appropriate ways to store data), designing
algorithms, and translating algorithm into code.

 In procedural programming, data and operations are
separated.

 This methodology requires sending data to
procedure/functions

Procedural Programming

Function A

Data Element

Function B

Functional Programming (FP)

 FP is a programming paradigm where programs are constructed by
applying and composing functions

 Functions are treated as first-class citizen. They can be:

 bound to names

 passed as parameters to other functions

 returned from other functions

 FP uses declarative programming style
 expresses the logic of WHAT the program should accomplish

without specifying how it should achieve that.

Note: PP and OOP use imperative programming style. This style
focuses on describing HOW a program operates

Comparison of FP to
Imperative Programming

Example Problem:

Multiply all even numbers in an array by 10 and add
them all, storing the final sum in the variable
"result".

Both solution on the next slides are written in JavaScript, but
with different programming paradigms

Traditional imperative loop

Functional Programming with high-order functions

FP Concepts

 High-order and Callback Functions

 Pure Functions

 Recursion

 Referential Transparency

 Function composition

 Currying

Further readings:

Functional programming
https://en.wikipedia.org/wiki/Functional_programming

A Comprehensive Look at Functional Programming (FP)
https://medium.com/swlh/a-comprehensive-look-at-functional-programming-fp-
4a87629ecaed

https://en.wikipedia.org/wiki/Functional_programming
https://medium.com/swlh/a-comprehensive-look-at-functional-programming-fp-4a87629ecaed

High-order functions

• High-order functions are functions that accept other
functions as their parameters, and/ or return functions as
results

• The functions that are sent as parameters are called
callback functions

• Note that the sent functions will be bound rather than
called to

Function Binding

Output:

9.5
1
9.5

A variable can hold a function

Return Function from Another Function

In the following example, getFunctionByOperator is a high-order function

Return Function from Another Function

Output:

5
17
6
60

High-order Functions and Callbacks

In the following example, functions add and multiply are callback functions
and doCalculation is a high-order function

Output:

Result: 3
Result: 20

Lambda Functions

• A callback can be directly written to the high-order function.
• This is called Lambda function (or Anonymous function, i.e. no name)

Practical Use Case of High-order Functions

To manipulate arrays

Practical Use Case of High-order Functions

Object-Oriented Programming (OOP)

 OOP is centred on objects rather than procedures /
functions.

 Objects are a melding of data and operations that
manipulate that data.

 Data in an object are known as properties or attributes .

 Operations/functions in an object are known as methods.

Object-Oriented Programming

Object

Attributes (data)

Methods
(behaviors / procedures / functions)

Object-Oriented Programming
 Object-oriented programming combines data and methods

via encapsulation.

 Data hiding is the ability of an object to hide data from other
objects in the program

 Only object’s methods should be able to directly manipulate
its attributes

 Other objects are allowed to manipulate object’s attributes
via the object’s methods.

 This indirect access is known as a programming interface

Object-Oriented Programming

Object
Attributes

typically private to this object

Methods

Other

objects

Programming

Interface

Other

objectsOther

objects

OOP Principles: Classes

 A class is the template or mould or blueprint from
which objects are actually made.

A class encapsulates the attributes and actions that
characterizes a certain type of object.

OOP Principles: Objects

 Classes can be used to instantiate as many objects as are needed.

 Each object that is created from a class is called an instance of the
class.

 A program is simply a collection of objects that interact with each
other to accomplish a goal.

Classes and Objects

The Car class defines the

attributes and methods that

will exist in all objects

that are instances of the

class.

BMW object

The BMW object is an

instance of the Car class.

MAZDA object

The Mazda object is an

instance of the Car class.

Car class

OOP Principles: Encapsulation

 Encapsulation is a key concept in working with objects:
Combining attributes and methods in one package and
hiding the implementation of the data from the user of the
object.

Car

Attributes:

model,

cylinder capacity

Methods:

move,

accelerate

Encapsulation:

Attributes/data

+

Methods/functions = Class

Example:

a car has attributes and methods below.

OOP Principles: Data Hiding

 Data hiding ensures methods should not directly access instance
attributes in a class other than their own.

 Programs should interact with object attributes only through the object's
methods.

 Data hiding is important for several reasons.

 It protects attributes from accidental corruption by outside objects.

 It hides the details of how an object works, so the programmer can
concentrate on using it.

 It allows the maintainer of the object to have the ability to modify the
internal functioning of the object without “breaking” someone else's code.

OOP Principles: Associations

 Association: relates classes to each other through their objects.

A person can own several cars

Example:

 Association can be, one to one, one to many, many to one, or many to
many relationships.

CarPerson

0..*owns

Company
Works for

A person works for a company

OOP Principles: Inheritance

 Inheritance is the ability of one class to extend the capabilities of
another.

 it allows code defined in one class to be reused in other classes

Vehicle
Vehicle is the

parent class.

“is-a” relationship

Car and Truck are

child classes of

Vehicle.

Car and Truck are

Specialized versions of

a Vehicle.

Vehicle represents all

of the generic attributes

and methods of a

vehicle.

Example:

Car Truck

OOP Principles: Polymorphism

 Polymorphism is the ability of objects performing the same actions
differently.

Insect

Grasshoppers move by jumping

Insects have the ability to move

from one point to another.

However, the way they perform

their movement is different

Ant

Example:

Grasshopper

Ants move by crawling

Self-test: Introduction to Object Oriented
Programming

 State the differences between procedural programming and
Object Oriented Programming.

 What is an Object and what is a Class? What is the difference between
them?

 What is an Attribute?

 What is a Method?

 What is encapsulation? How it relates to data hiding?

 What is association?

 What is inheritance? How it relates to polymorphism?

The Unified Modeling Language

Programming Technique II

(SCSJ1023)

Adapted from Tony Gaddis and Barret Krupnow (2016), Starting out with
C++: From Control Structures through Objects

The Unified Modelling Language

 The UML provides a set of standard diagrams for
graphically depicting object-oriented systems

 UML stands for Unified Modelling Language.

UML Class Diagram

 A UML diagram for a class has three main sections.

Example: A Rectangle Class
 A UML diagram for a class has three main sections.

UML Access Specification Notation

 In UML you indicate a private member with a minus (-)
and a public member with a plus(+).

UML Data Type Notation

 To indicate the data type of a member variable, place
a colon followed by the name of the data type after
the name of the variable.

 .

UML Parameter Type Notation

 To indicate the data type of a function’s parameter
variable, place a colon followed by the name of the
data type after the name of the variable.

 .

UML Function Return Type Notation

 To indicate the data type of a function’s return value,
place a colon followed by the name of the data type
after the function’s parameter list.

 .

 .

The Rectangle Class

Showing Constructors and
Destructors

