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Combina)on of the concepts of power graph and Cayley graph associated to groups has 
led to the introduc)on to two new varia)ons of Cayley graph known as the union power 
Cayley graph and the intersec)on power Cayley graph. The set of ver)ces for both 
graphs consist of the elements of a finite group 𝐺. Consider any inverse-closed subset 
𝑆 of 𝐺, two ver)ces 𝑥 and 𝑦 are adjacent in the union power Cayley graph if 𝑥𝑦!" ∈ 𝑆 
or if either one is an integral power of the other. Furthermore, 𝑥 and 𝑦 are adjacent in 
the intersec)on power Cayley graph if 𝑥𝑦!" ∈ 𝑆 and if either one is an integral power 
of the other. In this paper, the generaliza)on of the union power Cayley graphs and the 
intersec)on power Cayley graphs of the dihedral groups with order 2𝑛, for 𝑛 ≥ 3 and 
𝑛 = 𝑃#; 𝑃 is prime and 𝑚 is a natural number, rela)ve to a specific subset containing 
rota)on elements in the groups is found. In addi)on, proper)es of these graphs 
including the clique numbers, vertex chroma)c numbers, girths and diameters are 
computed. Finally, the characteris)cs of the graphs, whether they are connected, 
regular, complete, and planar are also determined. 
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1. Introduction 
 

Groups linked with graphs have been an exciting research topic in the last few decades, leading 
to various algebraic properties using graph theory. The Cayley graph visualizes the structures of a 
group by representing it in terms of graphs. This graph was first established by Cayley [1] in 1878. A 
Cayley graph of a group 𝐺 relative to 𝑆 ⊆ 𝐺, where 𝑆!" ⊆ 𝑆 , denoted as Cay(G, S), is a graph with 
elements of 𝐺 as its vertices and two vertices 𝑥 and 𝑦 are adjacent if there exist 𝑠 ∈ 𝑆 such that 𝑥 =
𝑦𝑠 or 𝑦 = 𝑥𝑠. Recent results related to the Cayley graph can be referred in the previous studies [2-
6]. 

A directed or in directed graph can be related to an algebraic structure 𝐺 in a variety of ways, and 
the algebraic properties of 𝐺 are examined in terms of the characteristics of the associated graph. In 
2000, Kelarev and Quinn [7] introduced the directed power graph of a group 𝐺, which is denoted by 
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𝑃(𝐺), as a graph with the elements of 𝐺 as the vertices and 𝑥, 𝑦 ∈ 𝐺 are adjacent in 𝑃(𝐺)	if 𝑥 =
𝑦#	or 𝑦 = 𝑥$	for 𝑚, 𝑛 ∈ ℕ. Since then, many studies related to the power graph of groups have been 
conducted, for instance, see the previous studies [8-12]. 

By combining the concept of Cayley graph with power graph, the union power Cayley graphs, 
Pow- 𝐶𝑎𝑦%(𝐺, 𝑆)	and the intersection power Cayley graph, Pow -  𝐶𝑎𝑦!(𝐺, 𝑆)	of finite groups have 
been introduced in the papers [13,14], respectively. In this study, the generalization of these two 
graphs is governed for the dihedral groups of order 2𝑛, 𝐷&#, for 𝑛 ≥ 3 and 𝑛 = 𝑃$	where 𝑃 is a 
prime and 𝑚 ∈ ℕ. The graphs Pow- 𝐶𝑎𝑦%(𝐺, 𝑆)		and Pow -  𝐶𝑎𝑦!(𝐺, 𝑆)	 with respect to the subsets 
𝑆(#!") = <𝑎", 𝑎&, 𝑎), … , 𝑎(#!")> are constructed based on the structures of power graph and Cayley 
graph of the groups, in terms of their union and their intersection. Many structures on the groups 
can be observed from these two graphs together with their properties on finite groups. Hence, the 
general presentations for Pow- 𝐶𝑎𝑦%(𝐺, 𝑆)	and Pow -  𝐶𝑎𝑦!(𝐺, 𝑆)	on 𝐷&*!  together with some 
properties of the graphs which include clique numbers, vertex chromatic numbers, girth and 
diameters are determined in this study. Moreover, the connectivity, regularity, completeness, and 
planarity of these graphs are also found. 
 
2. Notations and Preliminaries  

 
All of the standard notations throughout the paper come from the books written by Gallian [15] 

for groups and by Rahman et al., [16] as well as Chartrand and Zhang [17] for graphs. Important 
definitions and related basic concepts are provided in this section, together with notations and 
results from previous studies. 

In this study, all groups taken into account are finite, and the investigation is limited to dihedral 
groups of order 2𝑃$, with prime	𝑝 and 𝑚 ∈ ℕ. Furthermore, undirected simple graphs without 
multiple edge or loop are considered in this paper. 

The set containing of all vertices of a graph 𝛤 is denoted by 𝑉(𝛤) while 𝐸(𝛤) denotes the set of 
edges of 𝛤. The adjacency of vertex 𝑥 with vertex 𝑦 is labelled as	𝑥	 ∼ 	𝑦. Meanwhile, the notation 
|𝑉(𝛤)| represents the number of vertices of 𝛤 and 𝑑𝑒𝑔(𝑥) represents the degree of the vertex 𝑥 in 
𝛤. If 𝑑𝑒𝑔(𝑥) 	= 	𝑛	for all 𝑥	 ∈ 𝑉(𝛤), then 𝛤 is 𝑛 −regular. 

A graph is said to be a star graph 𝑆# if it contains one central vertex with edges to other vertices 
in it. Moreover, if there exists	(𝑥, 𝑦) − path which connects each pair of vertices	𝑥 and 𝑦	in 𝑉(𝛤), 
then the graph 𝛤 is a connected graph. Otherwise,	𝛤	is called a disconnected graph. A complete graph 
𝐾# is a simple graph with 𝑛	vertices and each vertex in a graph is adjacent to all the others while a 
graph that can be drawn in the plane with its edges only intersecting at their ends is said to be planar.  

A clique is an induced subgraph of 𝛤 that is complete. The clique number of 𝛤, which is 
represented by 𝜔(𝛤), is the largest size of a clique of the graph	𝛤. The vertex chromatic number 
of	𝛤, 𝜒(𝛤), is the minimum number of colours needed to colour the vertices of 𝛤	so that no two 
adjacent vertices have the same colour. A perfect graph	𝛤 is a graph in which 𝜒(𝛤) 	= 	𝜔(𝛤), both 
for the graph itself and for every induced subgraph.  

The largest distance between any two vertices in a graph 𝛤 is the diameter of that graph, 
𝑑𝑖𝑎𝑚(𝛤) while the size of the shortest cycle in 𝛤 is its girth, denoted by 𝑔𝑖𝑟𝑡ℎ(𝛤). The union of two 
simple graphs 𝛤" = (𝑉", 𝐸") and 𝛤& = (𝑉&, 𝐸&) is a graph 𝛤" ∪ 𝛤& with vertex set 𝑉	 = 	𝑉" 	∪ 	𝑉&	 and 
edge set 𝐸	 = 	𝐸" 	∪ 	𝐸&. Meanwhile, we denote the join of  𝛤" = (𝑉", 𝐸") and 𝛤& = (𝑉&, 𝐸&)	as the 
graph 𝛤" + 𝛤& with 𝑉	 = 𝑉" 	∪ 𝑉& and 𝐸	 = 	𝐸" 	∪ 𝐸&	together with edges joining all vertices in 𝑉"	 with 
vertices in 𝑉&. Throughout this paper, 𝑆(#!") denotes a subset of size	𝑛 − 1 such that	𝑛	 ∈ 	ℕ.	In 
addition, 𝜑(𝑛) denotes Euler’s function, 𝑛	 ∈ 	ℕ.  

The relevant definitions and theorems for this study are given next. 
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Theorem 1 [4] Every Cayley graph	𝐶𝑎𝑦	(𝐺, 𝑆) is |𝑆| −	regular.  
Theorem 2 [2] Let 𝑎+ 	 ∈ 	𝑆. Then, in 𝐶#(𝑆), the length of a cycle of period 𝑎+ 	is #

,-.(#,0")
 and the 

number of disjoint periodic cycles of period 𝑎+ 	is 𝑔𝑐𝑑(𝑛, 𝑎+). 
Proposition 1 [2] Γ(𝑛: 𝑟", 𝑟&, … , 𝑟+) ≅ 𝐶#(𝑟", 𝑟&, … , 𝑟+), where 𝐶#(𝑟", 𝑟&, … , 𝑟+) is a circulant graph 

and 1 ≤ 𝑟" < 𝑟& < ⋯ < 𝑟+ ≤ \#
&
] .  

Then, 𝐶#(𝑟", 𝑟&, … , 𝑟+) is a connected graph if and only if gcd	(𝑛: 𝑟", 𝑟&, … , 𝑟+) = 1.   
Theorem 3 [18] The power graph of a finite group 𝐺, 𝑃(𝐺) is complete if and only if 𝐺 is a cyclic 

group of order 1	or 𝑃$, for some primes 𝑝 and for some 𝑚	 ∈ 	ℕ. 
Corollary 1 [18] If a group 𝐺 is finite, then 𝑃(𝐺) is always connected.  
Theorem 4 [19] 𝑃(𝐷#) is non-planar if and only if 𝑛	 ≥ 	5. 
Corollary 2 [10] 𝜒(𝑃(𝐷#)) 	= 	𝜔(𝑃(𝐷#)) = 	𝜒(𝑃(ℤ#)). 
Theorem 5 [11] If a group 𝐺 is finite, then 𝑃(𝐺) is perfect. 
Definition 1 [13] Union power Cayley Graph  
The union power Cayley graph of a group 𝐺	relative to an inverse-closed subset 𝑆 of 𝐺	\	{𝑒}, 

denoted by Pow -  𝐶𝑎𝑦%(𝐺, 𝑆) is a simple undirected graph with 𝑉(Pow -  𝐶𝑎𝑦%(𝐺, 𝑆)) 	= 	𝐺 and two 
vertices 𝑎 and 𝑏 are adjacent if and only if at least one of the following two conditions is satisfied:  

 
i. 𝑎𝑏!" ∈ 𝑆 

ii. 𝑎	 = 	𝑏#	𝑜𝑟	𝑏	 = 	𝑎$	 for some 𝑚, 𝑛 ∈ ℕ. 
 
In other words, Pow -  𝐶𝑎𝑦%(𝐺, 𝑆) = {{𝑎, 𝑏} ∣ {𝑎, 𝑏} ∈ 𝐸(𝑃(𝐺)) ∪ 𝐸(Cay	(𝐺, 𝑆))} 
Definition 2 [14] Intersection power Cayley Graph  
The intersection power Cayley graph of a group 𝐺	relative to an inverse-closed subset 𝑆 of 𝐺	\	{𝑒}, 

denoted by Pow -  𝐶𝑎𝑦!(G, S)	is a simple undirected graph with 𝑉(Pow -  𝐶𝑎𝑦!(𝐺, 𝑆)) 	= 	𝐺	and two 
vertices	𝑎 and 𝑏	are adjacent if and only if both of the following two conditions are satisfied:  

 
i. 𝑎𝑏!" ∈ 𝑆 

ii. 𝑎	 = 	𝑏#	𝑜𝑟	𝑏	 = 	𝑎$	 for some 𝑚, 𝑛 ∈ ℕ. 
 
In other words, Pow -  𝐶𝑎𝑦!(𝐺, 𝑆) = i {𝑎, 𝑏} ∣∣ {𝑎, 𝑏} ∈ 𝐸j𝑃(𝐺)k ∩ 𝐸(Cay(𝐺, 𝑆)) m. 

 
3. Results and Discussions 

 
Without loss of generality, in this section, the notation 𝐷&# represents the dihedral groups with 

order 2𝑛	for 𝑛	 ≥ 	3 and, n = 𝑃$	where 𝑝 is a prime and 𝑚 ∈ ℕ. In addition, 𝑆(#!") =
<𝑎", 𝑎&, 𝑎), … , 𝑎(#!")>. Hence, the general structures of the Cayley graphs and power graphs of 𝐷&# 
relative to 𝑆(#!") is given in Theorem 6 and Theorem 7, respectively. These two theorems are applied 
in obtaining the Pow -  𝐶𝑎𝑦%(𝐷&#, 𝑆(#!")) and Pow -  𝐶𝑎𝑦!j𝐷&#, 𝑆(#!")k which are given in Theorem 
8 and Theorem 9, respectively. 

Theorem 6 The Cayley graph of	𝐷&# with respect to 𝑆(#!") is  
Cay	j𝐷&#, 𝑆(#!")k ≅ 2𝐾1!, 
where 𝐾1!  is the complete graph of order 𝑝$. 
Proof: Let 𝐷&#  be a dihedral group with order 2𝑛: 𝑛	 = 	𝑝$. Then, 𝐷&# =

<𝑒, 𝑎, 𝑎&, … , 𝑎(#!"), 𝑏, 𝑎𝑏, 𝑎&𝑏,… , 𝑎(#!")𝑏> can be partitioned into sets, 𝐴 = <𝑒, 𝑎, 𝑎&, … , 𝑎(#!")>	and 
𝐵 = <	𝑏, 𝑎𝑏, 𝑎&𝑏,… , 𝑎(#!")𝑏>. Then, 𝐴 ≅ ℤ#. We shall consider the Cayley graph of each set 
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separately. Firstly, for the set 𝐴, by using Proposition 1 and Theorem 2, there are 𝑛 − 1 connected 
cycles of length #

,-.	(|4|,5)
, where 𝑔	 ∈ 	𝐴. Recall that by definition of Cayley graph, 𝑥	 ∼ 	𝑦 if	𝑥	 = 	𝑔𝑦 

for 𝑔 ∈ 𝑆(#!"),. 
 

i. For 𝑔 ∈ 𝑆(#!"), if 𝑔 = 𝑎+ ∈ 𝜑(𝑛), then 𝑒 ∼ 𝑎+ ∼ 𝑎&+ ∼ ⋯ ∼ 𝑎#!+ ∼ 𝑒. 
ii. For 𝑔 ∈ 𝑆(#!"), if 𝑔 = 𝑎

#
$ , then 𝑒 ∼ 𝑎

#
$ , 𝑎 ∼ 𝑎

#
$%", … , 𝑎

#
$!" ∼ 𝑎(#!"). 

iii. 𝑔 ∈ 𝑆(#!"), if 𝑔 = 𝑎+ ∉ 𝜑(𝑛), then 𝑒 ∼ 𝑎+ ∼ 𝑎&+ ∼ ⋯ ∼ 𝑒, 𝑎 ∼ 𝑎+%" ∼ 𝑎&+%" ∼ ⋯ ∼
𝑎,… , 𝑎+!" ∼ 𝑎&(+!")%" ∼ ⋯ ∼ 𝑎+!". 

 
From the equations above, since 𝑎6%+ = 𝑎+𝑎6 , then 𝑎6%+ ∼ 𝑎6  for any 𝑎+ ∈ 𝑆(#!"). By using 

Theorem 1 the Cayley graph 𝐶𝑎𝑦	j𝐴, 𝑆(#!")k is q𝑆(#!")q -regular. In other words, 𝐶𝑎𝑦	j𝐴, 𝑆(#!")k is 
(𝑛 − 1)- regular. Hence, 
 
Cay	j𝐴, 𝑆(#!")k = 𝐾#.                                                                     (1) 

 
Applying the same procedure for the set	𝐵 gives the following: 
 

i. For 𝑔 ∈ 𝑆(#!"), if 𝑔 = 𝑎+ ∈ 𝜑(𝑛), then 𝑏 ∼ 𝑎+𝑏 ∼ 𝑎&+𝑏 ∼ ⋯ ∼ 𝑎#!+𝑏 ∼ 𝑏. 
ii. For 𝑔 ∈ 𝑆(#!"), if 𝑔 = 𝑎

#
$ , then 𝑏 ∼ 𝑎

#
$𝑏, 𝑎 ∼ 𝑎

#
$%"𝑏,… , 𝑎

#
$!"𝑏 ∼ 𝑎(#!")𝑏. 

iii. 𝑔 ∈ 𝑆(#!"), if 𝑔 = 𝑎+ ∉ 𝜑(𝑛), then 𝑏 ∼ 𝑎+𝑏 ∼ 𝑎&+𝑏 ∼ ⋯ ∼ 𝑏, 𝑎𝑏 ∼ 𝑎+%"𝑏 ∼ 𝑎&+%"𝑏 ∼
⋯ ∼ 𝑎𝑏,… , 𝑎+!"𝑏 ∼ 𝑎&(+!")%"𝑏 ∼ ⋯ ∼ 𝑎+!"𝑏. 

 
Also, again by definition of Cayley graph, 𝑥	 ∼ 	𝑦 if	𝑥	 = 	𝑔𝑦	for 𝑔 ∈ 𝑆(#!") and 𝑥, 𝑦 ∈

𝑉jCayj𝐷&#, 𝑆(#!")kk. From the equation above, since 𝑎(6%+)𝑏 = 𝑎(+)𝑎(6)𝑏 then 𝑎6%+𝑏 ∼
𝑎6𝑏 for any 𝑎+ ∈ 𝑆(#!"), which shows that  
 
Cay	j𝐵, 𝑆(#!")k = 𝐾#.                                                                     (2) 

 
Now combining Eq. (1) and Eq. (2) gives Cay	j𝐷&#, 𝑆(#!")k ≅ 𝐾# ∪ 𝐾# = 2𝐾#. 
Theorem 7 The power graph of	𝐷&# is 

𝑃𝑜𝑤	(𝐷&#) ≅ 𝑆" + j𝐾(#!") ∪ 𝑛𝐾"k, 
where 𝑆" is the star graph. 
Proof: Let 𝐷&#  be a dihedral group with order 2𝑛: 𝑛	 = 	𝑝$. Then, 𝐷&# =

<𝑒, 𝑎, 𝑎&, … , 𝑎(#!"), 𝑏, 𝑎𝑏, 𝑎&𝑏,… , 𝑎(#!")𝑏> can be partitioned into sets, 𝐴 = <𝑒, 𝑎, 𝑎&, … , 𝑎(#!")>	and 
𝐵 = <	𝑏, 𝑎𝑏, 𝑎&𝑏,… , 𝑎(#!")𝑏>. Then, 𝐴 ≅ ℤ#, meaning that 𝐴 = ⟨𝑎⟩ is a cyclic subgroup of 𝐷&# with 
|𝐴| = 𝑛. By Theorem 3,Pow (𝐴) = 𝐾# and 𝑃𝑜𝑤	(𝐴 ∖ {𝑒}) = 𝐾(#!"), so, we can write that 
𝑃𝑜𝑤	(𝐴) = 𝑆" + 𝐾(#!"). By the group presentation, 𝑎# = 𝑏& = 𝑒, so (𝑎𝑏)& = 𝑎(𝑏𝑎)𝑏 =
𝑎j𝑎(#!")𝑏k𝑏 = 𝑒 also j𝑎(#!")𝑏k& = 𝑎(#!")(𝑏𝑎)𝑎(#!&)𝑏 = 𝑎(#!")j𝑎(#!")𝑏k𝑎(#!&)𝑏 = j𝑎(#!&)𝑏k&. 
Continuing the process in this manner, it is obtained that j𝑎(#!")𝑏k& = j𝑎(#!&)𝑏k& = ⋯ = (𝑎&𝑏)& =
(𝑎𝑏)& = 𝑒. Thus, the square of any 𝑎6𝑏 is 𝑒, showing that j𝑎6𝑏k6are transpositions. This implies that, 
the power of any 𝑎6𝑏 is either itself or 𝑒 for 0 ≤ 𝑘 ≤ 𝑛 − 1 meaning that the subgroup generated by 
any 𝑎6𝑏 contains only itself and 𝑒, that is x𝑎6𝑏y ⊃ {𝑒}. Hence, Pow	({𝑒} ∪ 𝐵) = 𝑆|7| + 𝐾~|8|. 
Combining Pow	(𝐴) and Pow	(𝐵) gives Pow	(𝐷&#) ≅ 𝑆" + j𝐾(#!") ∪ 𝐾~#k = 𝑆" + j𝐾(#!") ∪ 𝑛𝐾"k. 

Theorem 8 The union power Cayley graph of	𝐷&# with respect to 𝑆(#!") is 
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Pow −  Cay %j𝐷&#, 𝑆(#!")k ≅ 𝑆" + j𝐾(#!") ∪ 𝑛𝐾#k, 
where 𝐾# is the complete graph of order 𝑛 = 𝑝$. 

Proof: Let 	𝐷&#  be a dihedral group with order 2n: 𝑛 = 𝑝$. By Definition 1, " 𝐸 �𝑃𝑜𝑤 −

Cay!	j𝐷&#, 𝑆(#!")k� = <{𝑥, 𝑦} ∣ {𝑥, 𝑦} ∈ 𝐸j𝑃(𝐷&#)k ∪ 𝐸jCayj𝐷&#, 𝑆(#!")kk>. From Theorem 7, the 

power graph for  𝐷&1!   is isomorphic to 𝑆" + j𝐾(#!") ∪ 𝐾~#k and and from Theorem 6, the Cayley 
graph for 𝐷&1!   with respect to a subset of 𝐷&# of size (𝑛	 − 	1), 𝑆(#!") =
<𝑎", 𝑎&, 𝑎), … , 𝑎(#!")> is isomorphic to 2𝐾9. It now remains to take the union of the edges in 
𝑃𝑜𝑤	j𝐷&1!k and in Cay j𝐷&#, 𝑆(#!")k. The equation Pow	j𝐷&1!k = 𝑆" + j𝐾(#!") ∪
𝐾~#k shows that 𝐵 contains isolated vertices 𝐾~#but the equation Cayj𝐷&#, 𝑆(#!")k = 2𝐾1!  shows 
that all the elements of 𝐵 form a complete subgraph	𝐾#. This means that in the union with power 
graph, these edges would be considered as the new edges, forming 𝑆" + j𝐾(#!") ∪ 𝐾#k. Then, Pow 
−  Cay %j𝐷&#, 𝑆(#!")k ≅ 𝑆" + j𝐾(#!") ∪ 𝐾#k. 

Some invariants of Pow −  Cay %j𝐷&#, 𝑆(#!")k which are clique number, vertex chromatic 
number, diameter and girth are given in Proposition 2, Proposition 3, Proposition 4 and Proposition 
5, respectively. 

Proposition 2 The clique number of Pow −  Cay %j𝐷&#, 𝑆(#!")k is  
𝜔� Pow −  Cay %j𝐷&#, 𝑆(#!")k� = 𝑛 + 1. 

Proof: Let 𝐷&# be a dihedral group with order 2n: 𝑛 = 𝑝$. Then, by Theorem 8, Pow −
 Cay %j𝐷&#, 𝑆(#!")k ≅ 𝑆" + j𝐾(#!") ∪ 𝐾#k. Thus, Pow - Cay %j𝐷&#, 𝑆(#!")k is a join union of 
j𝐾(#!") ∪ 𝐾#k with 𝑆", that is 𝑆" + 𝐾# is the maximum complete component of the graph. Hence the 

clique number is |𝑉(𝑆" + 𝐾#)|. Therefore, 𝜔 � Pow −  Cay %j𝐷&#, 𝑆(#!")k� = 𝑛 + 1. 
Proposition 3 The chromatic number of Pow −  Cay %j𝐷&#, 𝑆(#!")k is  

𝜒 � Pow −  Cay %j𝐷&#, 𝑆(#!")k� = 𝑛 + 1. 
Proof: Let 𝐷&# be a dihedral group with order 2n: 𝑛 = 𝑝$. By Proposition 2  

𝜔 � Pow −  Cay %j𝐷&#, 𝑆(#!")k� = 𝑛 + 1. This shows that the minimum numbers of colours 

required to colour the vertices of Pow -  Cay%j𝐷&#, 𝑆(#!")k is 𝑛 + 1. By Theorem 8, Pow −
 Cay %j𝐷&#, 𝑆(#!")k ≅ 𝑆" + j𝐾(#!") ∪ 𝐾#k, that is Pow −  Cay %j𝐷&#, 𝑆(#!")k can be considered as a 
disjoint union of 𝐾(#!") with 𝐾# whose each vertex is adjacent with 𝑉(𝑆"). Thus, the colours for the 

vertices of 𝐾# can be shared with 𝑉j𝐾(#!")k. Therefore, 𝜒 � Pow −  Cay %j𝐷&#, 𝑆(#!")k� =
𝜒(𝑆" + 𝐾#) = 𝜒(𝐾#%") = 𝑛 + 1. 

Proposition 4 The diameter of Pow −  Cay %j𝐷&#, 𝑆(#!")k is 
𝑑𝑖𝑎𝑚	 � Pow −  Cay %j𝐷&#, 𝑆(#!")k� = 2. 

Proof: Let 𝐷&# be a dihedral group with order 2n: 𝑛 = 𝑝$. Then, by Theorem 8, Pow −
 Cay %j𝐷&#, 𝑆(#!")k ≅ 𝑆" + j𝐾(#!") ∪ 𝐾#k. Let 𝑉(𝑆") = {𝑒}, 𝑉(𝐾#!") =
{𝑢", 𝑢&, … , 𝑢#!"} and 𝑉(𝐾#) = {𝑣", 𝑣&, … , 𝑣#}, then 𝑑j𝑢6 , 𝑢:k = 1, 𝑑j𝑣6 , 𝑣:k = 1, 𝑑(𝑢6 , 𝑒) =
1, 𝑑(𝑣6 , 𝑒) = 1. But 𝑑(𝑢, 𝑣) = 2, since 𝑢 ∼ 𝑣 for any arbitrary vertices 𝑢 ∈ 𝑉(𝐾#!") and 𝑣 ∈
𝑉(𝐾#) and 𝑖 ≠ 𝑗. Thus 𝑢 can only be reachable from	𝑣 through	𝑒, that is 𝑢	 ∼ 	𝑒 and 𝑒	 ∼ 	𝑣. 
Therefore, the maximum distance to reach any vertex to reach any vertex to another is 2. Hence, 
𝑑𝑖𝑎𝑚	 � Pow −  Cay %j𝐷&#, 𝑆(#!")k� = 2. 

Proposition 4 The girth of Pow −  Cay %j𝐷&#, 𝑆(#!")k is 
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𝑔𝑖𝑟𝑡ℎ	 � Pow −  Cay %j𝐷&#, 𝑆(#!")k� = 3. 
Proof: Let 𝐷&# be a dihedral group with order 2n: 𝑛 = 𝑝$. Then, by Theorem 8, Pow −

 Cay %j𝐷&#, 𝑆(#!")k ≅ 𝑆" + j𝐾(#!") ∪ 𝐾#k. Since 𝑛 = 𝑝$ where 𝑛	 ≥ 	3, then the graph contains a 

triangle, that is a circle of length 3. Therefore,  𝑔𝑖𝑟𝑡ℎ	 � Pow −  Cay %j𝐷&#, 𝑆(#!")k� = 3.  
The connectivity, regularity, and completeness of Pow −  Cay %j𝐷&#, 𝑆(#!")k is given in 

Proposition 6. Meanwhile, the planarity of this graph is given in Proposition 7. 
Proposition 6 The graph Pow −  Cay %j𝐷&#, 𝑆(#!")k	is connected, not regular, hence not 

complete. 
Proof: Let 𝐷&# be a dihedral group with order 2n: 𝑛 = 𝑝$. By Corollary 1, 𝑃j𝐷1!k is connected 

and from Definition 1, Pow −  Cay %j𝐷1! , 𝑆(#!")k = <{𝑥, 𝑦} ∣ {𝑥, 𝑦} ∈ 𝐸j𝑃j𝐷1!k ∪
𝐸j𝐷1! , 𝑆(#!")k>. This means that the graph has union edges of two graphs which are power graph 
and Cayley graph and since the union of a connected graph with any graph is a connected graph, 
hence, Pow −  Cay %j𝐷&#, 𝑆(#!")k	is a connected graph. For regularity, by Theorem 8, Pow −
 Cay %j𝐷&#, 𝑆(#!")k ≅ 𝑆" + j𝐾(#!") ∪ 𝐾#k. Thus, the graph Pow −  Cay %j𝐷&#, 𝑆(#!")k	has two 
major components 𝐾(#!")and 𝐾#, where the vertices of each component is adjacent to 𝑉(𝑆"). This 
means that every vertex of the graph is reachable from one another through 𝑉(𝑆"). Pick arbitrary 
vertices	𝑢	 ∈ 𝑉(𝐾(#!")	) and 𝑣	 ∈ 𝑉(𝐾# ), then 𝑑𝑒𝑔(𝑢) 	= 	𝑛 − 1	and	𝑑𝑒𝑔(𝑣) 	= 	𝑛, showing that 
𝑑𝑒𝑔(𝑣) 	> 	𝑑𝑒𝑔(𝑢). Therefore, Pow −  Cay %j𝐷&#, 𝑆(#!")k	is not regular. For completeness, since 
Pow −  Cay %j𝐷&#, 𝑆(#!")k	is not regular, hence it is not complete. 

Proposition 7 The graph Pow −  Cay %j𝐷&#, 𝑆(#!")k is planar only if 𝑛	 ≤ 	3.  
Proof: Let 𝐷&# be a dihedral group with order 2n: 𝑛 = 𝑝$. By Proposition 2,  

𝜒 � Pow −  Cay %j𝐷&#, 𝑆(#!")k� = 𝑛 + 1. This means that Pow −  Cay %j𝐷&#, 𝑆(#!")k	can only be 
drawn on a plane without edge crossing if 𝑛	 ≤ 	3. 

Next, the computations are continued for the intersection power Cayley graphs of 𝐷&# with 
respect to the subset 𝑆(#!"), Pow −  Cay !j𝐷&#, 𝑆(#!")k.	 Note again that the notation 𝐷&# 
represents the dihedral groups of order 2𝑛 for 𝑛	 ≥ 	3 and 𝑛 = 𝑝$	where 𝑝 is a prime and 𝑚	 ∈ ℕ.	In 
addition, 𝑆(#!") = <𝑎", 𝑎&, 𝑎), … , 𝑎(#!")>. 

Theorem 9 The intersection power Cayley graphs of 𝐷&# with respect to the subset 𝑆(#!") is Pow 
−  Cay !j𝐷&#, 𝑆(#!")k ≅ 𝐾# ∪ 𝑛𝐾", 

where	𝐾#, is the complete graph of order 𝑛 = 𝑝$. 
Proof: Let 𝐷&# be a dihedral group with order 2n: 𝑛 = 𝑝$. By Definition 2, 𝐸 �𝑃𝑜𝑤 −

Cay!	j𝐷&#, 𝑆(#!")k� = <{𝑥, 𝑦} ∣ {𝑥, 𝑦} ∈ 𝐸j𝑃(𝐷&#)k ∩ 𝐸jCayj𝐷&#, 𝑆(#!")kk>. From Theorem 7, the 

power graph of 𝐷&1!  is isomorphic to 𝑆" + j𝐾(#!") ∪ 𝑛𝐾"k and from Theorem 6, the Cayley graph 
for 𝐷&# with respect to a subset of 𝐷&# of size (𝑛 − 1), 𝑆(#!") = <𝑎", 𝑎&, 𝑎), … , 𝑎(#!")> is isomorphic 
to 2𝐾#, and can be rewritten as Cay	j𝐷&#, 𝑆(#!")k ≅ 𝐾# ∪ 𝐾#. In Cay	j𝐷&#, 𝑆(#!")k, the first 𝐾# is 
formed by the rotation elements of 𝐷&#, while the second 𝐾# is formed by the reflection elements of 
𝐷&#. Also, in 𝑃(𝐷&#), the rotation elements form 𝑆" + 𝐾(#!") = 𝐾#, and the reflection elements form 
𝑛𝐾". Thus, the intersection of the rotation elements in power graph and Cayley graph is 𝐾#, while 
the intersection of the elements of the reflection’s forms 𝑛𝐾". Therefore, Pow −
 Cay !j𝐷&#, 𝑆(#!")k ≅ 𝐾# ∪ 𝑛𝐾".  
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Some invariants of Pow −  Cay !j𝐷&#, 𝑆(#!")k which are clique number, vertex chromatic 
number, diameter and girth are given in Proposition 8, Proposition 9, Proposition 10 and Proposition 
11, respectively. 

Proposition 8 The clique number of Pow −  Cay !j𝐷&#, 𝑆(#!")k is  
𝜔� Pow −  Cay !j𝐷&#, 𝑆(#!")k� = 𝜔j𝑃(ℤ#)k = 𝑛.  

Proof: Let 𝐷&# be a dihedral group with order 2n: 𝑛 = 𝑝$. Then, by Theorem 9, Pow −
 Cay !j𝐷&#, 𝑆(#!")k ≅ 𝐾# ∪ 𝑛𝐾". Thus, the maximum component of the graph is 𝐾#. Regarding to 
this structure and using the same arguments as in the proof for Theorem 9, Theorem 6, and Theorem 
7 𝐾# is formed by the intersection the rotation elements 𝐴 ≅ ℤ#of Cayj𝐴, 𝑆(#!")k	and 𝑃(𝐴). Also, 
from Corollary 2 and Theorem 5, 𝜒j𝑃(𝐷#)k = 𝜔j𝑃(𝐷#)k = 𝜒j𝑃(ℤ#)k = 𝜔j𝑃(ℤ#)k.  Hence, 
𝜔 � Pow −  Cay !j𝐷&#, 𝑆(#!")k� = 𝜔j𝑃(ℤ#)k = 𝑛.  

 Therefore, 𝜔 � Pow −  Cay !j𝐷&#, 𝑆(#!")k� = 𝑛.  

Proposition 9 The chromatic number of Pow −  Cay !j𝐷&#, 𝑆(#!")k	is 

𝜒 � Pow −  Cay !j𝐷&#, 𝑆(#!")k� = 𝑛.  
Proof: Let 𝐷&# be a dihedral group with order 2n: 𝑛 = 𝑝$. Then, by Theorem 9, Pow −

 Cay !j𝐷&#, 𝑆(#!")k ≅ 𝐾# ∪ 𝑛𝐾". Each vertex of 𝐾# must be assigned with distinct colours, while all 
the 𝑛 vertices of 𝑛𝐾" can be coloured with a single colour of 𝐾#. Thus, 𝑛 colours are sufficient to 
properly colour the vertices of the graph. Therefore, 𝜒 � Pow −  Cay !j𝐷&#, 𝑆(#!")k� = 𝑛. 

Proposition 10 The diameter of Pow −  Cay !j𝐷&#, 𝑆(#!")k is 
	𝑑𝑖𝑎𝑚	 �Pow − Cay!	j𝐷&#, 𝑆(#!")k� = ∞. 

Proof: Let 𝐷&# be a dihedral group with order 2n: 𝑛 = 𝑝$. By Proposition 12, Pow −
 Cay !j𝐷&#, 𝑆(#!")k is disconnected. Hence, the distance between some vertices does not exist. 
Therefore, 𝑑𝑖𝑎𝑚	 �Pow − Cay!	j𝐷&#, 𝑆(#!")k� = ∞.  

Proposition 11 The girth of Pow −  Cay !j𝐷&#, 𝑆(#!")k	is  

𝑔𝑖𝑟𝑡ℎ	 � Pow −  Cay !j𝐷&#, 𝑆(#!")k� = 3.  

Proof: Let 𝐷&# be a dihedral group with order 2n: 𝑛 = 𝑝$. Then, by Proposition 9, 𝜒 � Pow 

−  Cay !j𝐷&#, 𝑆(#!")k� = 𝑝$, since 𝑛 = 𝑝$ and 𝑛	 ≥ 	3, then Pow −  Cay !j𝐷&#, 𝑆(#!")k	contains a 

triangle which is a cycle of length 3. Hence, 𝑔𝑖𝑟𝑡ℎ	 � Pow −  Cay !j𝐷&#, 𝑆(#!")k� = 3. 
    The connectivity, regularity, and completeness of Pow −  Cay !j𝐷&#, 𝑆(#!")k	is given in 

Proposition 12. Meanwhile, the planarity of this graph is given in Proposition 13.  
Proposition 12 The intersection power Cayley graph of 𝐷&# with respect to 𝑆(#!"), Pow −

 Cay !j𝐷&#, 𝑆(#!")k, is disconnected, not regular, hence not complete.  
Proof: Let 𝐷&# be a dihedral group with order 2n: 𝑛 = 𝑝$. Then, by Theorem 9, Pow −

 Cay !j𝐷&#, 𝑆(#!")k is the disjoint union of	𝐾# with	𝑛	isolated vertices. This shows that Pow −
 Cay !j𝐷&#, 𝑆(#!")k	is disconnected since the isolated vertices cannot be reached from the other 
vertices. Hence, the graph is disconnected. For regularity, pick arbitrary isolated vertex 𝑢 and 𝑣	 ∈
	𝑉(𝐾#), then 𝑑𝑒𝑔(𝑢) 	= 	0	 < 	𝑑𝑒𝑔(𝑣) 	= 	𝑛 − 1. Hence, Pow −  Cay !j𝐷&#, 𝑆(#!")k	is not regular. 
For completeness, since Pow −  Cay !j𝐷&#, 𝑆(#!")k	is not regular, hence it is not complete.  

Proposition 13 The intersection power Cayley graph of 𝐷&# with respect to 𝑆(#!"), Pow −
 Cay !j𝐷&#, 𝑆(#!")k, is planar only if 𝑛	 ≤ 	4. 
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Proof: Let 𝐷&# be a dihedral group with order 2n: 𝑛 = 𝑝$. By Proposition 8, 𝜔� Pow 

−  Cay !j𝐷&#, 𝑆(#!")k� = 𝑝$. Using a similar argument as before, 𝜔 � Pow −

 Cay !j𝐷&#, 𝑆(#!")k� = 𝜔j𝑃(ℤ#)k = 𝑛, since 𝑛 = 𝑝$	such that 𝑛	 ≥ 	3, and from Theorem 4, then 

the Pow −  Cay !j𝐷&#, 𝑆(#!")k	graph can be drawn on a plane without edge crossing if 𝑛	 ≤ 	4. 
Therefore, Pow −  Cay !j𝐷&#, 𝑆(#!")k is planar if 𝑛	 ≤ 	4. 
 
4. Conclusions 

 
In this research, the generalization of the union power Cayley graphs and the intersection power 

Cayley graphs for the dihedral groups of order 2𝑛, with	𝑛	 ≥ 	3 and 𝑛 = 𝑝$; 𝑝 is a prime number and 
𝑚	is a natural number relative to the subset 𝑆(#!") = <𝑎", 𝑎&, 𝑎), … , 𝑎(#!")>. Moreover, some 
properties for the general presentation of these dihedral groups have been evaluated in terms of 
connectivity, regularity, completeness and planarity. Additionally, the clique numbers, vertex 
chromatic numbers, girths and diameters of these graphs have been computed. The result of this 
research can contribute to adding a new dimension to the theoretical results provided, which are 
significant in the development of algebraic graph theory. In the future, the research will be extended 
to cover the graphs of all finite groups. 
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