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Abstract. A Cayley graph of a group with respect to a subset S is constructed based on that subset. Meanwhile, the pi-Cayley graph
is constructed using a subset comprising elements of prime power order within the group, where pi is a prime number dividing
the group’s order. The set of vertices for these graphs is G, with two distinct vertices, g and h, being adjacent if gh�1 is in S.
The objectives of this paper are to construct the pi-Cayley graph for a cyclic group of order pqr concerning a subset containing
elements of order p, and to determine their properties, including the diameter and chromatic number.

INTRODUCTION

The Cayley graph, introduced by Arthur Cayley in 1878 [1], is a graph constructed based on the subset S of the group.
The vertices of the Cayley graph are the elements in group G, while the edges are formed by the adjacency between
two distinct vertices g and h. Specifically, g and h are considered adjacent if gh�1 2 S. A newly introduced type of
Cayley graph in 2021 is the pi-Cayley graph [2]. It differs from the standard Cayley graph in its subset construction,
which specifically includes elements with prime power order for each prime.

There have been numerous recent developments of Cayley graphs, including the identification of new variations or
their applications in real-life scenarios. In 2019, Bussaban [3] explored Cayley graphs for gyrogroups, establishing the
construction of this graph and several of its properties. In 2020, Fakrorri et al. [4] studied the relative Cayley graph of
finite groups, focusing on its connectivity and certain forbidden structures. In 2022, Behajaina et al. [5] investigated
the Cayley graph of finite groups, concentrating on integrality, distance integrality, and the powers of distances within
the graphs. Aikawa [6], in 2023, applied Cayley graphs to explore hash function problems in cryptography. Finally,
also in 2023, Naemah and Erfanian [7] introduced a new type of Cayley graph called the generalized Cayley graph.
They specifically concentrated on exploring the structure and properties of this generalized Cayley graph when it
forms a complete graph.

In this paper, the pi-Cayley graph is constructed for a cyclic group of order pqr with respect to a subset containing
elements of order p, as defined in [2]. Subsequently, various properties of this graph are determined, including its
diameter and chromatic number. The construction process involves several steps: identifying the group elements and
their respective orders, organizing them into subsets based on these orders, and constructing the graph using these
subsets. Finally, the properties are determined by applying specific definitions.

The paper is divided into four parts. Firstly, it introduces Cayley graphs by providing background information
on this type of graph. Secondly, it explores fundamental concepts within graph and group theories. The third part
presents the main findings of the research. Lastly, the fourth section contains an overall summary of the paper.

PRELIMINARIES

In this section, fundamental concepts from graph theory and group theory used in this research are presented. These
include the Cayley graph, pi-Cayley graph, regular graph, complete graph, cyclic group, diameter, and chromatic
number. The definition of the Cayley graph will be provided below.
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Definition 1 [1] A graph G is called a Cayley graph on a group G if there is a subset S ✓ G\{e}, with S = S�1 =
{g�1|g 2 S}, such that V (G) = G and two vertices g and h are adjacent if and only if hg�1 2 S. This Cayley graph is
denoted by Cay(G,S).

A graph is considered a regular graph when each of its vertices shares the same degree [8]. Additionally, a complete
graph is a simple graph where every vertex is adjacent to all others [9]. Subsequently, the definition of the pi-Cayley
graph is presented in the following.

Definition 2 [2] Let G be a group with |G| = pa1
1 · pa2

2 · . . . · pak
k , pi primes, ai 2 N, i = 1,2, · · · ,k and Spi = {x 2

G : |x| = pn
i ,n = 1,2, . . . ,ai} a subset of G with Spi = S�1

pi
= {s�1|s 2 Spi}. The pi-Cayley graph, denoted as pi-

Cay(G,Spi), i = 1,2, · · · ,k, is a graph where the vertices are the elements of the group G such that two different
vertices, g and h, are adjacent if gh�1 2 Spi for all g,h 2 G.

The definitions of the diameter of a graph and the diameter for a complete graph are provided in the following
definition and proposition.

Definition 3 [10] The greatest distance between all pairs of vertices of a graph G is called the diameter of G and is
denoted by diam(G), where the distance is the shortest path between two different vertices.

Proposition 1 [10] The diameter of G, diam(G), is equal to 1 if and only if G is a complete graph.

The definition of the chromatic number is provided as follows.

Definition 4 [11] The proper coloring of a graph G is the coloring of the vertices and edges with minimal number
of colors such that no two vertices should have the same color. The minimum number of colours is called as the
chromatic number, c(G) and the graph is called properly coloured graph.

Within group theory, a group G is cyclic if there exists an element a within G such that G is defined as {an|n 2 Z}.
This specific element a serves as a generator for G.

The following section presents the construction of the prime power Cayley graph associated with a cyclic group
having an order of pqr, followed by determining the properties of the graph.

RESULTS AND DISCUSSION

Constructions and determination of properties for the pi-Cayley graph of the cyclic group G of pqr, where p < q < r,
are provided in this section. These constructions are presented through lemmas and a theorem. The properties,
including the diameter and chromatic number of the obtained graph, are subsequently explained in the propositions.

The construction is begun by listing all the elements of G, as in G = {e,x,x2, . . . ,xp, . . . ,xq, . . . ,xr, . . . ,xpqr�1} and
the order of each element is identified. Three subsets are formed based on the elements of set G, with each subset
containing elements of prime power orders for each prime. The first subset, denoted as S(p), contains elements with
order p; the second subset, S(q), contains elements with order q and the third subset, S(r), contains elements with order
r, as shown below.

1. S(p) = {x 2 G||x|= p}= {xqr,x2qr, . . . ,x(p�1)qr}

2. S(q) = {x 2 G||x|= q}= {xpr,x2pr, . . . ,x(q�1)pr}

3. S(r) = {x 2 G||x|= r}= {xpq,x2pq, . . . ,x(r�1)pq}

The p-Cayley graph, named Cay(G,S(p)), the q-Cayley graph, called Cay(G,S(q)), and the r-Cayley graph, denoted
as Cay(G,S(r)), are formed according to the subsets S(p), S(q), and S(r), respectively.

The construction of the p-Cayley graph will be demonstrated in this paper. Identification of the set of vertices and
set of edges is necessary in constructing the graph. The elements of G form the set of vertices for the p-Cayley graph,
denoted as V (p�Cay(G,S(p))), as described in Definition 2. Then, Lemmas 1 through Lemmas 7 are used to get
the edges between vertices in p-Cay(G,S(p)). In the first lemma, Lemma 1, the vertices within p-Cay(G,S(p)) are
partitioned into multiple sets, denoted as Set Ai and Set B for 1  i  p�1.
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Lemma 1 Let G be a cyclic group of order pqr generated by x. Let S(p) = {x 2 G : |x|= p}= {xqr,x2qr, . . . ,x(p�1)qr}.
Define Ai = {xlqr+i|1  l  p�1} for i = 1,2, . . . ,qr and B = {x j|1  j  qr}= {x,x2, . . . ,xqr}. Then, B[ (A1[A2[
. . .[Aqr) = G.

Proof

Let G = hxi = {e,x,x2, . . . ,xpqr�1}, and |x| = pqr. Consider B[ (A1 [A2 [ . . .[Aqr) in G. For g 2 G, where g = xk

and 1  k  pqr, there are two cases to examine:

1. If 1  k  qr, then x 2 B.

2. If k = lq+ i for 1  l  p�1, then x 2 Ai, where 1  i  qr.

Therefore, B[ (A1 [A2 [ . . .[Aqr) in G.

In Lemma 2, the adjacency among all vertices in each set Ai is demonstrated. It is shown that all vertices in each set
Ai are adjacent to each other in p-Cay(G,S(p)).

Lemma 2 Let G be a cyclic group of order pqr generated by x. Let S(p) = {x 2 G : |x|= p}= {xqr,x2qr, . . . ,x(p�1)qr}.
Define Ai = {xlqr+i|1  l  p� 1} for i = 1,2, . . . ,qr. Then, all vertices in each Ai are adjacent with each other for
1  i  qr.

Proof

Let G = hxi= {e,x,x2, . . . ,xpqr�1}, and |x|= pqr. Let g and h be elements in Ai where g = xlqr+i and h = xl0qr+i for
1  l 6= l0  p�1. Then, gh�1 is in S(p) since gh�1 = x(l�l0)qr 2 S(p). Therefore, all elements in each Ai for 1  i  qr
are adjacent to each other.

Next, in Lemma 3, it is shown that the vertices in two different sets of A, such as Ai and A j where i 6= j, are not
adjacent to each other.

Lemma 3 Let G be a cyclic group of order pqr generated by x. Let S(p) = {x 2 G : |x|= p}= {xqr,x2qr, . . . ,x(p�1)qr}.
Define Ai = {xlq+i|1  l  p�1} and A j = {xlq+ j|1  l  p�1} for i, j = 1,2, . . . ,qr. Then, the vertices in Ai and
A j for i 6= j are not adjacent.

Proof

Let G = hxi = {e,x,x2, . . . ,xpqr�1}, and |x| = pqr. Let Ai = {xlqr+i|1  l  p� 1} and A j = {xlqr+ j|1  l  p� 1}
for i 6= j. The product of xlqr+i and the inverse of xlqr+ j is xi� j, and this element is not in S(p). Therefore, xlqr+i and
xlqr+ j are not adjacent for 1  l  p�1, which implies that the vertices in different sets, Ai and A j, are not adjacent
for i 6= j.

Then, the adjacencies of vertices in set B are presented in Lemma 4. It is shown that all vertices in set B are not
adjacent to each other.

Lemma 4 Let G be a cyclic group of order pqr generated by x. Let S(p) = {x 2 G : |x|= p}= {xqr,x2qr, . . . ,x(p�1)qr}.
Define B = {x j|1  j  qr}= {x,x2, . . . ,xqr}. Then, there is no adjacent vertices in set B.

Proof

Let G = hxi = {e,x,x2, . . . ,xpqr�1} and |x| = pqr. Let xi 2 B and x j 2 B for 1  i 6= j  qr and i > j. Then,
(xi)(x j)�1 = x1� j /2 S(p). Therefore, there is no adjacent vertices in B.

In Lemma 5, the adjacencies between set Ai and set B are studied. Each vertex x j 2 B is adjacent to all vertices in set
Ai under the condition i = j.

Lemma 5 Let G be a cyclic group of order pqr generated by x and S(p) = {xqr,x2qr, . . . ,x(p�1)qr}. Define the sets:

Ai = {xlqr+i | 1  l  p�1} for i = 1,2, . . . ,qr,

B = {x j | 1  j  qr}= {x,x2, . . . ,xqr}.

Then, each vertex x j in set B is adjacent to every vertex in set Ai for 1  i = j  qr.

19



Proof

Let G = hxi = {e,x,x2, . . . ,xpqr�1} with |x| = pqr. For 1  j  qr, define Ai = {xlqr+i | 1  l  p� 1} and x j 2 B.
Consider (xlq+i)(x j)�1, which is an element in S(p) since (xlq+i)(x j)�1 = xlq 2 S(p). Therefore, x j in B is adjacent to
all vertices in Ai for 1  i = j  qr.

In Lemma 6, it is demonstrated that each vertex x j 2 B is not adjacent to all vertices in set Ai given the condition i 6= j.

Lemma 6 Let G be a cyclic group of order pqr generated by x. Let S(p) = {x 2 G : |x|= p}= {xqr,x2qr, . . . ,x(p�1)qr}.
Define Ai = {xlqr+i|1  l  p� 1} for i = 1,2, . . . ,qr and B = {x j|1  j  qr} = {x,x2, . . . ,xqr}. Then, for i 6= j,
xlqr+i 2 Ai and x j 2 B are not adjacent.

Proof

Let G = hxi= {e,x,x2, . . . ,xpqr�1}, where |x|= pqr denotes the order of the element x. Now, define sets Ai = {xlqr+i |
1  l  p�1} and let x j belong to set B for i 6= j. Consider the product of xlqr+i and the inverse of x j, which is equal
to xlqr+i� j. The element xlqr+i� j does not belong to set S(p). Therefore, xlqr+i and x j from sets Ai and B, respectively,
are not adjacent for i 6= j.
Finally, in Lemma 7, a complete graph with p vertices is formed by each vertex x j in set B, which is adjacent to all
vertices in set Ai when i = j.

Lemma 7 Let G be a cyclic group of order pqr generated by x. Let S(p) = {x 2 G : |x|= p}= {xqr,x2qr, . . . ,x(p�1)qr}.
Define Ai = {xlqr+i|1  l  p�1} for i = 1,2, . . . ,qr. Then, {x j}[A j is a complete graph, Kp.

Proof

Let G = hxi = {e,x,x2, . . . ,xpqr�1}, where |x| = pqr denotes the order of the element x. Based on Lemma 2, all
vertices in set Ai are adjacent to each other. According to Lemma 3, {x j} is adjacent to the vertices in A j. Thus, there
are p vertices in {x j}[A j, and each vertex is adjacent to every other vertex. Therefore, {x j}[A j forms a complete
graph, Kp.

Based on Lemma 1 through Lemma 7, the complete construction of the p-Cayley graph of G is presented in the
following theorem.

Theorem 1 Let G be a cyclic group of order pqr and S(p) a non-empty subset of G with S(p) = {x 2 G : |x|= p} and
S(p) = S(p)�1

. Then, the p-Cayley graph of G, p�Cay(G,S(p)) is qrKp, where K is the complete graph of order p.

Proof

Let G = hxi = {e,x,x2, . . . ,xpqr�1} and |x| = pqr. Let S(p) = {x 2 G : |x| = p} = {xqr,x2qr, . . . ,x(p�1)qr}. Define
Ai = {xlqr+i|1  l  p�1} for i = 1,2, . . . ,qr and B = {x j|1  j  qr}= {x,x2, . . . ,xqr}.

All elements of Set Ai and Set B are in G, as proved in Lemma 1. Then, the vertices in each Ai are adjacent to each
other, as proved in Lemma 2. Furthermore, there is no adjacency between the vertices in two distinct sets of A. Each
set in A is an independent set because the vertices of set Ai are not adjacent to the vertices in set A j for i 6= j, as proved
in Lemma 3.

Besides, the vertices in set B are not adjacent to each other as showed in Lemma 4. Then, the vertices in set B is
adjacent with the vertices in a set A such that {x j} 2 B is adjacent with xlqr+i 2 Ai for i = j. Hence, the adjacency of
these elements, {x j} 2 B and xlqr+i 2 Ai for i = j formed a component of graph. This component contains p vertices
since there are p-1 vertices from Set Ai and a vertex from Set B. Following from this, a graph with qr-components is
formed where each component contains p-vertices. This is because there are q vertices in Set B which each vertex is
connected with all vertices of exactly one set from Set A. Therefore, the p-Cayley graph of the cyclic group of order
pqr for p < q < r is the union of qr copies of complete graphs with p vertices, qrKp.

Similarly, we obtained the q-Cayley graph and r-Cayley graph as follows.

Theorem 2 Let G be a cyclic group of order pqr and S(q) a non-empty subset of G with S(q) = {x 2 G : |x|= q} and
S(q) = S(q)

�1
. Then, the q-Cayley graph of G, q�Cay(G,S(q)) is prKq, where Kq is the complete graph of order q.

Theorem 3 Let G be a cyclic group of order pqr and S(r) a non-empty subset of G with S(r) = {x 2 G : |x| = r} and
S(r) = S(r)

�1
. Then, the r-Cayley graph of G, r�Cay(G,S(r)) is pqKr, where Kr is the complete graph of order r.
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The properties of the p-Cayley graph of G are demonstrated in the next two propositions, Proposition 2 and Propo-
sition 3.

Proposition 2 Let G be a cyclic group of order pqr, and let S(p) = {x 2 G||x| = p} with S(p) = S(p)�1
. Then, the

diameter of p-Cay(G,S(p)) is one.

Proof

By Definition 1, the diameter of p-Cay(G,S(p)) is one because, in a complete graph, all vertices are adjacent to each
other.

Proposition 3 Let G be a cyclic group of order pqr, and let S(p) = {x 2 G||x| = p} with S(p) = S(p)�1
. Then, the

chromatic number of p-Cay(G,S(p)) is p.

Proof

Consider any two distinct vertices in p-Cay(G,S(p)), denoted as xi and x j for 0  i 6= j  pqr � 1. The colouring
between xi and x j uses different colours, as these two vertices are adjacent to each other for all 0  i 6= j  p� 1.
Hence, there are p different colours of the vertices in p-Cay(G,S(p)). Therefore, based on Definition 4, the chromatic
number of p-Cay(G,S(p)) is p.

Similarly, we obtained the properties q-Cayley graph and r-Cayley graph as follows.

Proposition 4 Let G be a cyclic group of order pqr, and let S(q) = {x 2 G||x| = q} with S(q) = S(q)
�1

. Then, the
diameter of q-Cay(G,S(q)) is one.

Proposition 5 Let G be a cyclic group of order pqr, and let S(q) = {x 2 G||x| = q} with S(q) = S(q)
�1

. Then, the
chromatic number of q-Cay(G,S(q)) is q.

Proposition 6 Let G be a cyclic group of order pqr, and let S(r) = {x 2 G||x| = r} with S(r) = S(r)
�1

. Then, the
diameter of r-Cay(G,S(r)) is one.

Proposition 7 Let G be a cyclic group of order pqr, and let S(r) = {x 2 G||x| = r} with S(r) = S(r)
�1

. Then, the
chromatic number of p-Cay(G,S(r)) is r.

CONCLUSION

In this paper, the pi-Cayley graph is constructed for a cyclic group of order pqr. Three graphs are formed based on
each subset: the p-Cayley graph constructed with respect to S(p) is qrKp, the q-Cayley graph constructed with respect
to S(q) is prKq, and the r-Cayley graph constructed with respect to S(r) is pqKr. All graphs demonstrate a diameter of
one and a chromatic number of p for the p-Cayley graph, q for the q-Cayley graph and r for the r-Cayley graph.
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