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Topological Indices of Algebraic Graphs Associated to

Groups and Rings

Abstract

In this talk, some properties of algebraic graphs associated to some groups and rings, namely the energies of
the graphs and their topological indices, will be presented. The energy of a simple graph is defined as the
summation of the absolute value of the eigenvalues of the adjacency matrix of the graph. It was motivated by
the Hiickel Molecular Orbital theory. The theory was used by chemists to estimate the energy associated with
mr-electron orbitals of molecules which is called conjugated hydrocarbons. Meanwhile, a topological index is a
function that assigns a numeric value to a (molecular) graph that predicts its various physical and structural
properties such as volume, density, pressure, weight, boiling point, freezing point, vaporisation point, heat of
formation, and heat of evaporation. In this presentation, the energy and Laplacian energy of the non-commuting
and conjugacy class graphs associated to some finite groups are presented. The Seidel energy of the Cayley
graph of some finite groups are also determined. In addition, this presentation focuses on the degree-based
and distance-based topological indices. The degree-based topological indices include the first Zagreb index,
the second Zagreb index, the general zeroth-order Randi¢ index, and the Sombor index. The distance-based
topological indices include the Wiener index, the Szeged index, and the Harary index. The graphs considered are
the non-commuting graph and the coprime graph associated to the dihedral groups, the generalized quaternion
groups, the quasidihedral groups, alternating groups, and symmetric groups. Another graph discussed in finding

its topological indices is the zero divisor graph associated to some commutative rings.

Je
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Motivation of the Research

Graph theory

3D representation (position) 2D representation (mixed graph)
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Introduction to the Energy and Laplacian Energy of a

Graph

@ The energy of graph was first defined by Gutman in 1978 as the sum of the
absolute values of the eigenvalues of the graph [1].

@ The motivation for his definition comes from chemistry. It is used to
approximate the total m-electron energy of molecules.

@ On the other hand, the Laplacian energy of the graph was first defined by
Gutman and Zhou in 2006 [2].

@ Recently, the energy of a graph has become a quantity of interest to
mathematicians, where several variations have been introduced.

@ Our focus: The energy and the Laplacian energy of some graphs related to
some finite groups.

[1] I. Gutman, The energy of a graph, Der. Math. stat. Sekt. Forschungszent, (1978) 1-22.
[2] I. Gutman and B. Zhou, Laplacian energy of a graph, Linear Algebra and its Applications, 414(1) (2006), 29-37. J
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Some Definitions and Concepts in Graph Theory

Adjacency Matrix of a Graph [3]

Let T be a graph with the vertex-set V (I') = {1,...,n}; and the edge set £ (T') =
{e1,...,em}. The adjacency matrix of T, denoted by A (T"), is an n X n matrix
defined as follows. The rows and the columns of A (T") are indexed by V (T"). If
i # 7, then the (4, j)-entry of A (T") is O for non adjacent vertices < and j, and the
(i,7)-entry is 1 for adjacent ¢and j. The (,4)-entry of A(I") isOfori=1,...,n.

v

Energy of Graph [1]

For any graph T, the energy of the graph is defined as e(I') = Y7, |\;| where
A1, ..., Ay are the eigenvalues of the adjacency matrix of I'.

v

[1] I. Gutman, The energy of a graph, Der. Math. stat. Sekt. Forschungszent, (1978) 1-22.
[3] R.B. Bapat, Graphs and matrices, Springer, 27 (2010). J
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Some Definitions and Concepts in Graph Theory

Laplacian Matrix of a Graph [3]

Let T be a graph with the vertex-set V (I') = {1,...,n} and the edge-set, £ (T') =
{e1,...,em}. The Laplacian matrix of I', denoted by L (T'), is an nxn matrix
defined as follows: the rows and the columns of L (I") are indexed by V (T"). If
i # 7, then a;; is 0 if vertex i and j are not adjacent, and it is -1 if i and j are
adjacent. The a;; entry of L (I') is d;, the degree of vertex i, i=1,2, 3,...,n.

v

Laplacian Energy of Graph [2]

Let I' be a simple graph, L be its Laplacian matrix and py,u2, . .. ,u, be the eigen-
values of the Laplacian matrix. Then, the Laplacian energy of the graph I, denoted
by LE (T), is LE (T') = 1", |ii — 22|, where n is the number of vertices of the
graph I'and m is the number of its edges.

v

[2] I. Gutman and B. Zhou, Laplacian energy of a graph, Linear Algebra and its Applications, 414(1) (2006), 29-37.
[3] R.B. Bapat, Graphs and matrices, Springer, 27 (2010). J
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Some Definitions and Concepts in Graph Theory

Seidel Matrix [4]

The Seidel matrix of a simple graph I' with n vertices and m edges, denoted by
S(G) = (s45) is a real square symmetric matrix of order n defined as s;; = —1 if
v; and v; are adjacent, s;; = 1 if v; and v; are not adjacent and 0 if i = j.

Seidel Energy of Graph [5]

For any graph T', the Seidel energy of the graph is defined as SE(T') = >""_, |6,
where 61, ..., 0, are the eigenvalues of the Seidel matrix S(T") of T.

Non-commuting Graph [6]

Let G be a finite group. The non-commuting graph of GG, denoted by I', is the
graph of vertex set G — Z(G) and two distinct vertices  and y are joined by an
edge whenever zy # yzx.

[4] J. P. Liu, , and B. L. Liu, Generalization for Laplacian energy, Applied Mathematics-A Journal of Chinese Universities, 24(4) (2009), 443.
[5] W. H. Haemers, Seidel switching and graph energy, Available at SSRN 2026916, (2012).
[6] A. Abdollahi, S. Akbari, H. Maimani, Non-commuting graph of a group. Journal of Algebra. 298 (2006), 468-492.

= ™ = T
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Some Definitions and Concepts in Graph Theory

Conjugacy Class Graph [7]

Let G be a finite group. A conjugacy class graph of G, denoted as I'¢, is a graph
with the vertices V' = (v1,va,...,v,) represented by the non-central conjugacy
classes of G. Two vertices v; and v; are adjacent if and only if |v;| and |v;| have a
common prime divisor.

Cayley Graph of a Group [8]

Let G be a finite group with identity 1. Let X be a subset of G satisfying 1 ¢ X
and X = X! thatis, x € X if and only if 27! € X. The Cayley graph

Cay(G, X) on G with connection set X is defined as follows:

e the vertices are the elements of G

e there is an edge joining g1 and g5 if and only if go = xg; for some z € X.

The set of all Cayley graphs on G is denoted by Cay(G, X).

Remark: The relation between the two vertices can be rewritten as gggfl = x for
some z € X.

[7] E. A. Bertram, M. Herzog, and A. Mann, On a graph related to conjugacy classes of groups, Bulletin of the London Mathematical Society, 22(6)
(1990), 569-575.
[8] L. W. Beineke, and R. J. Wilson, Topics in algebraic graph theory, 102,USA : Cambridge University Press, (2004).
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Definition for Some Finite Groups

Dihedral Group [9]

The dihedral group, denoted by D-,,, is a group of symmetries of a regular
polygon, which include rotations and reflections. The order of Do, is 2n, where
n > 3 is an integer. The dihedral group can be presented in the form of
generators and relations given as follows:

Dy = (a,b: a® =b? = 1,bab= a1,

where a and b are the generators of Ds,.

Generalized Quaternion Group [9]

The generalized quaternion group, Q4. is a group of order 4n, n € N and the
group presentation of @4, is presented as follows:
Qun = (a,b | a™ =b2,a?>" = b* = 1,bab = a~ 1), where n > 2.

[9] J. Humphreys, A course in group theory, vol. 6, Oxford University Press on Demand, 1996.
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Definition for Some Finite Groups

Quasidihedral Group [9]

The Quasidihedral Group, Q@ Dsx, is a non-abelian group of order 2" with group
presentation given as follows::

QDan = (a,b ] a®" =02 =1,bab=a" 1),

where n € N and n > 4.

[9] J. Humphreys, A course in group theory, vol. 6, Oxford University Press on Demand, 1996.
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THE ENERGY AND SEIDEL ENERGY
OF GRAPHS ASSOCIATED TO GROUPS




The Energy of Conjugacy Class Graphs of Dy,,,()4, and

QD271

Theorem 1 [10]

Let G = Dy, be a dihedral group of order 2n, where n > 3, n € Z*, i.e.
Dy, = {(a,bla™ = b® = 1,bab = a~') . Then, the conjugacy class graph of Dy, is
as follows:
Kua Uecl(b), if n=is odd,
T = K¥7 if n.and 5 are even,
Knz|J Ko, if n is even and % is odd.
2

Theorem 2 [10]

Let G be the generalised quaternion groups, (4, of order 4n where n > 2, n € N.
Then, the conjugacy class graph of G is

FCZ . Kn—l UKQ, if nis Odd7
G K1, if mniseven.

v
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The Energy of Conjugacy Class Graphs of Dy,,,()4, and

QD271

Theorem 3 [10]

Let G be the quasidihedral groups, QDsn of order 2 where n > 4,n € N. Then,
the conjugacy class graph of G is I'é = Kyn-—2,; where it is a complete graph
with 2772 4+ 1 vertices.

Theorem 4 [10]

Let G be a dihedral group of order 2n. where n is an odd integer and n > 3, and
let ¥}, be its conjugacy class graph. Then, the energy of the graph I'f} |
el )=n-—3.

[10] R. Mahmoud, Energy and Laplacian Energy of Graphs Related to a Family of Finite Groups, Ph.D Thesis, Universiti Teknologi Malaysia. 2018.
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The Energy of Conjugacy Class Graphs of Dy,,,()4, and

QD271

Theorem 5 [10]
Let G be a dihedral group of order 2n i.e. Da,, = (a,bla™ = b?

= 1,bab = a~ '), where n and 5 are even integers and let FCl be its conjugacy

class graph. Hence, the energy of the graph 1"D2 ,

(FDM) n.

Theorem 6 [10]

Let G be a dihedral group of order 2n, i.e. Da, = (a,bla™ =b* =1,
bab = a~'), where n is an even integer and 2 is an odd integer, and let I'%}
its conjugacy class graph. Then, the energy of the graph I‘%Zn,

e(Tg, )=n—-2.

Do be

[10] R. Mahmoud, Energy and Laplacian Energy of Graphs Related to a Family of Finite Groups, Ph.D Thesis, Universiti Teknologi Malaysia. 2018.
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The Energy of Non-commuting Graphs of D»,,,()4, and

QD27)

Theorem 7 [10]

Let G be the dihedral groups of order 2n where n > 3,n € N and let TX® be the
non-commuting graph of G. Then,

Kii1,.. . 1n-1, if nisodd,
N——
FNC _ n times
¢ Ky o .. on—2, if niseven.
~——

noti o5
5 times

[10] R. Mahmoud, Energy and Laplacian Energy of Graphs Related to a Family of Finite Groups, Ph.D Thesis, Universiti Teknologi Malaysia. 2018.
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The Energy of Non-commuting Graphs of Ds,,,()4, and

QD271

Theorem 8 [10]

Let G be the generalized quaternion groups of order 4n where n > 2, n € N and
let TXC be the non-commuting graph of G. Then,

NC
e =Ks,2,... 22n-2-
——

n times

Theorem 9 [10]

Let G be the quasidihedral groups of order 2" where n > 4,n € N and let I‘gc be
the non-commuting graph of G. Then,

NC _
FG = KQ’Q, ...,2,2n—1_2.

27 —2¢imes

[10] R. Mahmoud, Energy and Laplacian Energy of Graphs Related to a Family of Finite Groups, Ph.D Thesis, Universiti Teknologi Malaysia. 2018.

= =
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The Energy of Non-commuting Graphs of Ds,,,()4, and

QD271

Theorem 10 [10]

Let G be a dihedral group of order 2n, where n is an odd integer, i.e.
G =D, = (a,b:a"” =b>=1,bab=a"") and let I'p,, be its non-commuting
graph. Then, the energy of the graph ngcn is

e(MPC)=(mn—-1)++5n2—6n+1

Theorem 11 [10]

Let G be a dihedral group of order 2n where n is an even integer , i.e.
G=Ds, = (a,b:a” =b>=1,bab=a"") and let T'5°™ be its non-commuting
graph. Then, the energy of the graph ngc; is

e(TRE) = (n—2)+ Vb5n? —12n + 4.

[10] R. Mahmoud, Energy and Laplacian Energy of Graphs Related to a Family of Finite Groups, Ph.D Thesis, Universiti Teknologi Malaysia. 2018.

L= =
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The Energy of Non-commuting Graphs of Ds,,,()4, and

QD271

Theorem 12 [10]

Let G = Q4. be a generalized quaternion group of order 4n, i.e.

Qan = (a,b|a” =%, a® =1=10" b"'ab=a""), where n > 2, and let TJC be

its non-commuting graph. Then, the energy of Fg‘f’; is

E(FNE) (2n — 2) +2v/5n2 — 6n + 1.

Theorem 13 [10]

Let G = QD,. be a quasidihedral group of order 2™ i.e. QDan = (a,b|
a? =2 =1=,bab~' =a2" "~1) , where n > 4. Then, the energy of the
non-commuting graph of G = QD,. is

eTNS5,.) =21 —2) +2/(@ 2 - D)2 + 272 - 1),

[10] R. Mahmoud, Energy and Laplacian Energy of Graphs Related to a Family of Finite Groups, Ph.D Thesis, Universiti Teknologi Malaysia. 2018.

L= =
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The Laplacian Spectrum of the Non-commuting Graphs of

D2711Q4n and QDQn,

Theorem 14 [10]

Consider that Ds,, is a dihedral group of order 2n i.e. Da,, = (a,bla™

=b? =1,bab = a~ '), where n is an even integer and n > 4. Then, the Laplacian
spectrum of the non-commuting graph of D5, is given as

L-spect (D5S) = {0, ()", 2n =2)% 2o - 9)F}.

Theorem 15 [10]

Consider that @4, is a generalized quaternion group of order 4n, where n > 2.
Then, the Laplacian spectrum of the non-commuting graph of Q4, is

L-Spect (TAC) = {(0)1 ,(2n)*" (40— 2)", (4n — 4)"} .

[10] R. Mahmoud, Energy and Laplacian Energy of Graphs Related to a Family of Finite Groups, Ph.D Thesis, Universiti Teknologi Malaysia. 2018.

™ = = = TTOTY
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The Laplacian Spectrum of the Non-commuting Graphs of

DQ'IMQin and QDQn

Theorem 16 [10]

Consider that G = @D~ is a quasidihedral group of order 2™, where n > 4.
Then, the Laplacian spectrum of the non-commuting graph of QDax is

L-Spect (@b, ) = {(0)1 NG RN ¢ L | L 4)2"2} _

[10] R. Mahmoud, Energy and Laplacian Energy of Graphs Related to a Family of Finite Groups, Ph.D Thesis, Universiti Teknologi Malaysia. 2018.
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The Laplacian Energy of the Conjugacy Class Graphs of

DQ?MQin and QDQ!I

Group Laplacian Energy of the Conjugacy Class
Graph of a Group, LE(T§')

Dihedral Group, Ds,, nodd,n >3 LE(T§. )=n—-3
nand gare even LE(FB;[) =n

n even and%odd LE(Fﬁ;n) =n-2
Generalized Quaternion neven,n =2 LE(F&") =2n

Group, Quy nodd,n > 2 LE(T§! ) =2n-2

Quasihedral Group, QD,n n=4 LE (l—-cl ) — on-1

QDyn

[10] R. Mahmoud, Energy and Laplacian Energy of Graphs Related to a Family of Finite Groups, Ph.D Thesis, Universiti Teknologi Malaysia. 2018.
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The Energy of Cayley Graphs Associated to Dihedral

Groups

Theorem 17 [11]

Let Ds,, be the dihedral group of order 2n, where n > 3 and X!) be a subset of
order one of Dy,,. Then, the energy of the Cayley graphs C’ay(Dgn,X(l)) is 2n.

Theorem 18 [11]

Let Dy, be the dihedral group of order 2n, where n > 3 and X = {a,a"" '} be
a subset of order two of Dsy,,. Then the energy of the Cayley graphs
Cay(Day,, {a,a™1})is Y1, |4cos(2”)|.

Theorem 20 [11]

Let Dy, be the dihedral group of order 2n, where n > 5 and n is odd. Let
X® = {a? a"?} be a subset of order two of Da,. Then, the energy of the
Cayley graphs Cay(Dsy,, {a®,a™2}) is >y |4COS(2m)|_

[11] A. F Ahmad Fadzll The Energy and Seidel Energy of Cayley Graphs Associated to Dihedral, Alternating and Symmetric Groups, Ph.D Thesis,
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The Energy of Cayley Graphs Associated to Dihedral

Groups

Theorem 21 [11]

Let Dy, be the dihedral group of order 2n, where n > 6 and n is even. Let
X = {a? a"?} be a subset of order two of Ds,,. Then, the energy of the
Cayley graphs Cay(Day,{a?, a™"%}) is Z?:_Ol |8 cos(4im)|

= 5

Theorem 22 [11]

Let Dy, be the dihedral group of order 2n, where n > 4 and n is even. Let
X® = {a%, a’b} be a subset of order two of Ds,,. Then, the energy of the
Cayley graphs Cay(Da,,,{a?,a'b}) is Z?:o In cos(%L)].

Theorem 23 [11]

Let Dy, be the dihedral group of order 2n, where n > 3 and X = {b,ab,...,a" b}
be the generating set of Ds,,. The energy of the Cayley graphs of D5, with respect
to the generating set X, e(Cay(Day, {b,ab,...,a""'b})) = 2n.

v
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The Seidel Energy of the Cayley Graphs Associated to

Dihedral Groups

Theorem 24 [11]

Let Dy, be the dihedral group of order 2n, where n > 3 and X(!) be a subset of
order one of Dy,,. Then, the Seidel energy of the Cayley graphs Cay(Ds,, X(l)) is
2n.

Theorem 25 [11]

Let Ds, be the dihedral group of order 2n, where n > 3 and X(?) = {a,a™ 1}
be a subset of order two of Dy,. Then, the Seidel energy of the Cayley graphs
Cay(Dan, {a,a™ 1}) is 31 |8 cos(Z)).

n

Theorem 26 [11]

Let Ds, be the dihedral group of order 2n, where n > 5 and n is odd. Let
X2 — {a27a”*2} be a subset of order two of Dy,. Then, the Seidel energy of
the Cayley graphs Cay(Da,, {a®,a"2}) is Y1, [8 cos(2ZL)|.

n
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The Seidel Energy of the Cayley Graphs Associated to

Dihedral Groups

Theorem 27 [11]

Let D, be the dihedral group of order 2n, where n > 6 and n is even. Let
X2 — {a27a"’2} be a subset of order two of Ds,,. Then, the Seidlel energy of
the Cayley graphs Cay(Da,,, {a%,a™~2}) for n even is Y 1" | |16 cos(2)|.

n

Theorem 28 [11]

Let D, be the dihedral group of order 2n, where n > 4 and n is even. Let
xX® = {a%,a’b} be a subset of order two of Dy,. Then, the Seidel energy of the

Cayley graphs Cay(Da,,,{a?,a’b}) is Z?:o |2n cos(%j)|.

Theorem 29 [11]

Let Dy, be the dihedral group of order 2n, where n. > 3 and X = {b,ab,...,a" b}
be the generating set of Dy,,. The Seidel energy of the Cayley graphs of Dy, with
respect to the generating set X, SE(Cay(Dap, {b,ab, ...,a" 'b})) = 4n — 2.
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Topological Indices

@ Topological indices provide numerical descriptors that capture important
structural features of molecules.

@ They serve as powerful tools for the analysis and prediction of various
physicochemical properties and biological activities.

@ The significance of topological indices lies in their ability to transform
complex molecular structures into numerical representations,enabling the
development of computational models and the efficient exploration of
chemical space for various applications in drug discovery, materials science,
and reaction chemistry [12].

@ Various types of topological indices have been developed based on either
chemistry or mathematical perspectives.

[12] I. Gutman and O.E. Polansky, Mathematical Concepts in Organic Chemistry, Springer Science and Business Media, 2012.
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Types of Topological Indices

Wiener Zagreb Randi¢ Harary Szeged General Sombor
index index index index index zeroth order index
Randié index

Figure 1: Different Types of Topological Indices
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Definitions of Topological Indices

Wiener Index

@ The first type of topological index has been discovered by Wiener [13] in
1947, in which the concept of Wiener number considering the path in a graph
is introduced.

@ The Wiener number of some paraffins are determined and their boiling points
are also predicted.

@ Then, Hosoya [14] reformulated the formula of Wiener number, known as
Wiener index of a graph, W(I'), and its formula is given in the following.

mm

W) =3 3> dii ),

i=1j=1

where d(i, j) is the distance between vertices ¢ and j, and m is the total
number of vertices in a graph I'.

v
[13] K. Wiener, Structural determination of paraffin boiling points, Journal of the American Chemical Society, 69(1) (1947), 17-20.
[14] H. Hosoya, Topological index. A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons,
Bulletin of the Chemical Society of Japan, 44(9) (1971), 2332-2339.

= =
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Example of Wiener Index

ab a’b

Figure 2: The non-commuting graph Ds

=3 [d(a, az) +d(a,b) + d(a,ab) + d(a,a®b) + d(a?, b)+
d(a?, ab) + d(a®, a®b) + d(b, ab) + d(ab, a*b) + d(b, a®b)]
=2+9(1)
=11.
31/106
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Wiener Index of the Non-commuting Graph

Proposition 1 [15]

Let G be a finite group and T be the non-commuting graph. Then, the Wiener
index of the non-commuting graph of G is given as

1

W(Ee) = 5 l(IG] = 1Z(G))) (1G] - 21Z(G)| - 2) + |G| (K(G) = 1Z(G)))].

N |

[15] A. Azad and M. Eliasi, Distance in the non-commuting graph of groups. Ars Comb. 99 (2011), 279-287.
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Definitions of Topological Indices

Zagreb Index

In 1972, Gutman and Trinajsti¢ [16] introduced the degree-based topological
index, Zagreb index, which is divided into two types; first Zagreb index, My, and
second Zagreb index, My, defined as follows.

Mi(T) = ) (deg(v))®
vev(T)

and

My(T) = deg(u)deg(v).

{u,v}eE(T)

[16] I. Gutman and N. Trinajsti¢, Graph theory and molecular orbitals. Total m-electron energy of alternant hydrocarbons, Chemical Physics Letters, 17(4)
(1972), 535-538. J
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Example of First Zagreb Index
Based on Figure 2,
b%\ a2

ab a’b

M(T) = > (deg(v))

vev(T)
= deg(a)? + deg(a®)* + deg(b)* + deg(ab)? + deg(a®)*
=3 +32+42 + 42+ 42
— 66.
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Example of Second Zagreb Index

Based on Figure 2,

ab a’b

My(T)= " deg(u)deg(v)
{u,v}eE(T)

= deg(a)deg(b) + deg(a)deg(ab) + deg(a)deg(a®b) + deg(a®)deg(b)+
deg(a*)deg(ab) + deg(a®)deg(a®b) + deg(b)deg(ab) + deg(ab)deg(a?b)
+ deg(b)deg(a*b)

=3(4)+3(4) +3(4) +3(4) +3(4) +3(4) +4(4) +4(4) + 4(4)

= 120.
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Zagreb Index of the Non-commuting Graph

Proposition 2 [17]

Let G be a finite group and I‘gc be the non-commuting graph of G. Then, the
first Zagreb index of the non-commuting graph of G,

Mi(LE0) = IGP(GI +12(O)] = 2k(G) — D |Cq()*.

2€G—Z(G)

Proposition 3 [17]

Let G be a finite group and TXC be the non-commuting graph. Then, the second
Zagreb index of the non-commuting graph of G,

Mp(TE°) = —|GPIETEO) + [GIMI(TE) + Y |Ca(@)l|Ca(y)l.

z,yc E(TYC)

[17] M. Mizargar and A. Ashrafi, Some distance-based topological indices of a non-commuting graph. Hacettepe Journal of Mathematics ans Staristics.
41(4) (2012), 515-526. J
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Definitions of Topological Indices

Szeged Index

Let I' be a simple connected graph with vertex set V(I') = {1,2,...,n}. The
Szeged index, Sz(T") is given as in the following :

Sz(T) = Y m(elD)na(elD),

ecE(T)
where the summation embraces all edges of T,
n1(e]l) = [{vlv € V(T), d(v, z[T') < d(v,y|T)}|

and
na(ell') = {vfv € V(I),d(v, y|T') < d(v, z|T)}|

which means that n(e|T") counts the T''s vertices are closer to one edge's terminal
x than the other while ny(e|T") is vice versa [18].

v

[18] P.V. Khadikar, N.V. Deshpande, V. Narayan, P. Kale, P. Prabhakar, A. Dobrynin, I. Gutman, and G. Domotor, The Szeged index and an analogy with
the Wiener index, Journal of Chemical Information and Computer Sciences, 35(3) (1995), 547-550. J

= . = e
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Example of Szeged Index

Figure 3: A simple connected graph

Note that Ny (e;|T") is the vertices of ' lying closer to one endpoint x of the edge
e; than to its other endpoint y while Ny(e;|T") is vice versa. First, Ny (e;|T") and
No(e;|I") are calculated for all 4.
For e; = {1,2},
Ni(e1l') ={z e V(T) : d(z,1) < d(x,2)}, ni(e1]T) =2,
={1.4},
No(erT) ={y e V(') : d(y,1) > d(y,2)}, mna(e1|T’) =1.
= {2},
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Example of Szeged Index (CONT.)

For eo = {2, 3},
Ni(ea)I) ={z e V({I) : d(z,2) < d(x,3)}, ni(e2l') =1,
=1{2}
Na(ea|l) = {y € V() - d(y,2) > d(y,3)},  nafea|l) =2.
= {3,4},
For es = {1,4},
Ni(e3)T) ={z e V(T') : d(z,1) < d(x,4)}, ni(e3|T) =2,
={1,2},
Na(es|l') = {y € V(T') : d(y,1) > d(y,4)}, na(es|l') = 1.
= {4},
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Example of Szeged Index (CONT.)

For eq = {3,4},
Ni(ey)T) ={z e V({I) : d(z,3) < d(x,4)}, ni(es|T") =2,
={2,3},
Na(ea|l) ={y € V() - d(y,3) > d(y,4)},  nafea|l) = 1.
= {4},
For es = {1, 3},
Ni(es]T) ={z e V(') : d(z,1) < d(x,3)}, ni(es]T) =1,
= {1},
Na(es|l') = {y € V(T) : d(y,1) > d(y,3)}, na(es|l') = 1.
= {3}
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Example of Szeged Index (CONT.)

Hence,

5
Sz(T') = Z ni(e;|T)na(e;|T)

=1
=ny(e1|T)nz2(e1|T)
n1(es|T0)nz(e4|T) + ny
= (2)(1) + (1)(2) + (2)(
=9.

ni(e2|T)na(e2|l) + ni(es|)na(es|T)+
(e5])n2(es|T)
1

+
+n 2
)+ (2)(1) + (1)(1)
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Definitions of Topological Indices

Harary Index

Let T be a connected graph with vertex set V' = {1,2,...,n}. Half the elements’
sum in the reciprocal distance matrix, D" = D"(T'), is what is known as the

Harary index, written as
1 n n o
H= 5 Z Z D (Za])a

i=1 j=1
where

. it i#

and d(i, 7) is the shortest distance between vertex ¢ and j [19].

[19] D. Plavsi¢, S. Nikoli¢, N. Trinajsti¢, and Z. Mihali¢, On the Harary index for the characterization of chemical graphs, Journal of Mathematical
Chemistry, 12 (1993), 235-250. J
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Example of Harary Index

Based on Figure 2,

ab a*b

a®b a?b
1 e
H = 5 2{: 2{::1) (Zaj)
1=a j=a
1
=5 [D"(a,a) + D" (a,a®) + D"(a,b) + D" (a,ab) + D" (a, a®b)+
D"(a?,a) + D" (a?,a*) + D"(a?,b) + D" (a?, ab) + D" (a?, a®b)+
D" (b,a) + D"(b,a®) + D" (b,b) + D" (b,ab) + D" (b, a*b)+
D" (ab,a) + D" (ab,a*) + D" (ab,b) + D" (ab, ab) + D" (ab, a*b)+
D"(ab,a) + D"(a®b,a*) + D" (a’h,b) + D" (a’b, ab) + D" (a®b, a”b)]
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Example of Harary Index (CONT.)

a?b a?b

H=3>> D)
i=a j=a
2 2

1414+0+1414+14+14+140+1414+14+14+1+0]
=95

1 1 1
:[0++1+1+1+2+0+1+1+1+
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Definitions of Topological Indices

Randié¢ Index

@ The Randi¢ index is a graph-theoretical descriptor that quantifies the
complexity or branching structure of a molecular graph.

@ It was introduced by Milan Randi¢ [20] in 1975 and has found applications in
various fields of chemistry.

@ It is defined as the sum of the reciprocal square roots of the product of the
degrees of connected pairs of vertices, written as

R() =

3 IS
uwenm V deg(u)deg(v)

[20] M. Randi¢ , Characterization of molecular branching. Journal of the American Chemical Society, 97(23) (1975), 6609-6615.
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Example of Randi¢ Index

Based on Figure 2,

1
R(T) = _—
0= 2 it
1 1 1 1
V0 JOm Ve Jom Vo
1 1 1 1
VO Jom  Vom oo
=248
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Definitions of Topological Indices

General Zeroth-Order Randi¢ Index

The Randi¢ index is modified and introduced a concept of general zeroth-order
Randi¢ index, which is defined as

Ro= 3 (deg(w)”,

ueV (T)

where a can be any non-zero real number [21].

Sombor Index
Recently, in 2021, a new topological index, Sombor index has been established by
Gutman [22]. The Sombor index of a graph, SO(T'), is defined as follows.
SOT) = Z V/deg(u)? 4 deg(v)2.
u,v€E(T)

[21] H. Ahmed, A.A. Bhatti, and A. Ali, Zeroth-order general Randié index of cactus graphs. AKCE International Journal of Graphs and Combinatorics,
16(2) (2019), 182-189.
[22] I. Gutman, Geometric approach to degree-Based topological indices: Sombor indices. MATCH Commun. Math. Comput. Chem., 86 (2021), 11-16.
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Example of Sombor Index

Based on Figure 2,
SO = Y dea(u)? T de(o)?
uweE(T)
= Vdeg(a)? +deg(b)? + \/deg(a)? + deg(ab)? + \/deg(a)? + deg(a2b)>+
Vdeg(a2)? + deg(b)? + /deg(a®)? + deg(ab)?+
Vdeg(a?)? + deg(a2b)? + /deg(b)? + deg(ab)2+
Vdeg (D)2 + deg(a2b)? + /deg(ab)? + deg(a>b)?
= V321424 V32124 VB2 R 23 a2
VB2 442 4 /42 £ 42 4 /42 42 + /42 4 42
=46.97
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Graphs Associated to Groups

The Coprime Graph [23]

Coprime graph of a group G is a graph that consists the elements in G as the set
of vertices where two distinct vertices are adjacent if and only if the order of both
vertices are coprime.

Example:

ab

Figure 4: The coprime graph of Ds

[23] X.L. Ma, H.Q. Wei, and L.Y. Yang, The coprime graph of a group. International Journal of Group Theory, 3(3) (2014), 13-23.

= ™ = T
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The Coprime Graph Associated to Dihedral Groups

In 2014, Ma et al. [23] generalized the coprime graph for certain order of dihedral
groups, as stated in the following propositions.

Proposition 4 [23]

Let G be the dihedral groups of order 2n and the coprime graph of G is denoted
as SO, Then, TEC is isomorphic to a multipartite graph K1 ,,—1., if 7 is an odd
prime.

Proposition 5 [23]

Let G be the dihedral groups of order 2n and the coprime graph of G is denoted
as Fgo. Then, Fgo is isomorphic to a star graph, Kj ge+1_7 if n = 2F for some
positive integer k.

[23] X.L. Ma, H.Q. Wei, and L.Y. Yang, The coprime graph of a group. International Journal of Group Theory, 3(3) (2014), 13-23.
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Graphs Associated to Rings

Zero Divisor Graph [24]

Let R be a commutative ring with identity, Z(R) its set of zero divisors. The zero
divisor graph of R is I'(R) = Z(R) — 0, with distinct vertices a and b adjacent if
and only if ab =0 or ba = 0.

Example :

Figure 5: The zero divisor graph for Za7, I' (Z27)

[24] D.F. Anderson and P.S. Livingston, The divisor graph of a c ive ring. Journal of Algebra, 217(2) (1999), 434-447.

= =
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TOPOLOGICAL INDICES OF
GRAPHS ASSOCIATED TO GROUPS




The Wiener Index of the Non-commuting Graph for Some

Finite Groups

Theorem 30 [25]

Let G be the dihedral groups, Ds,, of order 2n where n > 3, I'¢ is the
non-commuting graph of G and W (I'XC) is the Wiener index of I'. Then,

1
WX = 5(5n2 —9n +4).

[25] N.I. Alimon, Topological Indices of a Class of Graphs of Some Finite Groups and Applications to Molecular Structures, Ph.D Thesis. Universiti
Teknologi Malaysia (2021). J
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Proof

For n is odd and n > 3,

W(rg?) =

(1G] = 1Z2(G)) (IG] = 2|12(G)| = 2) + |G| (k(G) — |Z(G)])]
(2n—1) (2n — 2(1) — 2) + (2n) (”;3 - 1)]

[(2n —1)(2n —4) + n(n + 1)]
[471 —8n —2n+ 4+ n? —|—n]

(5n% — 9n + 4).

m\r—tl\:ﬂ)—lwh—l m\»—nw\r—x

INSPEM’s MS UPM 24 July 2024
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Proof (Cont.)

For n is even and n > 4,
W(IES) = 5 (1G] = 1Z(G))) (IG] - 212(G)| - 2) + |G| (K(G) — 1Z(G)))]

(2n — 2) (2n — 2(2) — 2) + (2n) (";6 - 2)]

[(2n — 2)(2n — 6) + n(n + 2)]

w\»—*m\»—tm\r—l L\JM—lw\»—t

[4n? —12n — 4n + 12 4+ n? + 2n]

[5n® — 14n 4+ 12] .
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The Wiener Index of the Non-commuting Graph for Some

Finite Groups

Theorem 31 [26]

Let G be the generalised quaternion group, (4, of order 4n where n > 2, I' is
the non-commuting graph of G and W(I'N) is the Wiener index of I'c. Then,

W(TYC) = 2n(5n —7) +6.

o
Theorem 32 [25]
Let G be the quasidihedral group, QD2n of order 2™ where n > 4, I'g is the
non-commuting graph of G and W (T'¥) is the Wiener index of T'. Then,
W(rgc) =221 +2"73 —7(2"7 ") +6.

”
[25] N.I. Alimon, Topological Indices of a Class of Graphs of Some Finite Groups and Applications to Molecular Structures, Ph.D Thesis. Universiti
Teknologi Malaysia (2021).
[26] N.H. Sarmin, N.I. Alimon, and A. Erfanian, Topological indices of the non-commuting graph for generalised quaternion group. Bulletin of the
Malaysian Mathematical Sciences Society, 43(5) (2020), 3361-3367.

v
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The Wiener Index of the Coprime Graph for Some Finite

Groups

The cases are only limited to n is an odd prime and n = 2%,k € Z since the

coprime graph associated to the dihedral groups of the other cases of n cannot be
generalized.

Theorem 33 [27]

Let G be the dihedral group, D5, of order 2n where n is an odd prime. Then, the
Wiener index of the coprime graph of G, TS is stated as follows :

WTEP)=(n—-1)(3n—1) +n.

Proof
@ The coprime graph of Dy, when n is an odd prime, is K1 y_1,n.

@ Then, the total number of vertices in Ky ,_1pis14+n—14+n=2n

vertices. Its coprime graph has three independent sets which are 1,n — 1 and
n elements, respectively.

[27] N.I. Alimon, N.H. Sarmin, and A. Erfanian, The Szeged and Wiener indices for coprime graph of dihedral groups. In AIP Conference Proceedings,
1
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Proof (Cont.)

@ The coprime graph of dihedral groups has n? +n — 1 edges where the
number of edges for a complete graph, K5, minus the number of edges for
K, _1 and K, as shown in the following.

2n(2n—1) nn—-1) (m—-1)(n—-2)

‘E(Kl,nfl,n)‘ = D) - 9 - 9
=n?4+n—1.
Thus, there are n?2 +n — 1 edges which have a distance of 1, while %
and @ edges have a distance of 2.
By using the definition of the Wiener index,
1 2n 2n
WEE) = 133 dGg
1=1 j=1
—1 —1 -2
=1 x [n2+n_1} + 2 x |:n(n2>:| + 2 % |:(’I'L)2(’I’L):|

=n-1)Bn-1)+n.

&
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The Wiener Index of the Coprime Graph for Some Finite

Groups

Theorem 34 [27]

Let G be the dihedral group, Ds,, of order 2n where n = 2¥ k € Z*. Then, the
Wiener index of the coprime graph for G,

W(IEP) = (2n —1)%

Theorem 35 [25]

Let G be the generalized quaternion group, (4, of order 4n where
n = 2F=1 k > 2 Then, the Wiener index of the coprime graph for G, Fgo is
stated as follows :

W(TEC) = (4n — 1)2.

[25] N.I. Alimon, Topological Indices of a Class of Graphs of Some Finite Groups and Applications to Molecular Structures, Ph.D Thesis. Universiti
Teknologi Malaysia (2021).

[27] N.I. Alimon, N.H. Sarmin, and A. Erfanian, The Szeged and Wiener indices for coprime graph of dihedral groups. In AIP Conference Proceedings,
2266(1) (2020), 060006.

o
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The Wiener Index of the Coprime Graph for Some Finite

Groups

Theorem 36 [25]

Let G be the quasidihedral group, o~ of order 2™ where n > 4. Then, the
Wiener index of the coprime graph for G, Fgo is stated as follows :

W(re?) = (2" - 1)°.

[25] N.I. Alimon, Topological Indices of a Class of Graphs of Some Finite Groups and Applications to Molecular Structures, Ph.D Thesis. Universiti
Teknologi Malaysia (2021). J
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The Zagreb Index of the Non-commuting Graph for Some

Finite Groups

Theorem 37 [28]
Let G be a dihedral group, D2, of order 2n where n > 3. Then,

(bn—4)(n—1) if nisodd,

MrNCey =1 "
1Te”) {n(5n—8)(n—2) if nis even.

[28] N.I. Alimon, N.H., Sarmin, and A. Erfanian, Topological indices of non-commuting graph of dihedral groups. M. ian Journal of Fund. I and
Applied Sciences, (2018), 473-476. J
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Proof

For n is odd,

M(TET) = |GP (G +12(G)| - 2k(G) = Y |Co(x)
zeG—-Z(G)
n+3>] —22n 4+ n%(n—1)

2

= 4n? [2n+12<
=nBn—-—4)(n—-1).
For n is even,

Mi(TEF) =GP (IGI +12(G)| - 2k(@)) = D |Ca(x)f?
2€G—Z(Q)
= 4n? [2n—|—1—2<n;6)] —4%n +n?(n—2)

=n(5n—8)(n—2).

v

Nor Haniza Sarmin (UTM) INSPEM’s MS UPM 24 July 2024

62 /106



The Zagreb Index of the Non-commuting Graph for Some

Finite Groups

Theorem 38 [28]
Let G be a dihedral group, D, of order 2n where n > 3. Then,

2n(n—1)2(2n—1) if nis odd,
M2 (FgC) _ ( ) 2( ) ] '
dn(n —2)*(n—1) if nis even.
Theorem 39 [26]
Let G be the generalised quaternion group, (4, of order 4n where n > 2. Then,
M;(TYC) = 8n(5n% — 9n +4),
and
Mo(TNC) = 32n(2n® — 5n? +4n — 1).
[28] N.I. Alimon, N.H., Sarmin, and A. Erfanian, Topological indices of non-commuting graph of dihedral groups. Malaysian Journal of Fund: I and

Applied Sciences, (2018), 473-476.
[26] N.H. Sarmin, N.I. Alimon, and A. Erfanian, Topological indices of the non-commuting graph for generalised quaternion group. Bulletin of the
Malaysian Mathematical Sciences Society, 43(5) (2020), 3361-3367.

g
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The Zagreb Index of the Non-commuting Graph for Some

Finite Groups

Theorem 40 [25]
Let G be the quasidihedral group, @QDsn of order 2™ where n > 4. Then,

My(TG) = [5(2°"7%) - 9(2*" ™) +8(2")]

and
NC 4n—2 3n—1 n n
M(TRC) = [247=2 — 5(2%"~1) + 8(3") — 8(2")] .
o
[25] N.I. Alimon, Topological Indices of a Class of Graphs of Some Finite Groups and Applications to Molecular Structures, Ph.D Thesis. Universiti
Teknologi Malaysia (2021). J
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The Szeged Index of the Non-commuting Graph for D»,

Theorem 41 [29]

Let G be the dihedral groups, Ds,,, where n > 3. Then, the Szeged index of the
non-commuting graph of G,

CD(n—1) i ni
Sz(FgC){ n(n—1)(n—3), if nisodd,

2n(n —2)(n —1), if nis even.

Proof
By Proposition 1, the non-commuting graph of Do, is

Ki1,.. . ,1n-1, if nisodd,
-
FNC n times
¢ 7 ) Kao . .  2n-2 if niseven.
N

no.;
D] times

[29] N.I. Alimon, N.H., Sarmin, and A. Erfanian, On the Szeged index and its non-commuting graph, Jurnal Teknologi, 85(3) (2023), 105-110.

= g =
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Proof (Cont.)
For n is odd and n > 3:

@ There are n(n — 1) edges have n;(e|I') = 1 since there is only one element of
vertices which is closer to a vertex a’ of the edge than the other vertex of the
edge, a’b, where i = {1,2,...,n—1} and j = {0,1,...,n — 1}.

@ Then, na(ell’) = n — 1 since n — 1 elements of vertices which are closer to
a*b than to a'b, where k,1 = {0,1,...,n — 1}. Meanwhile, the rest of the
edges have ny(ell') = na(e|l") = 1.

Thus, by definition of the Szeged index,

Sz(TgF) =n(n = 1[1 x (n = 1)] + (|E(Te)| = n(n — 1)1 x 1]

=nn—-1)(n-1)+ W—n(n—l)
:n(n—l)(n—1)+[2n2—nn+3—n(n—l)]
:n(n—l)Q—i—%—g

1
:n(n—l)(n—i).

= =

Nor Haniza Sarmin (UTM) INSPEM’s MS UPM 24 July 2024 66 /106



Proof (Cont.)

For n is even and n > 3 :
@ There are 2n(n — 2) edges have n1(e|I') = 2 since there are two elements of
vertices which are closer to a vertex of edge, a’ than the other vertex of edge,
a’b, where a’ is non-central elements and j = {0,1,...,n — 1}.
Then, na(e|T") = n — 2 since there is n — 2 elements of vertices which re closer to
a®b than to a'b, where k,l = {0,1,...,n — 1}. Meanwhile, the rest of the edges
have ni(e|I") = na(e|T') = 2. Thus, by the definition of Szeged index:

S2(T) = n(n—2)[2 x (n - 2)] + (|E(Te)] - n(n - 2))[2 x 2]

=2n(n—2)(n—2) + [|G|_§(G)|G| —n(n—2)] [2 x 2]
= 2n(n — 2)? + {4” - (7;+ IO 2)} 2 x 2]

= 2n(n — 2)? + 2[4n® — n(n + 6) — 2n(n — 2)]

=2n(n — 2)? + 2n(n — 2)

=2n(n—2)(n—1)
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The Szeged Index of the Non-commuting Graph for Q)4

and () Dy»

Theorem 42 [29]

Let G be the generalized quaternion groups, @4, where n > 2. Then, the Szeged
index of the non-commuting graph of G,

Sz(TRC) = 8n(2n — 1)(n — 1).

Theorem 43 [29]

Let G be the quasidihedral groups of order 2™ where n > 4. Then, the Szeged
index of the non-commuting graph of G,

Sz(T0) = [2°772 — 3(22"~ 1) + 2"+

[29] N.I. Alimon, N.H., Sarmin, and A. Etfanian, On the Szeged index and its non-commuting graph, Jurnal Teknologi, 85(3) (2023), 105-110.
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The Szeged Index of the Coprime Graph for D5,

Theorem 44 [27]

Let G be the dihedral groups, D3, where n > 3. If n is an odd prime, then the
Szeged index of the coprime graph of G,

Sz(TEC) =n* —2n3 +3n? — 2n 4 1.

Theorem 45 [27]

Let G be a dihedral group, Da,, and I'S€ is coprime graph of G. Then, if n = 2%,
where k € ZT, the Szeged index of coprime graph for Dy, is as follows :

Sz(TEP) = 4n? — 4n + 1.

[27] N.I. Alimon, N.H. Sarmin, and A. Erfanian, The Szeged and Wiener indices for coprime graph of dihedral groups. In AIP Conference Proceedings,
2266(1) (2020), 060006. J
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The Szeged Index of the Coprime Graph for ()4, and Q) Dsx

Theorem 46 [25]

Let G be the generalized quaternion groups of order 4n where n > 2. If
n =251k > 2, then the Szeged index of the coprime graph of G,

Sz(TSP) = (4n — 1)2.

Theorem 48 [25]

Let G be the quasidihedral groups of order 2™ where n > 4. Then, the Szeged
index of the coprime graph of G,

Sz(PSP) = (2" — 1)%.

[25] N.I. Alimon, Topological Indices of a Class of Graphs of Some Finite Groups and Applications to Molecular Structures, Ph.D Thesis. Universiti
Teknologi Malaysia (2021).
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The Harary Index of the Non-commuting Graph for Ds,

Theorem 49 [30]

Let G be a dihedral group, D2, and Fgc is a non-commuting graph of G. Then,

_f $l(n=2)(Tn—=3)+n] if niseven,
H(TE%) = { L—1)Tn—2)] it nisodd

[30] N.I. Alimon, N.H. Sarmin, and A. Erfanian, The Harary index of the non-commuting graph for dihedral groups. Southeast Asian Bull. Math, 44(6)
(2020), 763-768. J
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Proof

The Harary index of the non-commuting graph for dihedral group where n is odd

is the same as half of the total of all entries in its distance matrix, D". The entries
of D" in this case is either 1 if two vertices are connected or % if two vertices are

not connected to each other. Hence,

for n is even and n > 4,

4 4
=~ [6n(n—2) +n+ (n—2)(n — 3)]

[(n—2)(Tn —3) +n],
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Proof (Cont.)
for n is odd and n > 3,

H(TYC) = |BCYO)| + 5 [(n—1><n—2>]

=D —1)+ (= 1)(n-2)

Therefore,

1l(n=2)(Tn —3) +n], if nis even,

H('g™) { Lin—1)(Tn - 2), if nis odd.
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The Harary Index of the Non-commuting Graph for ()4,

and () Dy»

Theorem 50 [30]

Let G be the generalized quaternion groups of order 4n, where n > 2. Then, the
Harary index of the non-commuting graph of G,

3

H(TXC) =% —8n + 3

Theorem 51 [30]

Let G be the quasidihedral groups of order 2", where n > 4. Then, the Harary
index of the non-commuting graph of G,
3

H(FI(\;C) _ 7(22n—4) _gntl + 5

[30] N.I. Alimon, N.H. Sarmin, and A. Erfanian, The Harary index of the non-commuting graph for dihedral groups. Southeast Asian Bull. Math, 44(6)
(2020), 763-768. J
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The Randi¢ Index of the Non-commuting Graph for Some

Finite Groups

Theorem 52 [31]

Let G be a dihedral group, Ds,, and 'Y is a non-commuting graph of G. Then,

n\/m-i-‘l"(n_l)
NCy _ 4\/2n(n—1)
R(FG )— n\/m+4n(n—2)
4y/2n(n—2)

if n is odd,

if n is even.

[31] S.R.D. Roslly, N.F.A.Z. Ab Halem, N.S.S. Zailani, and N.I. Alimon, Generalization of Randié¢ index of the non-commuting graph for a family of finite
groups. Malaysian Journal of Fundamental and Applied Sciences, Malaysian Journal of Fund. al and Applied Sciences, 19(5) (2023), 762-768. J
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The Randi¢ Index of the Non-commuting Graph for Some

Finite Groups

Theorem 53 [31]

Let G be the generalised quaternion group, Q4, and T is a non-commuting
graph of G. Then,
dn(n — 1) LB

RIe) = Sn(n—1) 2

Theorem 54 [31]

Let G be the quasidihedral group, QDan and 'Y is a non-commuting graph of
G. Then,
2n—1(2n—1 _ 2) 2n—1(2n—2 _ 1)

R(I§Y) =
G /= n
(2n=1) (2" —4) e
v
[31] S.R.D. Roslly, N.F.A.Z. Ab Halem, N.S.S. Zailani, and N.I. Alimon, Generalization of Randi¢ index of the non-commuting graph for a family of finite
groups. Malaysian Journal of Fundamental and Applied Sciences, Malaysian Journal of Fund. al and Applied Sciences, 19(5) (2023), 762-768. J
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The Sombor Index of the Non-commuting Graph for Some

Finite Groups

Theorem 55 [32]

Let I'¢ be the non-commuting graph of G where G is the dihedral groups of order
2n, n > 3. Then, the Sombor index of I‘gc,

on ] m=1DV2(n—-1)+\/A(n—1)2+n?] if nisodd,
SOwe?) = { (n—2)[V2(n —2) + V/4(n —2)2 + n?] if nis even.

Theorem 56 [32]

Let I'¢ be the non-commuting graph of G where G is the generalized quaternion
groups of order 4n, n > 2. Then, the Sombor index of I‘gc,

SO(IXY) =n(n—1)[V2(n—1) +/4(n — 1)2 + n2].

[32] S.M.S. Khasraw, N.H. Sarmin, N.I. Alimon, N. Najmuddin, and G. Semil ® Ismail, The Sombor index and Sombor polynomial of the power graph
associated to some finite groups, Journal of Advanced Research in Applied Sciences and Engineering Technology, 42(2), (2024), 112-121. J
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The Sombor Index of the Non-commuting Graph for Some

Finite Groups

Theorem 57 [32]

Let I'¢ be the non-commuting graph of G where G is the quasidihedral groups of
order 2", n > 4. Then, the Sombor index of Fgc,

SOTFC) = v2(2" — 4) (2273 — 2nT1) + (22772 — 2) /(27 — 4)2 + 222,

v

[32] S.M.S. Khasraw, N.H. Sarmin, N.I. Alimon, N. Najmuddin, and G. Semil @ Ismail, The Sombor index and Sombor polynomial of the power graph
associated to some finite groups, Journal of Advanced Research in Applied Sciences and Engineering Technology, 42(2), (2024), 112-121. J
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TOPOLOGICAL INDICES OF
GRAPHS ASSOCIATED TO RINGS




The First Zagreb Index of the Zero Divisor Graph for the

Ring Z

Proposition 6 [35]

Let p be a prime number, k € N and a € Z,. with ged(a, p*) = p’ for
1=1,2,...,k. Then, the degree of vertex a of the zero divisor graph for the ring
Zpk is
_r-1 i< |,
deg(a) = { P2, fori> k1]

where k > 3 for p =2 and k > 2 for odd primes p, and | k] denotes the floor
function of k.

Proposition 7 [35]

LetaecV (F (Zpk)) thus a € Z (Zpk) where gcd (a,pk) = p’. Then
‘V(Zpk)’ =pF=i —ph=(+D) for 1 < i<k —1where k >3 forp=2and k> 2
for odd primes p.

[35] G. Semil @ Ismail, N.H. Sarmin, N.I. Alimon, and F. Maulana, The first Zagreb index of zero divisor graph for the ring of integers modulo power of
primes, Malaysian Journal of Fundamental and Applied Sciences, 19(5) (2023), 892-900.
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The First Zagreb Index of the Zero Divisor Graph for the

Ring Z

Theorem 58 [35]

The first Zagreb index of the zero divisor graph for the ring Z,x,

My (T (Zyr)) = 20571 =p%) (k = 1+ 52 ])+(F+1) (1= 1) 43 (p*F1 - 1)
where k > 3 for p =2 and k£ > 2 for odd primes p.

v

Proof.
Using definition of the first Zagreb index, Proposition 6, and Proposition 7,

My (F(Zp) = > (deg(w)’

uev (r(z,0))

5] k1

Z ( k=i _ ph— (z+1)) (pi . 1)2 n Z (pk:—i _ p—G+D)
i=1 =1+ [ 551

(' —2)*

6
81,106
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The First Zagreb Index of the Zero Divisor Graph for the

Ring Z

Proof.
k—1
_ (pkfz oF (z+1)) ( 2p' +1)
1=1
4 Z (pkfz _pkf(erl)) (3 2p1)
=1+

Using the summation rules and the geometric sequences

pz - pz-',-l
SN SIS
+2(p > 1+ > :

i i1
i=1+] 251 | i=1+| &L | per

2

Zl+pkz< +l, i 1)

6
Nor Haniza Sarmin (UTM) INSPEM’s MS UPM 24 July 2024 82 /106




The First Zagreb Index of the Zero Divisor Graph for the

Ring Z

Proof.
Therefore, the first Zagreb index of the zero divisor graph for the ring Z,,,

My (T (Zpr)) =2 (p" = ") <k —1+ [k;D +(pF+1) (1 -1)
+3(pl 1 - 1),

where k > 3 for p =2 and k£ > 2 for odd primes p. O

v

[35] G. Semil @ Ismail, N.H. Sarmin, N.I. Alimon, and F. Maulana, The first Zagreb index of zero divisor graph for the ring of integers modulo power of
primes, Malaysian Journal of Fundamental and Applied Sciences, 19(5) (2023), 892-900. J
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The First Zagreb Index of the Zero Divisor Graph for the

Ring Zox,

Theorem 59 [36]

The first Zagreb index of the zero divisor graph for the ring Zgx,, M (I‘ (Z
(g-1)[(2"-2F1Y) (¢g—2k+1)+ (2" -1) (2F+ 251 -1) 1] +

22" (252 — 1) + (2%1g—2)° —2¢ (2% — 26~ 1) (b — 2+ [A53]) — 2+ 281 4

pk

k+3
3 (%) where ¢ is an odd prime number and k is a positive integer.

[36] G. Semil @ Ismail, N.H. Sarmin, N.I. Alimon, and F. Maulana, The First Zagreb Index of the Zero Divisor Graph for the Ring of Integers Modulo
2k g, AIP Conf. Proc., In press. J
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The General Zeroth-Order Randi¢ Index of the Zero

Divisor Graph for Z,

Theorem 60 [37]
The general zeroth-order Randi¢ index of the zero divisor graph for Z,x when

a=1, R} (T (Zy)) = (p* —p* 1) (k-1) —p(%w — p*~1 4+ 2 where k > 3 for
p=2and k > 2 for odd prime p.

Notice that the general zeroth-order Randi¢ index of the zero divisor graph for the
ring Z,~ when o = 2 is equal to the first Zagreb index of the zero divisor graph for
the ring Zyx, RY (T (Zyx)) = My (T (Zyx)), as shown in the following theorem.

Theorem 61 [37]

The general zeroth-order Randi¢ index of the zero divisor graph for Z,x when

o =2, R§ (T (Zy)) = My (T (Ze)) =2 (p*" = p¥) (k= 1= [55H])

4p2ht pph—1 _pk 43 (p’—%w — 1) — 1 where k > 3 for p =2 and k > 2 for
odd prime p.

[37] G. Semll @ Ismail, N H. Sarmin, N.I. Alimon, and F. Maulana, General zeroth-order Randi¢ index of zero divisor graph for the ring of integers modulo
p" A P
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The General Zeroth-Order Randi¢ Index of the Zero

Divisor Graph for Z,

Theorem 62 [37]

The general zeroth-order Randi¢ index of the zero divisor graph for Z,x when
3k—1__ k+1

o=3, B ([ (Z)) = Z ™ 48 (o —pt1) (5 1+ 3[551]) -

6p2k—1 4 3pF — pt—1 1 3plF] _7pls J+8wherek>3forp—2andk>2
for odd prime p.

[37] G. Semil @ Ismail, N.H. Sarmin, N.I. Alimon, and F. Maulana, General zeroth-order Randi¢ index of zero divisor graph for the ring of integers modulo
p™, AIP Conf. Proc. 2975, 020002 (2023). J
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The General Zeroth-Order Randi¢ Index of I'(Z,, X Z)

Theorem 63 [38]

The general zeroth-order Randi¢ index of ['(Z,, X Zz2), RS, (I‘(Zp X Zq2)> =

@=Dpg-2"+@-1)(?-1)"+(P-9) (p—1)"+(pg—p—g+1)(¢—1)°
where p, ¢ are primes and a € R.

[38] Nurhabibah, A.G. Syarifudin, I.M. Alamsyah, E. Suwastika, N.H. Sarmin, N.I. Alimon, and G. Semil @ Ismail, Topological Indices of the Zero Divisor
Graph of Direct Product of Integers Modulo Ring, AIP Conf. Proc., Submitted.

J
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Conclusion

@ The general formulas for energy of conjugacy class graphs related to dihedral
groups Do, generalized quaternion groups (Q4,, and quasidihedral groups
QD3 have been found.

@ The eigenvalues of the non-commuting graphs related to dihedral groups
D, generalized quaternion groups (04, and quasidihedral groups ) Dan
have been found and were then used to obtain the general formulas of the
energy of non-commuting graphs associated to these groups.

@ The energy of the Cayley graphs associated to the dihedral groups D,
alternating groups A,, and symmetric groups S,, with respect to subsets of
order one and two have been computed.

@ Moreover, the Seidel energy of the Cayley graphs associated to the dihedral
groups Do, alternating groups A,, and symmetric groups .S,, with respect to
subsets of order one and two have computed.

@ Some topological indices, which are the Wiener index, the Zagreb index, the
Szeged index, the Harary index and the Randi¢ index of some graphs
associated to some finite groups are found.
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Conclusion

@ Based on the results, the higher the order of the groups, the higher the value
of topological indices. This is due to the increasing of the number of vertices
and edges.

@ The degree-based topological indices, which are the first Zagreb index and
the general zeroth-order Randi¢ index of the zero divisor graph for the rings
Ziyr and Zgr, are determined.
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Future Research Recommendations

@ Algorithms and techniques to obtain the adjacency matrices and the
Laplacian matrices of these graphs related to Dy, Q4 and QDsn, can be
developed for any integer n.

@ Since this research has provide some useful knowledge such as the
connectivities of the Cayley graphs and the graph theoretical properties such
as their spectrums and their energies, they can be developed into various
codes and algorithms to be used in computer engineering students.

Finding the graphs associated to the relative commutativity degree of
subgroups of dihedral groups for other cases. From there, the energy for more
cases of dihedral groups Ds,, can be found.

Other types of topological indices of some graphs associated to groups can
be computed.

Similar to other types of topological indices of some graphs associated to
rings can also be computed.

@ The topological indices for graphs representing chemical structures in drugs
are a valuable approach to determine both the physicochemical properties
and biological activities of these molecules can be constructed.
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