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CHAPTER 1 

 

 

 

INTRODUCTION 

 

1.1   Introduction/Research Background 

 

Consumer Price Index (CPI) is used to estimate the average price changes of representative 

basket of goods and services purchased by consumer in a specific time period. CPI can also be 

called as cost of living index which serves as the economic indicator of inflation in measuring 

and aggregating the price level and reflect to the country’s economy. There are many categories 

of CPI such as food, clothes, medical care, transportation, education and communication. 

Nowadays, financial analysts and economists always track CPI indicator because CPI play an 

important role in economy that affects the economic growth of country. CPI helps the 

government to determine financial policy such as controlling the nation’s money supply and 

increase the interest rates. From an investor perspective, CPI is a critical measurement on total 

return and on a nominal basis to meet their financial goals.  

 

According to the trading economics of Malaysia, the increase of CPI is caused by the most 

major group of food and non-alcoholic beverages with total thirty percent of total weight lead 

to inflation rate. This show that it is important to make pricing and economic decision to predict 

future rate of inflation. Consumer price index covers all the category of groups in measuring 

the pricing and economic rate with the consumption expenditure which are changing from 

period to period. The price can be collected from the retail stores. The coverage of shops and 

retail outlets can also be used to determine the purchasing behaviour among the households. In 

recent years, the importance of internet as the media to purchase consumer goods and services 

has been rising significantly should be included in a CPI to maintain the consumer purchasing 

habits. The rapid growth of technology has influenced more households making purchase on 

the web-based retailers compare to the market stalls.  

 

 Economic is the most fundamental determinant the buyers on purchasing behaviour in 

Malaysia. A study on Malaysian Journal of Management Studies shows that the factor of 

consumer’s purchase decision has huge impact on the retail market in Malaysia. An increase 

in income surely lead to the rising of consumption expenditure on shopping goods which 



 

greatly improved the quality of life. This situation indicate that CPI is the most appropriate 

macroeconomic indicator to measure inflation rate in Malaysia. Due to the elevated volatility 

in the consumer price indices that cause the changes of inflation trends more than one month 

in advance, therefore it is necessary to employ the forecast technique in predicting the CPI to 

give a potential insight to the economic sector. 

 

Modelling CPI by using time series approach has been widely applied by many researchers. 

The historical data from the economic prices has taken into consideration and used to generate 

a prediction model for the consumer price indices. The most common and extensive model that 

have been used to analyse the CPI is Autoregressive Integrated Moving Averages (ARIMA). 

Seasonal ARIMA (SARIMA) model is used to analyse the time series data containing seasonal 

component to develop a forecasting model. Box-Jenkins ARIMA is the classical time series 

analysis that used to predict future data that mostly considered in the forecast research. 

However, this approach is not model-free and have the disadvantage due to its restriction to 

normality, linearity and stationarity assumption (Silva, 2016). It also may involve the 

transformation of data that is from non-stationary to stationary data by method of differencing 

for further analysis. Alternatively, a non-parametric forecasting model which is Singular 

Spectrum Analysis (SSA) has applied to overcome such restriction that imposed in ARIMA 

model.  

 

In general, SSA is a powerful tool which can perform two complementary stages known as 

decomposition and reconstruction. This technique is capable to carry out filtering process 

which decomposing the original signals into smoothing trend, seasonality and noise series 

components based on the spectrum of eigenvectors in the singular valued decomposition of the 

covariance matrix to form the reconstructed one dimensional series for forecasting while this 

procedure does not present in traditional analysis. 

 

Nowadays, SSA methods has been very important and useful in time series analysis since 

it shows a great understanding of nonlinear dynamics system underlying time series by 

inspecting trend, seasonal fluctuation and input signal. Thus, forecasting CPI data lead to 

inflation dynamics becoming more important particularly for economists, financial analysts, 

and statisticians. The high accuracy of price indices for future prediction was particularly 

important to facilitate the decision-makers to make strategic decisions in order to consider 



 

between the decision on output and the actual output of the inflation rate. This study will deal 

with the time series model of overall CPI data in Malaysia. 

 

1.2   Problem Statement 

  

The most common type that have been used as forecasting techniques is Box-Jenkin 

ARIMA methodology. Nevertheless, there is a contrast in modelling data by using SSA 

methodology and traditional time series procedure. This is because the classic time series 

techniques are not model free and not capable in handling linearity, normality and stationarity 

time series assumptions. Besides, it is not able to carry out any further analysis without 

involving any transformation of data which from non-stationary to stationary data by method 

of differencing. 

 

 Furthermore, ARIMA model is not applicable in identifying a true signal based on the 

spectrum of eigenvectors in the singular valued decomposition of the covariance (trajectory) 

matrix.  As a results, it cannot carry out filtering stage in decomposing the original series into 

extracted trend, seasonality components and reconstructed noise series for smoothing. Hence, 

SSA takes advantage as an effective implement in CPI modelling and forecasting in the 

upcoming time. 

 

1.3   Objective of Study 

 

The objectives of the study are as follows:  

 

i. To select a post-period structural break in the CPI time series data based on Chow test to 

reduce forecasting errors 

 

ii. To construct a trajectory matrix from the one dimensional CPI time series based on the 

window length 

 

iii. To identify the true signals from noise components based on the spectrum of eigenvectors 

in the singular valued decomposition of the covariance (trajectory) matrix 



 

 

iv. To reconstruct the one dimensional time series data for forecasting 

 

1.4   Scope of Study  

 

This study will focus on forecasting the monthly data of consumer price index in Malaysia 

from January 2005 to October 2020. The data source is obtained from  the website 

https://www.mef.org.my/kc/monthlycpi.aspx?year=2020 which revealed the statistics of 

consumer price index by Malaysians Employers Federation from the source of Department of 

Statistics Malaysia (DOSM) official portal. In this study, determination the appropriate 

window length in changing the dimension of Hankel matrix by the technique of embedding 

and singular valued decomposition in decomposition stage of singular spectrum analysis in 

order to predict accuracy of time series. The methods of grouping and diagonal averaging in 

reconstruction stage are used to estimate the suitable singular value of the parameter as well as 

carry out the filtration process of signal components results in measuring the stability of model. 

It is very important to understand that the number of window length, the dimension of trajectory 

matrix, and the number of singular values of parameter will influencing the sensitivity and 

precision on inflation when forecasting the data of consumer price index.  The statistical 

programming R software will be used to model the monthly CPI data. 

 

1.5 Summary of Study  

 

This chapter described the background of CPI problem and showed the outline of this thesis. 
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CHAPTER 2 

 

 

 

LITERATURE REVIEW 

 

2.1 Introduction  

 

This chapter will review literatures on the consumer price index and the forecasting 

analysis approaches which include Autoregressive Integrated Moving Average (ARIMA), 

Vector Autoregression (VAR), Mixed Data Sampling (MIDAS), Multivariate Singular 

Spectrum Analysis (MSSA), Process Neural Network (PNN), Vector Error Correction Model 

(VECM), Hybrid Neuro-Fuzzy Model, Support Vector Machine (SVM) and Nonlinear 

Autoregressive Distributed Lag Model (NARDL). 

 

2.2 Consumer Price Index (CPI)  

 

An actuary is business professional to manage the financial risks normally gets 

sufficient information regarding a piece of evidence and use statistics to make predictions for 

the future. Based on Murdipi and Law (2016), a large number of empirical studies have been 

conducted to investigate inflation on their specific country area or group of countries using 

various econometric techniques. It is important to study and estimate the future economic 

growth in CPI that cause the inflation and to understand the factors influence the inflation. 

In the study of Young et al. (2004), CPI measures changes in the prices of goods and 

services that households consume. Such changes affect the real purchasing power of consumers’ 

incomes and their welfare. It is also widely used as a proxy for a general index of inflation for 

the economy as a whole, partly because of the frequency and timeliness with which it is 

produced. The main factor influence CPI is consumer behaviour. For example, there are some 

of the consumer need to consider pricing, stores choices, brand or quality to look for their 

products leads to higher inflation. Malaysia’s official statistics states that the rise in the CPI 

was due to increases in alcoholic beverages and tobacco by 22.6%, miscellaneous goods 

and services (+5.2%), food and non-alcoholic beverages (+4.8%), furnishing, household 

equipment and routine household maintenance (+4.7%), restaurants and hotels (+4.7%), and 



 

health (+4.5%). There are many data to be used in estimating the model. Hence, identifying the 

most appropriate time series forecasting model is very important. 

 

2.3 Autoregressive Integrated Moving Average (ARIMA) 

 

In statistics and econometrics, ARIMA is one of the most popular time series 

forecasting model. Based on Wang and Zhao (2009) paper, ARIMA has been originated from 

the autoregressive model (AR) proposed by Yule in 1927, the moving average model (MA) 

invented by Walker in 1931 and the combination of the AR and MA, the ARMA (p, q) models.  

ARIMA uses particle swarm optimization algorithm (PSO) which is a complex traditional 

estimation to forecast the monthly CPI of thirty-six big or medium-sized cities in China. PSO 

can be implemented with ease and has a powerful optimizing performance is employed to 

optimize the coefficients of ARIMA. ARIMA (4, 3, 1) formed from the number of 

autoregressive terms, the number of non-seasonal differences and the number of lagged 

forecast errors are obtained after plotting ACF and PACF graphs are drawn based on 1~M lag 

numbers which provide information about ARMA (4, 1) since the autocorrelation coefficient 

starts at a very high value at lag one and then statistically rapidly declines to zero while PACF 

up to four lags are individually statistically significant different from zero but then statistically 

rapidly declines to zero. The method of moment estimation by Yule-Walker equation and linear 

iterative method to approximate the results of the parameter with MSE value is 1.3189. Then, 

PSOARIMA model used to optimize the coefficient of ARIMA with range [−1, 1] and obtained 

the value of MSE is 1.2935. This results showed that the accuracy of PSOARIMA (4, 3, 1) 

model is better than the ARIMA (4, 3, 1) model because the relative error of PSOARIMA (4, 

3, 1) is smaller than ARIMA (4, 3, 1) in general. Similar study was also conducted by using 

Box-Jenkins method to forecast annual datasets of CPI in controlling inflation for the upcoming 

10 years. This study has gathered the data from Belgium CPI data from year 1960 to 2017. The 

findings of this study shows that ARIMA (0, 2, 1) is best fit to CPI data and there is an upward 

trend for the forecast period (Nyoni, 2019). Other than that, Boniface and Martin (2019) carried 

out their research on forecast CPI data from Ghana which CPI act as the indicator in influencing 

economic plan in order to affect the purchasing rate of the residents. This research used the 

monthly data series from March 2013 to November 2018 by applying the SARIMA model. 

Based on the analysis, SARIMA (2, 1, 1) (1, 0, 0) as most fitted time series model to forecast 

the CPI for next nine months and the parameters are estimated by Minitab software. There is 



 

another study found that the implementation time series ARIMA method in forecasting CPI 

data using monthly data from January 2005 to December 2015 of Indonesia (Ahmar et al., 

2018). The findings revealed ARIMA (1, 0, 0) model is most suitable to fit the CPI data using 

forecast package in R software and the efficiency of this forecast models is measured with 

RMSE and MAPE which is 5.695 and 1.625. Besides, Mia et al. (2019) researched the 

development of ARIMA approach to estimate the CPI data from period 2019 to 2025 by 

applying the Akaike information criteria (AIC), corrected Akaike information criteria (AICc) 

and Bayesian information criteria (BIC). The results of analysis indicate that there is an upward 

trend shown by the best model of ARIMA (2,2,0). Another research paper by Akpanta and 

Okorie (2015) have applied SARIMA model in analysing CPI average monthly data of Nigeria 

from January 2014 to December 2015. The ACF and PACF plotting graph initially showed that 

non-stationary CPI data are determined by Augmented Dickey-Fuller test then followed by 

carried out the diagnostic plot of ARIMA and seasonal ARIMA model. The t- test statistics 

results have discovered SARIMA (1, 2, 1) (0, 0, 1) is the best fit to CPI data because there does 

not exists any significance different between the observed data and predictive values when 5% 

of significance level is used. 

 

2.4  Vector Autoregression (VAR) 

 

A study was conducted by Murdipi and Law (2016) on dynamic linkages between price 

indices and inflation in Malaysia by using monthly data among CPI, Producer Price Index (PPI), 

Industrial Production index (IP) and Import price index (IM) of sample period spans from 

January 2005 to December 2013. In this research paper, unit root test is the time series analysis 

to determine whether the variable in stationary or not as well as the integration order. This 

analysis required Augmented Dickey Fuller (ADF) and Phillips-Perron (PP) unit root tests 

respectively. The Schwartz Bayensian Criterion (SBC) was also applied to determine the 

appropriate lag lengths of the models and the results revealed that all series are non-stationary 

and integrated of order one. Moreover, this study employed Johansen Multivariate Co-

Integration Test to examine the existence of the long-run relationship among the variables 

within a multivariate framework which is a vector autoregressive (VAR) based test of 

restrictions imposed by co-integration on the unrestricted VAR carried out by two test statistics 

namely trace and maximum eigenvalue used to determine the number of co-integrating vectors. 

Once the co-integrating relationship is present, then analyse the short-run Granger Causality 



 

test which incorporate the error correction term (ECT) for the adjustment for the deviation from 

its long run equilibrium. This modified model can refer to Vector Error Correction Model 

(VECM) framework based on the first lag differences variable. However, the analysis may be 

conducted as a standard VAR model if co-integration does not exist. Therefore, the findings 

have shown the industrial production and import price are statistically significant determinants 

of CPI in the long run indicates that 1% increase in IP and IM will result 0.237% and 0.303% 

increase in CPI respectively. Generalized impulse response function (GIRF) and variance 

decomposition (VDC) also been applied to trace the impact of a one standard deviation shock 

on variables in the system and to estimate the forecast error variance due to shocks or 

innovations in other variables in providing dynamic interaction of variables. The findings 

indicate the response of CPI to a one standard error which is positive shock in IP, PPI, IM, oil 

and money supply. This implies that the CPI responds positively and is statistically significant 

to shocks in PPI, IM and money supply. 

 

2.5 Mixed Data Sampling (MIDAS) 

 

According to Harchaoui and Janssen (2018), a study on how the big data Billion Price 

Project (BPP) enhance the timeliness of official statistics on consumer price index in US have 

conducted using MIDAS time series model that accommodate data sampled at different 

frequencies. These models generate estimates that remain robust to the variety of time periods 

considered in the forecast accuracy of official consumer price inflation figures. BPP CPI data 

runs from 1 July 2008 to 31 July 2015 with only a three-day lag with respect of the reference 

month to predict the official CPI that is available with an average of three-weeks delay from 

the reference month. Under the MIDAS approach, a lower-frequency dependent variable is 

regressed on a higher-frequency lagged independent variable. There are three polynomial 

weighting function used for baseline estimates and robustness checks to determine the order of 

polynomial degree which are Almon polynomial lag, beta polynomial lag, and exponential 

polynomial lag. The forecast results from the MIDAS model showed has a lower root mean 

square error (RMSE) compared to those from the autoregressive model with one lag that is 

considered as the benchmark model. In addition, Qiu (2020) have also conducted a research in 

forecasting the consumer confidence index (CCI) with tree-based MIDAS regressions to 

predict US economic activity. CCI consists of nine regular predictors which are five monthly 

macroeconomic variables and four daily financial variables. The monthly data from January 

2013 to March 2017 while the daily data span from 1 January 2013 to 22 March 2017 where 



 

the monthly confidence data are related to daily, or even hourly measures of US sentiment 

index (USSI) to predict changes in the Conference Board’s CCI. Nonlinear least squares 

method used to estimate on the aggregate effect of lags and MIDAS-Almon method used for 

varying the weight lag polynomial. Heterogeneous MIDAS (H-MIDAS) method takes 

weighted averages of lagged high-frequency USSI observations to enhance parameter stability 

across various horizons and permits a weaker discounting of the very past sentiment data. 

Ordinary Least Square (OLS) method was used to estimate the lag weight when define 

weighted regressors and weight vector with constraints. The paper examined that an 

improvement to generate stable forecasts by identifying the lowest of mean squared forecast 

error (MSFE) and mean absolute forecast error (MAFE) are the Bagging Tree (BAG), Random 

Forest (RF) method, Least Squares Boosting Tree of RT ensembles (BOOST) and Support 

Vector Regression (SVR). The results revealed that MIDAS-BAG can improve the forecast 

accuracy by up to 52.5% relative to the best-performing conventional MIDAS method.  

 

2.6 Multivariate Singular Spectrum Analysis (MSSA) 

 

Hassani and Silva (2018) have applied the MSSA model in forecasting UK consumer 

price inflation to improve the accuracy of prediction. The historical monthly data from January 

2006 to May 2018 collected via the Office for National Statistics used to generate the forecast 

data. This paper used a variety of parametric and nonparametric test to optimize univariate 

forecasting model which are Autoregressive Integrated Moving Average (ARIMA), 

Exponential Smoothing (ETS), Neural Network (NN), Trigonometric Box–Cox ARMA Trend 

Seasonal (TBATS). ARIMA model was applied to generate univariate forecasts for UK 

consumer price inflation with Akaike Information Criterion (AIC) which minimised the 

number of seasonal difference, d and determine the number of autoregressive terms, p and the 

number of lagged forecast error, q. ETS method was used to consider the error, trend and 

seasonal components by optimizing initial values and parameters using Maximum Likelihood 

Estimator (MLE) in selecting the best model based on the AIC. The selected parameter based 

on a loss function embedded in nnetar algorithm trains 25 networks by using random starting 

values and obtains the average of the resulting predictions to compute the forecast in NN model. 

TBATS technique aimed to provide accurate forecasts for time series with complex seasonality. 

Then, select the best performing forecast within the Multivariate Singular Spectrum Analysis 

with Auxiliary Information, MSSA(AI) framework forecast after generating from univariate 

model. MSSA model begins with the decomposition stage which has two steps known as 



 

embedding and Singular Value Decomposition (SVD). MSSA(AI) with the help of Vertical 

MSSA Recurrent (VMSSA-R) and Vertical MSSA Vector (VMSSA-V)) consider data with 

different series lengths and a time lag in the future for developing an improved accuracy 

multivariate forecast distinguished based on the RMSE and the ratio of the RMSE criteria. The 

results indicate that the MSSA(AI) forecasts UK consumer price inflation are statistically 

significant better than the forecasts from ARIMA, NN, and BATS models in a long run. 

Furthermore, Hassani et al., (2013) had proposed using univariate Singular Spectrum Analysis 

(SSA) and MSSA to predict inflation dynamics in USA. There are two indicators that used for 

the inflation prediction which are CPI and gross domestic product (GDP) price index. The 

indicator of CPI used the datasets from January 1986 to December 1996 while the GDP index 

used the datasets from 1970 to 1985. The model was carried out in short run by quarterly and 

long run by yearly. The accuracy of prediction was measured by root mean square errors 

(RMSE) and statistical significance test namely Diebold-Mariano was performed in order to 

measure the forecast performance on the rate of inflation. In this research paper, the result 

shows that SSA and MSSA are statistically significant outperforms to other methods in 

forecasting inflation and price indices. From the empirical results, it can conclude that MSSA 

is the best performance in predicting the direction of change at 1% of confidence level and 

consider that MSSA is a most effective approach in economic forecasting. Next, Caporale and 

Skare (2018) had proposed about the application of univariate and multivariate of SSA in 

Netherlands for analysing Gibson’s paradox from the period of 1800 to 2012 which the data 

observations including 73 macroeconomics variables. This study analyse the co-movement 

between the long term and short term of interest rates and CPI. The spectrum was used to 

examine the correlation between the interest rates and CPI and to shows the inflation dynamics 

pattern of statistical framework. This technique used three types of spectral measures namely 

Squared Coherency, Gain and the Phase spectrum and the accuracy of prediction is measured 

by MSE. This approach also to perform decomposition of the interest rates and CPI data into 

the oscillatory components in a long term bond yields. Based on the spectral analysis, it 

displayed that the interest rates and CPI are highly correlated both in the short and long run by 

using coherency squared function. Besides, the MSSA shows that it improved the accuracy of 

one-step ahead forecast compared to the forecast by univariate SSA.  

 

2.7 Process Neural Network (PNN)  

 



 

Ge and Yin (2018) conducted a research on consumer price index prediction using time 

series analysis which is the application of process neural network. The China’s CPI historical 

data are composed of eight categories residents’ basic consumption data, and has very strong 

nonlinear characteristics. The seasonal and non-seasonal factors have affected the monthly 

economic time series. The first structure of PNN is weighted operator can be time-varying has 

an advantage in CPI short-term prediction, the second structure of PNN is aggregation operator 

is composed of multi-input aggregation in space and cumulative aggregation of time and the 

third structure is activation operator. The input function vector of structures in this process is 

weight function and activation function which may take linear function, Sigmoid function and 

Gauss-type function. The topology structure of feedforward PNN has the input of time-varying 

function, the constant output, and the topology structure of network is n-m-L-1. Concrete 

measures were adopted to improve overall CPI prediction accuracy. The normalized raw data 

was directly expressed as a set of orthogonal basis expanded form to reduce errors and speed 

up network convergence. In PNN, the concrete implements of combined type improved BP 

algorithm have applied momentum method, adaptive learning rate method and steepness factor 

method to get better convergence accuracy and test errors. The results revealed that the training 

parameters selected are 8 input nodes, 100 is the first hidden layer nodes, 1 is the second hidden 

layer nodes, learning rate is 0.01, the largest iteration number is 10000, learning accuracy is 

0.001, momentum factor is 0.8 activation function of the first hidden layer is the tangent 

sigmoid function, activation function of the second layer is a linear function, the minimum run 

gradient is 1e-010. The network was terminated after 305 generations because the gradient does 

not meet the minimum run gradient value. The average relative error of test samples in the 

traditional neural network model is -4.591% and the average of relative errors absolute value 

is 4.591% respectively. This implies that a multivariable and nonlinear PNN provides a short 

term prediction of time series compared to traditional neural network prediction model. 

 

2.8 Vector Error Correction Model (VECM) 

 

Venkadasalam (2015) used Augmented Dicker-Fuller (ADF) to examine the 

stationarity of CPI with the macroeconomic variables then estimated the data by VECM model 

to determine the long term equation in identifying the long run causality results. The purpose 

of the study is to show the significance of broad money, export of good and services, gross 



 

domestic product, and household final consumption expenditure to the CPI on long run 

economy. The output of this study indicate that VECM model faced restriction on short run 

interactions between the CPI and others variables. 

 

2.9 Hybrid Neuro-Fuzzy Model  

 

In addition, a study on forecast of inflation level from US markets by using Hybrid 

Neuro-Fuzzy system of neural network has been conducted (Enke & Mehdiyev, 2014). This 

study used average monthly CPI data of 169 data values which are from January 2000 to 

January 2014 to predict the future change of CPI for the upcoming 12 months. There are three 

stages have applied in this model which are data collection and analysis, subtractive clustering 

and fuzzy inference neural networks. Graphical representation showed clearly for the hybrid 

model in CPI prediction and is measured with the root mean square error (RMSE) which yield 

the lowest RMSE value with 0.829 compared to others model. 

 

2.10 Support Vector Machine (SVM)  

 

Qiong and Zhong (2013) researched the development of a model to estimate the 

residents of China's CPI yearly data from 2010 to 2012 by using the idea of least squares SVM 

model with genetic anneal simulation algorithm. This model performs three stages in adjusting 

the accurate parameters and optimizing characteristics which are embedding, nested-based 

hybrid framework and improved genetic algorithm. The efficiency of the forecast models is 

evaluated using the average relative error which compare between the actual and prediction 

value. The results exhibit the predictive accuracy performance of SVM in time series analysis 

is relatively large in contrast with grid network search method with 95% to 87% respectively. 

 

2.11 Nonlinear Autoregressive Distributed Lag Model (NARDL) 

Alsamara et al., (2020) modelled the import price index into CPI and inflation rate in 

Gulf Corporation Countries (GCC) by using the NARDL approach in order to examine the 



 

short run and long run asymmetric pass through. The nonlinear empirical analysis indicates 

that gross domestic products on CPI have highly influence the overall economic growth of 

GCC in a long run. The dynamic multiplier was used to reveal the long run pattern and make 

a stability adjustment of CPI data to a new equilibrium state after a shock. This technique is 

indeed impact the exchange rate on domestic consumer price over both short- term and long-

term horizons. 

 

2.12 Summary  

 

There are many studies that have been applied in CPI forecasting by using different 

techniques. Since Singular Spectrum Analysis is the powerful tool that used in predicting CPI, 

thus, we will develop the univariate nonparametric forecast model to predict the monthly 

average consumer price indices in Malaysia in this paper. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

CHAPTER 3 

 

 

METHODOLOGY 

  

3.1 Introduction 

 

This chapter is focused on the research methodology. The steps of embedding and 

singular valued decomposition are used in choosing the suitable window length in changing 

the dimension of the Hankel matrix in decomposition stage of singular spectrum analysis. Then, 

the selection of the singular value of parameter and signal filtration process by the grouping 

and diagonal averaging methods required to carry out to maintain the stability structures in 

reconstruction stage. The forecast accuracy of model should be measured based on identifying 

the appropriate parameters and approximating the dimension of rank of trajectory matrix. The 

method mentioned above will be further discussed in this chapter. 

 

3.2 Research framework 

 

Figure 3.2.1 shows research framework. 

 

3.3 Stationarity 

 

Augmented Dicker-Fuller (ADF) test is used to check the unit root for stationarity in 

time series analysis (Stephanie, 2016). The DF test statistic formula is: 

 

𝐷𝐹𝜏 =
�̂�

𝑆𝐸(�̂�)
      (3.1) 

 

 

There exists a unit roots and the data is non-stationary when the null hypothesis is rejected 

where 𝛾 = 0. This indicate that the p-value is less than 0.05 or the 𝐷𝐹𝜏 statistic is more negative 

compared to the critical value of the Dicker-Fuller t distribution. Besides, the autocorrelation 

function (ACF) was also be used in identifying and interpreting the correlogram for stationarity 



 

of data by using the formula defined as below: 

 

𝑟𝑘 =
∑ (𝑥𝑡−�̅�)(𝑥𝑡−𝑘−�̅�)𝑛−𝑘

𝑡=1

∑ (𝑥𝑡−�̅�)2𝑛
𝑡=1

      (3.2) 

 

where 𝑟𝑘 is the autocorrelation coefficient for a 𝑘 period lag, �̅� is the mean of the time series, 

𝑥𝑡 is the value of the time series at period 𝑡 and 𝑥𝑡−𝑘 is the value of time series 𝑘 period before 

period 𝑡. 

 

 

Figure 3.2.1 Research Framework 

 

Literature review on Autoregressive Integrated Average (ARIMA), Vector 

Autoregression (VAR), Mixed Data Sampling (MIDAS), Multivariate Singular 

Spectrum Analysis (MSSA), Process Neural Network (PNN), Vector Error 

Correction Model (VECM), Hybrid Neuro-Fuzzy Model, Support Vector Machine 

(SVM) and Nonlinear Autoregressive Distributed Lag Model (NARDL) 

Data Collection 

Data Processing and Analysis 

Embedding dimension selection and principal 

components grouping in decomposition stage 

Selection of singular value parameter by 

diagonal averaging in reconstruction stage  

Forecasting 



 

3.4 Structural Break 

 

In identifying whether there is a structural break in the model, Chow test statistics are 

computed. Chow test is a useful tool that commonly used to analyze the changes in periods of 

time series data. The splitting of a model into samples at a prior breakpoint in the two linear 

regression equations as follow: 

 

                   𝑦𝑡 = 𝑋1𝑏1 + 𝜇1    (3.3)   

   𝑦𝑡 = 𝑋2𝑏2 + 𝜇2    (3.4)  

    

If the coefficients are equal which are  𝑏1 = 𝑏2 and  𝜇1 = 𝜇2, then the datasets can be defined 

as there exists a single regression line (Stephanie, 2016). The null hypothesis is the data has no 

breakpoint and the F statistical test is calculated by using the formula as shown: 

 

𝐹 =
(𝑅𝑆𝑆𝑝−(𝑅𝑆𝑆1+𝑅𝑆𝑆2))/𝑘

(𝑅𝑆𝑆1+𝑅𝑆𝑆2)/(𝑁1+𝑁2−2𝑘)
      (3.5) 

 

where 𝑅𝑆𝑆𝑝 is the pooled regression line, 𝑅𝑆𝑆1 is the regression line before break and 𝑅𝑆𝑆2 is 

the regression line after break. The null hypothesis is rejected when the calculated p-value of 

F statistics value is lower than the critical value of 0.0005. 

 

3.5 Singular Spectrum Analysis 

 

Singular spectrum analysis (SSA) is a powerful tool of statistical analysis in forecasting 

consumer price index data. Based on research paper from Sun and Li (2017) states that the 

paper of SSA model is first published by Broomhead and King in 1986. Gill, Vautard and their 

colleagues deal with the paper on the methodological aspects of analogy between the trajectory 

matrix and the application of SSA. The natural extension from univariate framework to 

multivariate SSA (MSSA) take advantage in obtaining similar idea as SSA with larger matrices 

for multi-vintage data. SSA is mainly based on matrix and a univariate analysis which can 

decompose a time series data into many component parts such as trend, seasonal, cyclical and 

random. Since SSA is a nonparametric model, therefore it is well appropriate for exploratory 

analysis of time series. SSA can be applied in solving many types of problems such as time 

series decomposition, trend extraction, noise reduction, parameter estimation, signal extraction, 



 

data mining and forecasting. This revealed that SSA method is slightly difference when 

comparing with the conventional time series analysis. The powerful model-free technique of 

SSA is unrestricted with any pattern of time series data. For instance, SSA enable to generate 

the forecast by using less volatile data or does not have to assumed the stationarity-type 

condition for the time series. The main purpose of this method is to predict the nonlinear 

dynamics for reconstructing the attractor of a system in time series analysis.  

 

This statistical technique then is widely used in dealing with spectral profile which can 

illustrate how the features can be applied to analyse the extensive signals in order to attain 

narrow band signals or to deduce the rate of occurrence. SSA is usually used to reduce the 

additive noise level and detect damage on the structural components that containing noise in 

processing measurement of nonlinear vibration systems. In addition, SSA also simply served 

to extract the underlying deterministic dynamics and nonlinear filtering. This method is 

incorporating with the elements of traditional time series analysis, multivariate statistics and 

signal processing. Indeed, it is often to be applied in meteorological, economics, social sciences, 

financial mathematics and dynamical systems.  

 

3.5.1 Procedure of Singular Spectrum Analysis 

 

The powerful nonparametric SSA method consists of two important complementary 

stages which are decomposition and reconstruction (Osmanzade, 2017). Both together 

incorporate with two separate steps. At the beginning stage, decompose the series into the sum 

of components such as trend, periodic and noise while at the second stages carry out 

reconstruction on the original series then apply the resulting reconstructed components for 

forecasting new data points by filtration and parameter estimation within SSA framework. In 

this paper, SSA methodology is being described and this implementation is used for analysis 

of real world statistics time series data. Then, it is adaptable in applying this useful technique 

to the original time series which is the monthly data of consumer price index in Malaysia. 

 

(I) Decomposition stage 

 

Based on the singular spectrum of time series analysis, two steps are required in the 

decomposition stage of SSA namely Embedding and Singular Valued Decomposition (𝑆𝑉𝐷). 

Embedding is the fundamental process of mapping the sample time series into a vector space 



 

of multi-dimensional time series, 𝑋1, 𝑋2, … , 𝑋𝑘  with lagged vectors 𝑋𝑖 = (𝑥𝑖, … , 𝑥𝑖+𝐿−1)𝑁  , 

𝑖 = 1, … , 𝐾 where 𝐾 = 𝑁 − 𝐿 + 1 and the embedding single parameter is the window length, 

𝐿 in integer 2 ≪ 𝐿 ≪ 𝑁. The selection of window length for constructing the trajectory matrix 

is very important because it gives distinct structure observed behaviour of a dataset. Large 

window length, 𝐿  must be considered but is not greater than 𝑁/2 to ensure that the 

measurement on signals and noise components are clearly separated. 

 

Define the trajectory matrix, 𝑋: 

 

                      𝑋 = [𝑋1, 𝑋2, … , 𝑋𝑘] = (𝑥𝑖𝑗)
𝑖,𝑗=1

𝐿,𝐾
                             (3.6) 

 

where 𝑋 is the Hankel matrix. There are two properties of Hankel matrix which are both its 

rows and columns of 𝑋 are subseries of the original time series and all the elements of 𝑋 along 

the anti-diagonals are equal to each other. Then, 𝑆𝑉𝐷 procedure is applied in analysing the 

accuracy of singular values in Hankel matrix in order to change the dimension of matrix on 

eigenvalues. Hankel matrix play an important role in orthogonal polynomial theory, stability 

theory and model reduction. Denote 𝜆1, 𝜆2, … , 𝜆𝐿  are the eigenvalues of matrix 𝑋𝑋𝑇 in non-

increasing order of magnitude where 𝜆1 ≥  … 𝜆𝐿 ≥ 0  and define 𝑈1, 𝑈2, … , 𝑈𝐿  are the 

corresponding eigenvectors in orthogonal system. The adjustment of eigenvalues and 

eigenvectors is required to reduce the effects in separating the signals from noise component. 

In general, if denote principal components, 𝑉𝑖 = 𝑋𝑖
𝑇𝑈𝑖/√𝜆𝑖 , then the 𝑆𝑉𝐷 of trajectory matrix, 

𝑋 written as 

 

                              𝑋1, 𝑋2, … , 𝑋𝐿                                             (3.7) 

 

where 𝑋𝑖 = √𝜆𝑖𝑈𝑖𝑉𝑖
𝑇, √𝜆𝑖 is the spectrum of matrix 𝑋𝑖 , 𝑃𝑖 = 𝑈𝑖 of elementary matrices is left 

singular vector and 𝑄𝑖 = √𝜆𝑖𝑉𝑖 is right singular vector. The trajectory matrices of 𝑋𝑖 have rank 

𝑋 where 𝑑 = max(𝑖, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝜆𝑖 > 0). The eigentriple matrix is then called (√𝜆𝑖, 𝑈𝑖, 𝑉𝑖). 

The expansion of 𝑆𝑉𝐷 (3.2) is unique defined when all the eigenvalues have multiplicity of 

one. The 𝑆𝑉𝐷 of matrix 𝑋, ∑ 𝑋𝑖
𝑟
𝑖=1  also create handle in approximating the optimal minimum 

rank matrix of ||𝑋 −  𝑋(𝑟)||  where rank, 𝑟 < 𝑑 . Hence, consider the characteristics of the 

contribution from expansion of 𝑆𝑉𝐷 (3.2) has a ratio of 𝜆𝑖/ ∑ 𝜆𝑖
𝑑
𝑖=1  and the characteristics of 



 

the optimal approximation of 𝑋𝑖 by the  trajectory matrices of rank, 𝑟 has the sum of the first 𝑟 

ratios, ∑ 𝜆𝑖
𝑟
𝑖=1 / ∑ 𝜆𝑖

𝑑
𝑖=1 . 

 

(II) Reconstruction stage 

 

After evaluating all the possible combination of rank, 𝑟 where (1 ≪ 𝑟 ≪ 𝐿 − 1) by 

SVD of Hankel matrix, then the process of eigentriple grouping and diagonal averaging are 

applied in reconstruction stage. Splitting elementary matrices of 𝑋𝑖  into a few groups and 

summing the matrices within each group. If let 𝐼 = 𝑖1, … , 𝑖𝑝  for 𝑝 < 𝐿 be a group of indices 

𝑖1, … , 𝑖𝑝  , then the matrix of 𝑋𝐼 is corresponding to the group 𝐼 defined as 𝑋𝐼 = 𝑋𝑖1, … , 𝑋𝑖𝑝 . 

Partition the set of indices {1, … , 𝐿} into diagonal subsets  𝐼1, … , 𝐼𝑚 and this separation lead to 

the following decomposition representation: 

  

𝑋 = 𝑋𝐼1, … , 𝑋𝐼𝑚                                          (3.8) 

 

The procedure when selecting 𝐼1, … , 𝐼𝑚 called eigentriple grouping. For a given group 𝐼, the 

contribution of the component 𝑋𝐼 is measured by the share of eigenvalues  ∑ 𝜆𝑖𝑖∈𝐼 / ∑ 𝜆𝑖
𝑑
𝑖=1 . 

After that, the steps of extraction signal on filtration process is very important in performing 

diagonal averaging by transforming a matrix to the form of Hankel matrix in order to choose 

the singular values of parameter 𝑟 which can then subsequently converted into new time series. 

If 𝑧𝑖𝑗 stands for the element of a matrix 𝑍, then the 𝑘𝑡ℎ term of the resulting series is obtained 

by averaging 𝑧𝑖𝑗 for all 𝑖, 𝑗 such that 𝑖 + 𝑗 = 𝑘 + 1 and this called as Hankelization of matrix 

𝑍.  After apply Hankelization procedure to matrix components by performing diagonal 

averaging, another expansion of matrix 𝑋 = 𝑋𝐼1̃ + ⋯ + 𝑋𝐼�̃�   obtained where 𝑋𝐼�̃�  is the 

diagonal version of matrix 𝑋𝐼𝑗 and 𝑋𝐼1̃ = 𝐻𝑋.  This is equivalent to the initial series  𝑥1, … , 𝑥𝑁  

and decomposed to the sum of 𝑚 series  𝑦𝑛 = ∑  𝑦�̃�
(𝑘)𝑚

𝑘=1  , 𝑛 = 1, … , 𝑁  which corresponding 

to the matrix 𝑋𝐼�̃�. The resulting series constructed by the elementary grouping will called as 

elementary reconstructed series. 

 

 

 

 



 

3.5      Summary 

 

This chapter focussed on SSA procedures in CPI forecasting. SSA consists of two 

stages which are decomposition stage and reconstruction stage. In decomposition stage, the 

embedding and singular value decomposition process was used to select the appropriate 

window length in changing the dimension of the Hankel matrix. Then, SSA carry out grouping 

and diagonal averaging techniques in reconstruction stage to identify the appropriate 

parameters and approximating the dimension of rank of trajectory matrix. It also performs 

filtration process in extracting trend, seasonality and noise components to form reconstructed 

series. The reconstructed series was then used for forecasting. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

CHAPTER 4 

 

 

ABOUT CPI TIME SERIES DATA 

 

4.1 Introduction 

 

In chapter 4, we will discuss on the time series behaviour, test for stationarity, structural 

break analysis and post-period structural break selection on CPI data. 

 

 

 4.2 Data Description 

 

In this study, we will describe the plot behaviour analysis on CPI monthly data, check 

the stationarity of data and carry out structural breaks tests for identification and data selection. 

The CPI data is obtained from DOSM official portal that taken from the website of Malaysian 

Employers Federation (MEF). CPI is used to estimate the average price changes of 

representative basket of goods and services purchased by consumer in a specific time period. 

It can be categorised as food, clothes, medical care, transportation and education which serves 

as the economic indicator of inflation in measuring and aggregating the price level and reflect 

the economics in Malaysia. In this study, the CPI consists of time series monthly data from 

January 2005 to October 2020 is mainly focus on Malaysia, Peninsular Malaysia, Sabah and 

WP Labuan as well as Sarawak. 

 

4.2.1 Plot behaviour analysis  

 

Based on the data obtained, the time series plot of the CPI monthly data for Malaysia, 

Peninsular Malaysia and East Malaysia from January 2005 to October 2020 which are 

equivalent to 190 months as shown in Figure 4.1. From the graph plotting in Figure 4.1, the red 

indicate Malaysia, blue indicate Peninsular Malaysia, green represent of Sabah and WP Labuan 

while grey represent of Sarawak. 



 

 

 

Figure 4.1 The time series plot of the CPI monthly data 

 

Figure 4.1 displays the trend plots of the CPI monthly data for Malaysia, Peninsular Malaysia, 

Sabah and WP Labuan and Sarawak that exhibit the increasing pattern from January 2005 to 

December 2009 followed by a sudden drop in year 2010 and then rise up again from January 

2011 to October 2020 as the time goes on. The rising in the monthly CPI data for Peninsular 

Malaysia cause an increase in the overall CPI data of Malaysia as the overall behaviour of the 

CPI data of East Malaysia always remain lower compare to Peninsular Malaysia. 

  

4.2.2 Stationarity 

 

 In order to check the stationarity of the time series data, the test statistic is carried out 

by performing Augmented Dickey-Fuller (ADF) test. The null hypothesis for this test is the 

model has a unit root and non-stationary data. The more negative the DF statistic, the higher 

the chance in rejecting the null hypothesis at the confidence level. In general, the p-value of 

less than 0.05% indicate reject null hypothesis that the data exists a unit root and is non-



 

stationary. From Table 4.1, it was displaying the results conducted by using ADF test of the 

CPI monthly data for Malaysia, Peninsular Malaysia, Sabah and WP Labuan and Sarawak. 

Based on the table, it shows that all the p-value are greater than 𝑝 = 0.05 implies that the null 

hypothesis is accepted. Then, the autocorrelation can be diagnosed from the correlogram as 

shown in Figure 4.2. The ACF plots shows all the original series die down slowly indicate that 

the data is stationary. Hence, we can conclude that the data have unit roots and are non-

stationary. 

  

Data Dicker-Fuller (DF) p-value 

Malaysia -2.0262 0.5652 

Peninsular Malaysia -1.9478 0.5980 

Sabah and WP Labuan -2.4850 0.3732 

Sarawak -2.2362 0.4773 

 

Table 4.1 Augmented Dicker-Fuller (ADF) Test 

 

 

4.2.3 Structural breaks for data selection 

  

Since this series has non-stationary behaviour therefore, we failed to implement Box-

Jenkin ARIMA model for further analysis. This is because ARIMA methodology only capable 

to use the time series with stationary assumption in predicting the future data. When there is 

non-stationary data, it required the transformation of data from non-stationary to stationary by 

method of differencing in order to perform analysis and forecasting. As a result, non-stationary 

pattern that likely to contain unexpected changes over time may lead to inaccurate forecast. 

 

 

 

 



 

                 

           

 

Figure 4.2 The ACF plot for Malaysia, Peninsular Malaysia, Sabah and WP Labuan and 

Sarawak 

 

In order to reduce forecast error, we have chosen a specific period to analyse CPI data 

based on the post-structural break period identified via Chow test of the CPI monthly data from 

January 2005 to October 2020. The null hypothesis of Chow test is that there has no breakpoint 

in the model. In Chow test, the p-value which less than 0.0005 or if the calculated F statistic 

is greater compared to the F-critical value will give the evidence of rejecting null hypothesis 

that the model does not has any breakpoint. Table 4.2 reveals the results that obtained by Chow 

test. It shows that CPI for Malaysia, Peninsular Malaysia and East Malaysia have same 



 

breakpoints that corresponding to the break dates at August 2007, December 2009, April 2012, 

August 2014 and December 2016. Since all the p-value of 2.20E-16 are the same which is 

lower than 0.0005 implies that the null hypothesis is rejected. The resulting breaks at different 

period as depicted in Figure 4.3 and the vertical dotted lines indicate breakpoints that 

corresponding to the break dates of the data. Then, the selected post-period structural break on 

the monthly data period of Malaysia from January 2017 to October 2020 that equivalent to 46 

data observations was used to perform SSA approach in CPI forecasting as displayed in Figure 

4.4.  

 

Data F-statistic Breakpoints Break dates p-value 

Malaysia 448.4400 t=32, 60, 88, 

116, 144 

Aug-07, Dec-09, Apr-12, 

Aug-14, Dec-16 

2.20E-16 

Peninsular 

Malaysia 

493.1300 t=32, 60, 88, 

116, 144 

Aug-07, Dec-09, Apr-12, 

Aug-14, Dec-16 

2.20E-16 

Sabah and 

WP Labuan 

144.1300 t=32, 60, 88, 

116, 144 

Aug-07, Dec-09, Apr-12, 

Aug-14, Dec-16 

2.20E-16 

Sarawak 250.5000 t=32, 60, 88, 

116, 144 

Aug-07, Dec-09, Apr-12, 

Aug-14, Dec-16 

2.20E-16 

 

Table 4.2 Chow Test 

 

    

Figure 4.3 The time series plot with breakpoints 



 

 

 

 

Figure 4.4 The post-period structural break for the CPI monthly data 

 

4.3 Summary 

 

This chapter applied the monthly of CPI data from January 2005 to October 2020. The 

behavior of CPI time series data exhibit trend plot for Malaysia, Peninsular Malaysia and East 

Malaysia and the data is not stationary. In order to improve accurate forecast, we compute 

Chow test for structural change of the model. According to the analysis, we select the post-

period structural break on Malaysia’s CPI data from January 2017 to October 2020 which used 

to carry out SSA in CPI forecasting. 

 

 

 

 

 

 



 

CHAPTER 5 

 

 

EXPECTED RESULTS  

 

5.1 Introduction 

 

This chapter will discuss about Singular Spectrum Analysis (SSA) approach to post-

period structural break selection on Malaysia CPI data. 

 

5.2 Expected Findings 

 

In SSA approach, there are two important complementary procedures namely 

decomposition stage and reconstruction stage. In decomposition stage, the step of embedding 

is very important in selecting the appropriate number of window length which should be 

divisible by the period (Golyandina & Korobeynikov, 2014). Large window length is required 

to ensure that the signals components is clearly separated which cause the method of single 

value decomposition to be more effective. Since there are 46 data observations for Malaysia 

CPI data that contain 23 window length, therefore we select the possible window length of 12 

for trend extraction as shown in Figure 4.5. In Figure 4.5, it shows that there are 12 eigenvectors 

and 0 elementary reconstruction series as well as the eigenvalues and eigenvectors of diagnostic 

plot with 12 window length as depicted in Figure 4.6. 

 

Figure 4.5 Decomposition stage of Singular Spectrum Analysis 



 

 

 

Figure 4.6 Eigenvalues and eigenvectors of diagnostic plot of original data 

 

 Then, the one dimensional plot of the eigenvectors and the reconstruction series are 

displayed in Figure 4.7 and Figure 4.8. Based on Figure 4.7, the selection of the eigenvector in 

the first graph is necessary to perform trend smoothing since it has the highest contribution of 

the leading eigentriple which is 99.99% with lowest frequency while the other graphs show 

only 0% of the leading eigentriple with high frequency which are not suitable for trend 

extraction. Moreover, we can notice that the trend as depicted in Figure 4.7 is coincides with 

the reconstructed components as shown in Figure 4.8. It is clearly observed that the 

combination trend from second, third and fourth graphs of one dimensional eigenvectors in 

Figure 4.8 is coincides with the second graph of reconstructed series as displayed in Figure 4.7. 

After that, the graph of comparison on original data and the SSA with extract trend is displayed 

in Figure 4.9 and the periodogram of the residual trend series is depicted in Figure 4.10. From 

Figure 4.9, the black line indicates the original data while the red dotted line indicates the SSA 

with estimated trend components. Thus, this indicate that SSA is capable to decompose the true 

signals from noise series into trend components for smoothing based on the spectrum of 

eigenvectors in the singular valued decomposition of the covariance matrix. Next, the 

diagnostic plot of the number of eigenvalues and eigenvectors with extract trend of 12 window 

length as revealed in Figure 4.11. 

 



 

 

 

Figure 4.7 Visual Information for eigenvectors 

 

 

 

Figure 4.8 Visual Information for reconstructed series 

 



 

 

 

Figure 4.9 Graph of comparison on original data and SSA with trend extraction series 

 

 

 

Figure 4.10 Periodogram of residual trend series 

 



 

 

 

Figure 4.11 Eigenvalues and eigenvectors of diagnostic plot of extracted trend 

 

 Subsequently, we carried out the extraction of seasonality from the residual. In order to 

detect and identify the fluctuation over the selected CPI data period, the graph of scatter plot 

for the pairs of eigenvectors and w-correlation matrix of the elementary components are used. 

Each pair of the eigenvectors that shown in Figure 4.12 is corresponding to the sine wave of 

the seasonal data behaviour. According to Figure 4.12, we can observe that the regular shape 

of the pairs of eigenvectors can be described by the periodogram of residual trend series as 

depicted in Figure 4.10. The w-correlation matrix in Figure 4.13 also shows that the pairs of 

eigenvectors are highly correlated within each other. As a result, we can indicate that the CPI 

data of Malaysia does not contain any white noise components. The graph of comparison on 

original data and the SSA with extract seasonal is depicted in Figure 4.14 and the reconstructed 

series of the combination of the original series as well as SSA with extract trend and seasonality 

must be plotted as revealed in Figure 4.15. The reconstructed series of the smoothing trend and 

seasonality components with SSA was then used to perform CPI forecasting. 

 



 

 

 

Figure 4.12 Visual information on the pair of eigenvectors of elementary components 

 

 

 

Figure 4.13 W-correlation matrix 



 

 

 

Figure 4.14 Graph of comparison on original data and SSA with seasonality extraction series 

 

 

 

Figure 4.15 Graph of comparison on original data and SSA with trend and seasonality 

extraction series 

 

 

 



 

5.3 Summary 

 

This chapter discussed on the application of SSA to CPI data of Malaysia from January 

2017 to October 2020. SSA is able to perform two stages which include decomposition and 

reconstruction stages as well as filtering process for trend and seasonality extraction to form a 

reconstructed series. As a result, we can firm to say that the non-stationarity of data is valid to 

use in CPI forecasting by univariate non-parametric SSA without required any transformation 

of data such as ARIMA model. 
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Appendix R code 

 

library(tseries) 

#Change the excel workbook to CSV type file before import to R 

cpidata <- read.csv(file.choose(), header=T) 

cpidata 

 

#unit root test by using Augmented Dicker-Fuller(ADF) Test 

#Taking 0.05 as critical value of t-distribution 

#Ho: The series has unit root indicate that the series is non-stationary 

#H1: The series has no unit root indicate that the series is stationary 

#test the stationarity for CPI of Malaysia 

adf.test(cpidata$Malaysia) 

#test the stationarity for CPI of Peninsular Malaysia 

adf.test(cpidata$Peninsular.Malaysia) 

#test the stationarity for CPI of Sabah and WP Labuan 

adf.test(cpidata$Sabah.and.WP.Labuan) 

#test the stationarity for CPI of Sarawak 

adf.test(cpidata$Sarawak) 

 

library(stats) 

#ACF test to determine whether the data is stationary or not 

#test the stationarity for CPI of Malaysia 

acf(cpidata$Malaysia) 

#test the stationarity for CPI of Peninsular Malaysia 

acf(cpidata$Peninsular.Malaysia) 

#test the stationarity for CPI of Sabah and WP Labuan 

acf(cpidata$Sabah.and.WP.Labuan) 

#test the stationarity for CPI of Sarawak 

acf(cpidata$Sarawak) 

 

#Time series plot of CPI data 



 

#Shows 190 datasets and 4 variables: Malaysia, Peninsular Malaysia, Sabah & WP. Labuan, 

Sarawak 

str(cpidata) 

 

#Malaysia's CPI data 

M=cpidata$Malaysia 

M 

#Peninsular Malaysia's CPI data 

PM=cpidata$Peninsular.Malaysia 

PM 

#Sabah & WP.Labuan's CPI data 

SWPL=cpidata$Sabah.and.WP.Labuan 

SWPL 

#Sarawak's CPI data 

S=cpidata$Sarawak 

S 

Month=cpidata$Month 

Month 

 

plot(M,type="l", lwd=2, 

xaxt="n", ylim=c(100,130), col="red", 

xlab="Month", ylab="Consumer Price Index (CPI)", 

main="Monthly CPI from January 2005 to October 2020") 

axis(1,at=1:length(Month), labels=Month) 

lines(PM, col="blue",type="l", lwd=2) 

lines(SWPL, col="green",type="l", lwd=2) 

lines(S, col="grey",type="l", lwd=2) 

 

#Add a legend to the plot 

legend("topright", legend=c("Malaysia", "Peninsular.Malaysia", 

"Sabah.and.WP.Labuan","Sarawak"), 

lty=1, lwd=2, pch=21, col=c("red", "blue", "green", "grey"), 

ncol=2, bty="n", cex=0.8, 



 

text.col=c("red", "blue", "green", "grey"), 

inset=0.01) 

 

plot(M,type="l", lwd=2, 

xaxt="n", ylim=c(100,130), col="red", 

xlab="Month", ylab="Consumer Price Index (CPI)", 

main="Monthly CPI from January 2005 to October 2020") 

axis(1,at=1:length(Month), labels=Month) 

lines(PM, col="blue",type="l", lwd=2) 

lines(SWPL, col="green",type="l", lwd=2) 

lines(S, col="grey",type="l", lwd=2) 

 

#Add a legend to the plot 

legend("topright", legend=c("Malaysia", "Peninsular.Malaysia", 

"Sabah.and.WP.Labuan","Sarawak"), 

lty=1, lwd=2, pch=21, col=c("red", "blue", "green", "grey"), 

ncol=2, bty="n", cex=0.8, 

text.col=c("red", "blue", "green", "grey"), 

inset=0.01) 
 

 

library(strucchange) 

library(tseries) 

library(stats) 

#Time series plot of CPI data  

plot.ts(cpidata) 

#Time series plot of CPI data for Malaysia  

M <- ts(cpidata$Malaysia, start=c(0:190)) 

plot(M) 

#Test the model null hypothesis that the model has no breakpoint 

#Structural break on Chow test 

#Find the breakpoints that corresponding to the breakdates 

#Compute F statistics 

fsM <- Fstats(M ~ 1) 



 

plot(fsM) 

#Perform structural change test based on the CPI data of Malaysia 

#Calculate supremum (least upper bound) F statistic and p value 

sctest(fsM) 

#Shows the optimal 2-segment partition 

breakpoints(fsM) 

lines(breakpoints(fsM)) 

#Shows the optimal (m+1)-segment partition 

#Shows all the breakpoint and corresponding breakdates  

#Calculate RSS and BIC for identification number of breaks 

bpM <- breakpoints(M ~ 1) 

summary(bpM) 

plot(bpM) 

#Shows the optimal 6-segment partition 

#Shows the breakpoint and corresponding breakdates when m= 5 

strucchange::breakpoints(cpidata$Malaysia~1) 

fm0 <- lm(M ~ 1) 

fm1 <- lm(M ~ breakfactor(bpM, breaks=1)) 

plot(M) 

lines(ts(fitted(fm0), start = 0), col = 3) 

lines(ts(fitted(fm1), start = 0), col = 4) 

lines(bpM) 

#Compute confidence interval for parameter of Malaysia's CPI 

ciM <- confint(bpM) 

ciM 

lines(ciM) 

 

#Time series plot of CPI data for Peninsular Malaysia  

PM <- ts(cpidata$Peninsular.Malaysia, start=c(0:190)) 

plot(PM) 

#Test the model null hypothesis that the model has no breakpoint 

#Structural break on Chow test 

#Find the breakpoints that corresponding to the breakdates 



 

#Compute F statistics 

fsPM <- Fstats(PM ~ 1) 

plot(fsPM) 

#Perform structural change test based on the CPI data of Peninsular Malaysia 

#Calculate supremum (least upper bound) F statistic and p value 

sctest(fsPM) 

#Shows the optimal 2-segment partition 

breakpoints(fsPM) 

lines(breakpoints(fsPM)) 

#Shows the optimal (m+1)-segment partition 

#Shows all the breakpoint and corresponding breakdates  

#Calculate RSS and BIC for identification number of breaks 

bpPM <- breakpoints(PM ~ 1) 

summary(bpPM) 

plot(bpPM) 

#Shows the optimal 6-segment partition 

#Shows the breakpoint and corresponding breakdates when m= 5 

strucchange::breakpoints(cpidata$Peninsular.Malaysia~1) 

fm0 <- lm(PM ~ 1) 

fm1 <- lm(PM ~ breakfactor(bpPM, breaks=1)) 

plot(PM) 

lines(ts(fitted(fm0), start = 0), col = 3) 

lines(ts(fitted(fm1), start = 0), col = 4) 

lines(bpPM) 

#Compute confidence interval for parameter of Peninsular Malaysia's CPI 

ciPM <- confint(bpPM) 

ciPM 

lines(ciPM) 

 

#Time series plot of CPI data for Sabah and WP Labuan  

SWPL <- ts(cpidata$Sabah.and.WP.Labuan, start=c(0:190)) 

plot(SWPL) 

#Test the model null hypothesis that the model has no breakpoint 



 

#Structural break on Chow test 

#Find the breakpoints that corresponding to the breakdates 

#Compute F statistics 

fsSWPL <- Fstats(SWPL ~ 1) 

plot(fsSWPL) 

#Perform structural change test based on the CPI data of Sabah & WP Labuan 

#Calculate supremum (least upper bound) F statistic and p value 

sctest(fsSWPL) 

#Shows the optimal 2-segment partition 

breakpoints(fsSWPL) 

lines(breakpoints(fsSWPL)) 

#Shows the optimal (m+1)-segment partition 

#Shows all the breakpoint and corresponding breakdates  

#Calculate RSS and BIC for identification number of breaks 

bpSWPL <- breakpoints(SWPL ~ 1) 

summary(bpSWPL) 

plot(bpSWPL) 

#Shows the optimal 6-segment partition 

#Shows the breakpoint and corresponding breakdates when m= 5 

strucchange::breakpoints(cpidata$Sabah.and.WP.Labuan~1) 

fm0 <- lm(SWPL ~ 1) 

fm1 <- lm(SWPL ~ breakfactor(bpSWPL, breaks=1)) 

plot(SWPL) 

lines(ts(fitted(fm0), start = 0), col = 3) 

lines(ts(fitted(fm1), start = 0), col = 4) 

lines(bpSWPL) 

#Compute confidence interval for parameter of Sabah and WP Labuan's CPI 

ciSWPL <- confint(bpSWPL) 

ciSWPL 

lines(ciSWPL) 

 

#Time series plot of CPI data for Sarawak 

S <- ts(cpidata$Sarawak, start=c(0:190)) 



 

plot(S) 

#Test the model null hypothesis that the model has no breakpoint 

#Structural break on Chow test 

#Find the breakpoints that corresponding to the breakdates 

#Compute F statistics 

fsS <- Fstats(S ~ 1) 

plot(fsS) 

#Perform structural change test based on the CPI data of Sarawak 

#Calculate supremum (least upper bound) F statistic and p value 

sctest(fsS) 

#Shows the optimal 2-segment partition 

breakpoints(fsS) 

lines(breakpoints(fsS)) 

#Shows the optimal (m+1)-segment partition 

#Shows all the breakpoint and corresponding breakdates  

#Calculate RSS and BIC for identification number of breaks 

bpS <- breakpoints(S ~ 1) 

summary(bpS) 

plot(bpS) 

#Shows the optimal 6-segment partition 

#Shows the breakpoint and corresponding breakdates when m= 5 

strucchange::breakpoints(cpidata$Sarawak~1) 

fm0 <- lm(S ~ 1) 

fm1 <- lm(S ~ breakfactor(bpS, breaks=1)) 

plot(S) 

lines(ts(fitted(fm0), start = 0), col = 3) 

lines(ts(fitted(fm1), start = 0), col = 4) 

lines(bpS) 

#Compute confidence interval for parameter of Sarawak's CPI 

ciS <- confint(bpS) 

ciS 

lines(ciS) 

 



 

Month=cpidata$Month 

Month 

plot(M,type="l", lwd=2, 

xaxt="n", ylim=c(100,130), col="red", 

xlab="Month", ylab="Consumer Price Index (CPI)", 

main="Monthly CPI from January 2005 to October 2020") 

axis(1,at=1:length(Month), labels=Month) 

lines(PM, col="blue",type="l", lwd=2) 

lines(SWPL, col="green",type="l", lwd=2) 

lines(S, col="grey",type="l", lwd=2) 

 

#Add a legend to the plot 

legend("topright", legend=c("Malaysia", "Peninsular.Malaysia", 

"Sabah.and.WP.Labuan","Sarawak"), 

lty=1, lwd=2, pch=21, col=c("red", "blue", "green", "grey"), 

ncol=2, bty="n", cex=0.8, 

text.col=c("red", "blue", "green", "grey"), 

inset=0.01) 

 

plot(M,type="l", lwd=2, 

xaxt="n", ylim=c(100,130), col="red", 

xlab="Month", ylab="Consumer Price Index (CPI)", 

main="Monthly CPI from January 2005 to October 2020") 

axis(1,at=1:length(Month), labels=Month) 

lines(PM, col="blue",type="l", lwd=2) 

lines(SWPL, col="green",type="l", lwd=2) 

lines(S, col="grey",type="l", lwd=2) 

 

#Add a legend to the plot 

legend("topright", legend=c("Malaysia", "Peninsular.Malaysia", 

"Sabah.and.WP.Labuan","Sarawak"), 

lty=1, lwd=2, pch=21, col=c("red", "blue", "green", "grey"), 

ncol=2, bty="n", cex=0.8, 



 

text.col=c("red", "blue", "green", "grey"), 

inset=0.01) 

 

lines(bpM) 

lines(bpPM) 

lines(bpSWPL) 

lines(bpS) 
 

 

plot(M,type="l", lwd=2, 

xlim=c(146,190), xaxt="n", ylim=c(100,130), col="red", 

xlab="Month", ylab="Consumer Price Index (CPI)", 

main="Malaysia's CPI from January 2017 to October 

2020") 

axis(1,at=1:length(Month), labels=Month) 

 

#Add a legend to the plot 

legend("topright", legend=c("Malaysia"), 

lty=1, lwd=2, pch=21, col=c("red", "blue", "green", 

"grey"), 

ncol=2, bty="n", cex=0.8, 

text.col=c("red", "blue", "green", "grey"), 

inset=0.01) 
 

 

#Singular Spectrum Analysis 

library(Rssa) 

library(svd) 

library(tseries) 

library(stats) 

#Construction of the time series for decomposition stage 

#Perform decomposition stage using maximum window length 



 

#Trend extraction 

#Show various information about decomposition 

M<- ssa(cpidata$Malaysia) 

summary(M) 

M<-ssa(cpidata$Malaysia, L=12) 

summary(M) 

#Shows eigenvalues diagnostic plot 

#Shows the number of calculated eigenvalues and eigenvectors with 12 window length 

plot(M) 

 

# Eigenvectors shows 1D graphs to detect trend components 

#'idx' argument denotes the indices of vectors 

plot(M, type = "vectors", idx=1:10) 

# Plot of elementary reconstructed series 

# Here the ’groups’ argument specifies the grouping 

plot(M, type = "series", groups = as.list(1:10)) 

 

#Reconstruction stage 

#Extract trend 

res1 <- reconstruct(M, groups = list(1)) 

trend <- res1$F1 

plot(res1, add.residuals = FALSE, plot.type = "single", 

col = c("black", "red"), lwd = c(1, 2)) 

#Extract seasonality from the residual obtained 

res.trend <- residuals(res1) 

spec.pgram(res.trend, detrend = FALSE, log = "no") 

 

#Stage of decomposition and visual information 

res.trend <- residuals(res1) 

M <- ssa(res.trend, L=12) 



 

plot(M) 

# Scatter plots for the pairs of eigenvectors shows 2D graphs to detect sine waves 

#Shows the amplitude and periodic behaviour in complex form 

plot(M, type = "paired", idx = 1:11) 

# Calculate the w-correlation matrix using the first 30 components 

#’groups’ argument denotes as grouping  

# w-correlation matrix plot of elementary reconstruction components to determine separability 

points 

w <- wcor(M, groups = as.list(1:11)) 

plot(w) 

 

#Reconstruction stage and plotting of the results 

res2 <- reconstruct(M, groups=list(1:10)) 

seasonality <- res2$F1 

res <- residuals(res2) 

# Extracted seasonality 

plot(res2, add.residuals = FALSE) 

#Reconstruction plot, cumulative view 

# Decomposition into trend and seasonality 

recon <- reconstruct (M, groups = list(trend=c(1,2), seasonality=c(1:2))) 

plot(recon) 

 


