COURSE INFORMATION

School/Faculty:	Civil Engineering / Engineering	Page:	Page: 1 of 5				
Program name:	Master of Engineering (MEng) (Geotechnic	ics)					
Course code:	MKAJ 1013	Acaden	nic Session/Semester:	2019/20/01			
Course name:	Advanced Soil Mechanics	-	requisite (course name de, if applicable):	NIL			
Credit hours:	3						

Course synopsis	This subject is one of the core subjects offered by Department of Geotechnics and Transportation, which will provide: the advanced knowledge on the application and principles of soil mechanics. It considers the following topics: soil and clay mineralogy, strength behaviour of cohesionless and cohesive soils. Mohr-Coulomb failure criterion, peak stresses, effective stress ratio, residual stress and critical state soil mechanics. Principles of the laboratory measurement. Consolidation theory and pore pressure parameters. Difference between 1-D and 3-D Consolidation theory and introduction of unsaturated Critical state soil mechanics.							
Course coordinator (if applicable)	Dr. Nor Zurairahetty Binti Mohd Yunus							
Course lecturer(s)	Name	Office	Contact no.	E-mail				
	Dr. Nor Zurairahetty Binti Mohd Yunus M46-153 Ext 32446 <u>nzurairahetty@utr</u> <u>my</u>							
	Mr. Muhammad Azril Bin Hezmi	M47-147	Ext 32447	azril@utm.my				

Mapping of the Course Learning Outcomes (CLO) to the Programme Learning Outcomes (PLO), Teaching & Learning (T&L) methods and Assessment methods:

No.	CLO	PLO (Code)	*Taxonomies and **generic skills	T&L methods	***Assessment methods
CLO1	Explain and analyse the response of soil in terms of stresses, deformation and settlement analysis, the consolidation theory and pore pressure parameters. Differences between 1-D and 3-D consolidation theories.	PLO1	C4	Lecture, active learning	F
CLO2	Apply principles of laboratory instrumentation with respect to loading, stress-strain, pore-water pressure and displacement and/or volume change	PLO1	С3	Lecture, active learning	Τ, F

Prepared by:	Certified by:
Name:	Name:
Signature:	Signature:
Date:	Date:

School/Faculty:	Civil Engineering / Engineering	Page:	Page: 2 of 6			
Program name:	Master of Engineering (Geotechnics)					
Course code:	MKAJ 1013	Acaden	nic Session/Semester:	2018/19/01		
Course name:	Advanced Soil Mechanics	-	requisite (course name de, if applicable):	NIL		
Credit hours:	3					

No.	CLO	PLO (Code)	*Taxonomies and **generic skills	T&L methods	***Assessme nt methods
CLO3	Analyse and apply the response of soil in terms of strength behavior of cohesionless and cohesive soils through Mohr-Coulomb failure criterion, peak stresses, effective stress ratio and residual stress	PLO2	C4	Lecture, active learning	Τ, F
CLO4	Analyse soil response through the Critical State Soil Mechanics and apply in various situation to create alternatives on the analysis of soil behaviour	PLO2	C6	Lecture, active learning	Asg, F
CLO5	Apply research skills through comprehensive literature review in solving Geotechnical Engineering project	PLO5	C3	cooperative learning	Pr

Refer *Taxonomies of Learning and **UTM's Graduate Attributes, where applicable for measurement of outcomes achievement

***T – Test; Q – Quiz; HW – Homework; Asg – Assignment; PR – Project; Pr – Presentation; F – Final Exam etc.

Details on Innovative T&L practices:

No.	Туре	Implementation
1.	Active learning	Conducted through in-class activities
2.	cooperative learning	Conducted through in-class activities

Weekly Schedule:

Week 1	Revision on basic soil mechanics
Week 2	Analyse and apply the theory of shear strength response to the soil in
	terms of strength behavior of cohesionless and cohesive soils.
	Apply principles of laboratory instrumentation with respect to loading,
	stress-strain, pore-water pressure and displacement and/or volume change.
Week 3	Analyse and apply the principles of Mohr-Coulomb failure criterion,
	peak stresses, effective stress ratio, pore water pressure coefficient, back pressure,
	stress states and stress paths
Week 4	Stress paths of isotropically consolidated drained triaxial test (CD) – 2D & 3D
	Stress paths of isotropically consolidated undrained triaxial test (CD) - 2D & 3D

School/Faculty:	Civil Engineering / Engineering	Page:	3 of 6			
Program name:	Master of Engineering (Geotechnics)					
Course code:	MKAJ 1013	Acaden	nic Session/Semester:	2018/19/01		
Course name:	Advanced Soil Mechanics	-	requisite (course name de, if applicable):	NIL		
Credit hours:	3					

Week 5	Critical State Soil Mechanics (CSSM) - Normal Consolidation Line (NCL)
	& Determination of NCL Parameters
	Critical State Soil Mechanics (CSSM) - Critical State Line (CSL)
Week 6	& Determination of CSL Parameters
Week 7	Practical preparation for Laboratory Testing
Week 8	Mid-Semester Break
Week 9	Roscoe surface, Hvorslev surface, No-tension surface and
	overall Critical State Boundary Surface
	Relationship between simple soil tests, critical state parameters and soil strengths.
Week 10	Yielding of reconstituted and natural soils
Week 11	Students able to explain and analyse the response of soil in terms of stresses,
	deformation and settlement analysis, the consolidation theory and pore pressure
	parameters. Review on Terzaghi's effective stress and 1-dimensional consolidation.
	Settlement (Immediate, Consolidation, Secondary Compression)
Week 12	Difference between 1-D and 3-D consolidation theories. Parameters to be solved
	in 3-D consolidation. and Mandel-Crier effects in 3-D consolidation process.
	Relevant journal papers are discussed.
Week 13	Introduction to Unsaturated Critical State Mechanics
Week 14	Introduction to advance soil testing (theory)
Week 15	Introduction to advance soil testing (application)

Transferable skills (generic skills learned in course of study which can be useful and utilised in other settings):

Team working

Written communication

Student learning time (SLT) details:

Distribution of student Learning					Teaching and L	TOTAL SLT	
Time (SLT) Course content outline	Guided (Face to		-		Guided Learning Non-Face to Face		
CLO	L	Т	Ρ	0			
CLO 1	10h	2h			2h	6h	20h
CLO 2	11h	3h			2h	8h	24h
CLO 3	13h	3h			2h	12h	30h
CLO 4	8h	2h			2h	8h	20h

School/Faculty:	Civil Er	ngineerin	g / Engir	neering	Page	4 of 6				
Program name:	Maste	r of Engir	neering (Geotechnics	5)					
Course code:	MKAJ (1013			Acad	emic Sessi	2018/19/01			
Course name:	Advan	ced Soil I	Mechanio	CS	-	Pre/co requisite (course name			NIL	
Credit hours:	3				and c	and code, if applicable):				
		-								
CLO 5					3h	3h 10h			13h	

CLO 5			3h	10h	13h
Total SLT	42h	10 h	11h	44h	107h

	Continuous Assessment	PLO	Percentage	Total SLT
1	Assignment 1	PLO1	10	3h 30m
2	Test 1	PLO2	15	1h
3	Project (Group)	PLO5	25	6h m
Final Assessment			50	10h 30m
1	Final Examination	THI	50	2h 30m
	Grand Total		100	120h

L: Lecture, T: Tutorial, P: Practical, O: Others

Special requirement to deliver the course (e.g: software, nursery, computer lab, simulation room):

Laboratory Demonstration

Learning resources:

Text book (if applicable)
NII

Main references

- 1. Holtz and Kovacs (1981) Introduction to Geotechnical Engineering, Prentice Hall
- 2. Wood, D.M. (1992) Soil Behavior and Critical State Soil Mechanics, Cambridge University Press
- 3. Mitchell, J.K. (1993), "Fundamental of Soil Behaviour", John Wiley.
- 4. Smith and Smith (1998) Elements of Soil Mechanics Blackwell Science
- 5. Head, K.H. "Manual of Soil Laboratory Testing", Vol. 1, 2 & 3, Pentech Press.
- 6. Whitlow, R. "Basic Soil Mechanics", Prentice Hall
- 7. Atkinson J.H. "An Introduction to the Mechanics of Soil & Foundation through Critical State Soil Mechanics"
- 8. Budhu, M. "Soil Mechanics and Foundation", John Wiley & Sons.

Online

Relevant Journal Articles Self-student effort http://elearning.utm.my

Academic honesty and plagiarism: (Below is just a sample)

Assignments are individual tasks and NOT group activities (UNLESS EXPLICITLY INDICATED AS GROUP ACTIVITIES)

School/Faculty:	Civil Engineering / Engineering	Page:	5 of 6		
Program name:	Master of Engineering (Geotechnics)				
Course code:	MKAJ 1013	Academic Session/Semester:		2018/19/01	
Course name:	Advanced Soil Mechanics	Pre/co requisite (course name NI and code, if applicable):		NIL	
Credit hours:	3				

Copying of work (texts, simulation results etc.) from other students/groups or from other sources is not allowed. Brief quotations are allowed and then only if indicated as such. Existing texts should be reformulated with your own words used to explain what you have read. It is not acceptable to retype existing texts and just acknowledge the source as a reference. Be warned: students who submit copied work will obtain a mark of **zero** for the assignment and disciplinary steps may be taken by the Faculty. It is also unacceptable to do somebody else's work, to lend your work to them or to make your work available to them to copy.

Other additional information (Course policy, any specific instruction etc.):

-

Disclaimer:

All teaching and learning materials associated with this course are for personal use only. The materials are intended for educational purposes only. Reproduction of the materials in any form for any purposes other than what it is intended for is prohibited.

While every effort has been made to ensure the accuracy of the information supplied herein, Universiti Teknologi Malaysia cannot be held responsible for any errors or omissions.

School/Faculty:	Civil Engineering / Engineering	Page: 6 of 6			
Program name:	Master of Engineering (Geotechnics)				
Course code:	MKAJ 1013	Academic Session/Semester:		2018/19/01	
Course name:	Advanced Soil Mechanics	-	requisite (course name de, if applicable):	NIL	
Credit hours:	3				