COURSE INFORMATION

School/Faculty:	Civil Engineering / Engineering	Page:	1 of 5	
Program name:	Bachelor of Engineering (Civil)			
Course code:	SKAB 1713	Acaden	nic Session/Semester:	2018/19/01
Course name:	Soil Mechanics	-	requisite (course name de, if applicable):	NIL
Credit hours:	3			

Course synopsis	This subject is a compulsory subject for civil engineering students. The content of this subject will give a student basic understanding and exposure towards practical in Geotechnical Engineering. It will cover on basic soil properties which, consists of soil composition, soil classification and soil compaction. Besides that, it will also discuss on vertical stresses in soil due to overburden and external loading, water in soil and soil shear strength. The topic that will cover is important to civil engineers where most of problems occur at site will involve with geotechnical and soil mechanics. At the end of this subject, students will able to apply the knowledge on basic soil properties, soil classification and compaction properties, water in soil and shear strength parameters in the planning, analysis, design and supervision of related geotechnical works.							
Course coordinator (if applicable)	Dr. Nor Zurairahetty Binti Mohd Yunus							
Course lecturer(s)	Name Office Contact no. E-mail							
	Dr. Nor Zurairahetty Binti Mohd Yunus	r. Nor Zurairahetty Binti Mohd Yunus M47-124 Ext 32446 <u>nzurairahetty@utm.</u> <u>my</u>						
	Mr. Muhammad Azril Bin Hezmi	M47-147	Ext 32447	azril@utm.my				

Mapping of the Course Learning Outcomes (CLO) to the Programme Learning Outcomes (PLO), Teaching & Learning (T&L) methods and Assessment methods:

No.	CLO		PLO	Weight (%)	T & G Skills ¹	KP, CPS, CEA	T&L methods	Assessme nt methods ²
CLO1	1 Describe composition and solve volume-mass relationship equations for soils.		PLO1		C3	WK1	Lecture, active learning	T, Asg, F
CLO2	2 Classify types of soils and analyse soil compaction works.		PLO1		C3	WK1	Project-based learning	T, Asg, F
			applicab ***T – T	le for meas est; Q – Qu	urement of outco	mes achieve	luate Attributes, w ment ignment; PR – Proj	

Prepared by:	Certified by:
Name: NOR ZURAIRAHETTY MOHD YUNUS	Name: PROF DR ROSLI HAININ
Signature: Hetty	Signature:
Date: September 2018	Date:

School/Faculty:	Civil Engineering / Engineering	Page:	2 of 7	
Program name:	Bachelor of Engineering (Civil)			
Course code:	SKAB 1713	Acader	nic Session/Semester:	2018/19/01
Course name:	Soil Mechanics	-	requisite (course name de, if applicable):	NIL
Credit hours:	3			

No.	CLO		PLO	Weight (%)	T & G Skills ¹	KP, CPS, CEA	T&L methods	Assessm ent methods 2
CLO3	and permeab	ermine vertical stresses bermeability and solve ux and flow behaviour in		90	C4	WK2	Lecture, active learning	T, Asg, F
CLO4		analyse for f shear strength ar, triaxial, and			C4	WK2	Project- based learning	Asg, F
CLO5	Prepare and share information for group project work using technical knowledge and teamworking conditions.		PLO9	10	A3 & CS1, CS3	WP, EA, WK7	Search, Write, and Share	Pr
	Refer ¹ Taxonomies of Learning and UTM's Graduate Attributes, where applicable for measurement of outcomes achievement ² T – Test; Q – Quiz; HW – Homework; Asg – Assignment; PR – Project; Pr – Presentation; F – Final Exam etc.							

Details on Innovative T&L practices:

No.	Туре	Implementation
1.	Active learning	Conducted through in-class activities
2.	Project-based learning	Conducted through design assignments. Students in a group of 3 are given 2 design projects that require power electronics solutions involving the design calculations and verification using MATLAB/Simulink. Compliance to the design specifications need to be given in the form of written reports.

Weekly Schedule:

Week 1	INTRODUCTION: Introduction to subject matter and testing conducted in laboratory
	WEIGHT-VOLUME RELATIONSHIP OF SOILS: Introduction on soil composition and volume mass relationship. Derivation of equation base three phase soil models
Week 2	Determination/Application of physical/index properties based on three-phase diagram
	SOIL CLASSIFICATION: Introduction of sieve analyses, hydrometer test and particle size distribution.
Week 3	Atterberg limits, USCS and/or BSCS and AASHTO soil classification

School/Faculty:	Civil Engineering / Engineering	Page:	3 of 7	
Program name:	Bachelor of Engineering (Civil)			
Course code:	SKAB 1713	Acaden	nic Session/Semester:	2018/19/01
Course name:	Soil Mechanics	-	requisite (course name de, if applicable):	NIL
Credit hours:	3		,	

Week 4	Soil compaction: Introduction, definition, compaction theory, soil densification method and compaction
	effort. Comparison between Standard Proctor and Modified Proctor. Relationship between dry density
	and moisture content, air void and degree of saturation for compacted fines soil.
Week 5	Test 1 (15%); Introduction on compaction on site and effect on different type of soils Dry
	density versus moisture content for clay and effect on different type soils.
	Relative Density.
Week 6	WATER IN SOIL - Introduction of water in soil; Total stress due to overburden pressure, pore pressure
	and effective stress; Total stress, pore water pressure and effective stress- hydrostatic, capillary forces,
	artesian pressure and quick sand (zero effective stress)
Week 7	Vertical stress due to external loading such as loading from building, and pavement; Boussinesq theory
	and Fadum Chart; Pressure bulb chart for stress from footings; Additional stress due to Embankment
	loading using Osterberg Chart.
Week 8	Mid-Semester Break
Week 9	Coefficient of permeability ; Darcy's Law; Capillary, pore pressure in capillary zone
Week 10	Introduction on flow net, boiling and Concrete dam and sheet pile seepage analysis (isotropic) piping;
Week 11	Earth dam seepage analysis ; Filtered and Unfiltered dam seepage analysis;
Week 12	Test 2 (15%);
	SHEAR STRENGTH OF SOILS; Introduction of Shear strength ; Mohr Circle
Week 13	Methods to determine shear strength via laboratory test data. (1). Direct shear test to determine shear
	strength; in-class example of plotting
Week 14	(2) Triaxial test to determine shear strength (UU, CU, CD) – in-class example of plotting;
	(3) Unconsolidated Unconfined and Vane Shear
Week 15	Self-work for project assignment; Presentation of poster

Transferable skills (generic skills learned in course of study which can be useful and utilised in other settings):

Team working Written communication

School/Faculty:	Civil Engineering / Engineering	Page:	4 of 7	
Program name:	Bachelor of Engineering (Civil)			
Course code:	SKAB 1713	Acader	nic Session/Semester:	2018/19/01
Course name:	Soil Mechanics	-	requisite (course name de, if applicable):	NIL
Credit hours:	3			

Student learning time (SLT) details:

Distribution of student Learning					Teaching and L	TOTAL SLT	
Time (SLT) Course content outline		ed Learr to Face	-		Guided Learning Non-Face to Face	Independent Learning Non-Face to face	
CLO	L	Т	Р	0			
CLO 1	10h	2h			2h	6h	20h
CLO 2	11h	3h			2h	8h	24h
CLO 3	13h	3h			2h	12h	30h
CLO 4	8h	2h			2h	8h	20h
CLO 5					3h	10h	13h
Total SLT	42h	10h			11h	44h	107h

	Continuous Assessment	PLO	Percentage	Total SLT
1	Assignment 1	PLO1	2.5	2h
		(THI)		
2	Assignment 2	PLO1	2.5	2h
		(THI)		
3	Assignment 3	PLO1	2.5	2h
		(THI)		
4	Assignment 4	PLO1	2.5	2h
		(THI)		
5	Test 1	PLO1	15	1h
		(THI)		
6	Test 2	PLO1	15	1h 30m
		(THI)		
7	Project Assignment	PLO9	10	As in CLO 5
		(CS)		(13h)
	Final Assessment		Percentage	Total SLT
1	Final Examination	THI	50	2h 30m
	Grand Total		100	120h

L: Lecture, T: Tutorial, P: Practical, O: Others

School/Faculty:	Civil Engineering / Engineering	Page:	5 of 7	
Program name:	Bachelor of Engineering (Civil)			
Course code:	SKAB 1713	Academic Session/Semester:		2018/19/01
Course name:	Soil Mechanics	Pre/co requisite (course name NIL and code, if applicable):		NIL
Credit hours:	3			

Special requirement to deliver the course (e.g: software, nursery, computer lab, simulation room):

Laboratory Demonstration

Learning resources:

Text book (if applicable)

Prescribed Text-extract from Liu and Evett or Teaching Module SKAB 1713

Main references

B.M Das, Principles of Geotechnical Engineering , 5th Edition, 2004, Brooks and Cole Additional references

Other References

Roy Whitlow, Basic Soil Mechanics, 3rd Edition, 1999, Prentice Hall

GN Smith, UNSUR MEKANIK TANAH, Edisi Pertama, Terjemahan oleh Abdul Rahman

Mohamood, 1990, Dewan Bahasa dan Pustaka.

Murthy, V. K. S. (2010), Textbook for Soil Mechanicsand Foundation Engineering, CMS Publisher, New Delhi, India, 1040 pp.

Online

Self-student effort http://elearning.utm.my

Academic honesty and plagiarism: (Below is just a sample)

Assignments are individual tasks and NOT group activities (UNLESS EXPLICITLY INDICATED AS GROUP ACTIVITIES) Copying of work (texts, simulation results etc.) from other students/groups or from other sources is not allowed. Brief quotations are allowed and then only if indicated as such. Existing texts should be reformulated with your own words used to explain what you have read. It is not acceptable to retype existing texts and just acknowledge the source as a reference. Be warned: students who submit copied work will obtain a mark of **zero** for the assignment and disciplinary steps may be taken by the Faculty. It is also unacceptable to do somebody else's work, to lend your work to them or to make your work available to them to copy.

Other additional information (Course policy, any specific instruction etc.):

-

Disclaimer:

All teaching and learning materials associated with this course are for personal use only. The materials are intended for educational purposes only. Reproduction of the materials in any form for any purposes other than what it is intended for is prohibited.

School/Faculty:	Civil Engineering / Engineering	Page:	6 of 7	
Program name:	Bachelor of Engineering (Civil)			
Course code:	SKAB 1713	Academic Session/Semester:		2018/19/01
Course name:	Soil Mechanics	Pre/co requisite (course name NIL and code, if applicable):		NIL
Credit hours:	3			

While every effort has been made to ensure the accuracy of the information supplied herein, Universiti Teknologi Malaysia cannot be held responsible for any errors or omissions.

School/Faculty:	Civil Engineering / Engineering	Page:	7 of 7	
Program name:	Bachelor of Engineering (Civil)			
Course code:	SKAB 1713	Academic Session/Semester:		2018/19/01
Course name:	Soil Mechanics	Pre/co requisite (course name NIL and code, if applicable):		NIL
Credit hours:	3			