

Vertical Barrier Wall

- Installed in old landfill
- Installed around the facility and is keyed into a low permeability soil.
- A leachate collection system is placed inward (landfill) side of the wall
- The type of wall:

soil-bentonite (SB) wall mixed in place (MIP) cement-bentonite (CB) plastic concrete (PC)

Flow across slurry wall

Based on Darcy's law,

$$q = k_{w}i$$

$$= [(H_i - H_o)/s]k_w$$

q = volume of flow per unit area of the k_w = hydraulic conductivity of the wall i = hydraulic gradient H_i = hydraulic head of the inboard side H_o = hydraulic head of the outboard side s = thickness of the wall

Stability of vertical wall

$$\left[\frac{1}{2}(\gamma H^2)\cot\alpha - P_w\cos\alpha\right]M + P_w\sin\alpha = \frac{1}{2}\gamma_s H^2$$

$$M = \frac{\left[\tan\alpha - \frac{\tan\phi}{F}\right]}{\left[1 + \frac{\tan\alpha \tan\phi}{F}\right]}$$

Slurry properties

$$\gamma_s = 7.48 m_b + \gamma_w / (1 + (7.48 m_b / G_s \gamma_w))$$

Where

- mb = bentonite content (lb bentonite/gal of water)
- Gs = specific gravity of bentonite 2.77
- $\gamma w = \text{unit weight of water } (62.4 \text{ lb/ft3})$
- γ s = unit weight of slurry

Transit time

- Contaminants in leachate can penetrate and exit the liner by advection or seepage of fluid thru the liner under hydraulic gradient, or by chemical diffusion (under concentration gradient) or both.
- Necessary to limit the transit times to no less than 30 50 years to assess the liner thickness.
- For transport by seepage thru the liner (advection), assuming the suction head at the wetting zone front is zero
- The hydraulic gradient is:

$$i = (y_{\text{max}} + d)/d$$

and the specific discharge (Darcy velocity) is

$$q_1 = k_1 i$$

Seepage velocity is

$$v_s = q_1/n_e$$

Where

d = liner thickness

 n_e = effective porosity available for flow

 y_{max} = maximum leachate depth above liner

The transit time then is

$$t = \frac{d}{v_s} = \frac{n_e d^2}{\left(k_1 \left(d + y_{\text{max}}\right)\right)}$$

If suction is considered at the base of the liner

$$t = \frac{n_e d^2}{\left(k_1 \left(d + y_{\text{max}} - h_s\right)\right)}$$

Where h_s is the suction head ($h_s \le 0$)

Liner efficiency

$$E = 100 \left(1 - \frac{q_1}{q_o} \right)$$

$$\frac{q_1}{q_0} = \left(1 + \frac{y_{av}}{d}\right) \left(\frac{k_1 t_0}{q_0} + 0.64 \frac{n_e y_{av}}{q_0} M_0^{0.91}\right)$$

$$M_{\scriptscriptstyle 0} = \frac{k_{\scriptscriptstyle 1}L}{k_{\scriptscriptstyle d}Sy_{\scriptscriptstyle av}}$$

$$y_{av} = y_s \left[1 - \exp \frac{(k_1 - e)}{n_e y_s} t_0 \right]$$

$$y_s = \frac{\pi L}{4} \sqrt{\frac{e - k_1}{k_d}} (0.403)^{m'}$$

$$m = (e-k_1)/(0.4S^2k_d)$$

if
$$m \le 1.0$$
, $y_s = [(e-k_1)L]/(2Sk_d)$

$$m' = (m)^{-0.55}$$

$$q_o$$
 = inflow volume per unit horizontal area = et_o [L]

e = inflow rate to the drainage layer (discharge per unit horizont area) [L/T]

 t_o = duration of inflow period [T]

 q_1 = leakage volume per unit horizontal area [L]

 y_{av} = average saturated depth during time t_o [L]

 y_s = steady state average saturated depth [L]

d =thickness of liner [L]

 k_1 = vertical hydraulic conductivity of the liner [L/T]

 k_d = lateral hydraulic conductivity of the drainage layer [L/T]

 n_e = effective porosity of the drainage layer

 $L = \max \text{ horizontal drainage distance } [L]$

S = slope of liner

