
SEE1022 INTRODUCTION TO SCIENTIFIC PROGRAMMING

CH10 Data Analysis

Dr. Mohd Saiful Azimi Mahmud (azimi@utm.my) P19a-04-03-30, School of Electrical Engineering, UTM

www.utm.my innovative • entrepreneurial • global

univteknologimalaysia utm_my

utmofficial

- After studying this chapter you should be able to:
 - Understand and use basic statistical MATLAB function.
 - Understand and use MATLAB sort function.

innovative • entrepreneurial • global

STATISTICAL ANALYSIS FUNCTIONS

• Below are some of the basic statistical analysis function available in MATLAB.

Function	Description	
max	Maximum value	
mean	Average or mean value	
median	Median value	
min	Smallest value	
mode	Most frequent value	
std	Standard deviation	
var	Variance, which measures the spread or dispersion of the values	

COLUMN-ORIENTED DATASETS

 In MATLAB, datasets in a matrix are stored in column-oriented by default. Hence, in most MATLAB function, operation on column-oriented datasets does not require additional input.

>> x = [1	3; 2 5; 6 4]	
x =		
1	3	
2	5	
6	4	
>> mean(x	:)	
ans = 3 >> mean(x	4	 Computing average values on column-oriented matrix does not require second input.
ans = 2.000 3.500 5.000	0	 Computing average values on row- oriented matrix require the second input to be set equals to 2

OPERATION FOR THE ENTIRE MATRIX

EXAMPLE 2

To find statistical values for the entire matrix, use either colon operator or perform the function twice.

<pre>>> x = [1 3; 2 5; 6 4] x =</pre>	
<pre>>> mean(mean(x)) ans =</pre>	The colon operator converts matrix into column vector. Operation on vector does not require the second input.
	• Performing the function twice will first compute column-oriented data that return a vector. Then the operation is done to the vector that return a scalar.

TEMPERATURE AT 3 CITIES

EXAMPLE 3

- Load a temperature data for 3 cities from the file Temp1.mat and send the data to a user-defined datastat() function shown on the next slide for basic statistical analysis of the data.
- Temp1.mat consists of two variables; a matrix temp where every column represents each of the three cities temperature values in °C and a scalar daypersample showing number of days between each of the temperature reading.
- Function datastat() has 5 inputs and return 5 statistical data in a single matrix. The last input to the function is a string that determine how the data will be displayed.
- Since temp is already set as column-oriented for each city, all of the statistical functions used in the datastat() does not need the second input.
- While temp is the y-axis data, the x-axis data can be created according to the daypersample value. The x-axis data can be created as below:

xdata = 1:daypersample:length(temp(:,1))

TEMPERATURE AT 3 CITIES

EXAMPLE 3

Below is the MATLAB code for the function datastat()

```
function [statisticVal] = datastat(xdata,ydata,xname,yname,dispOption)
   % Input...
   % Output...
   N = size(ydata, 2);
   statisticVal = zeros(5,N);
   statisticVal(1,:) = mean(ydata);
   statisticVal(2,:) = var(ydata);
   statisticVal(3,:) = median(ydata);
   statisticVal(4,:) = max(ydata);
   statisticVal(5,:) = min(ydata);
   switch dispOption
        case 'NONE'
        case 'CW'
            dispdata(statisticVal, yname)
        case 'PLOT'
            dispdata (statisticVal, yname)
            plotdata(xdata,ydata,xname,yname)
        otherwise
            disp('DISPLAY OPTION IS NOT VALID')
   end
```

All of the statistical function does not have second input. Thus, make sure to set ydata as a column-oriented when using function datastat()

TEMPERATURE AT 3 CITIES

xlabel(XLABEL), ylabel(YLABEL)

EXAMPLE 3

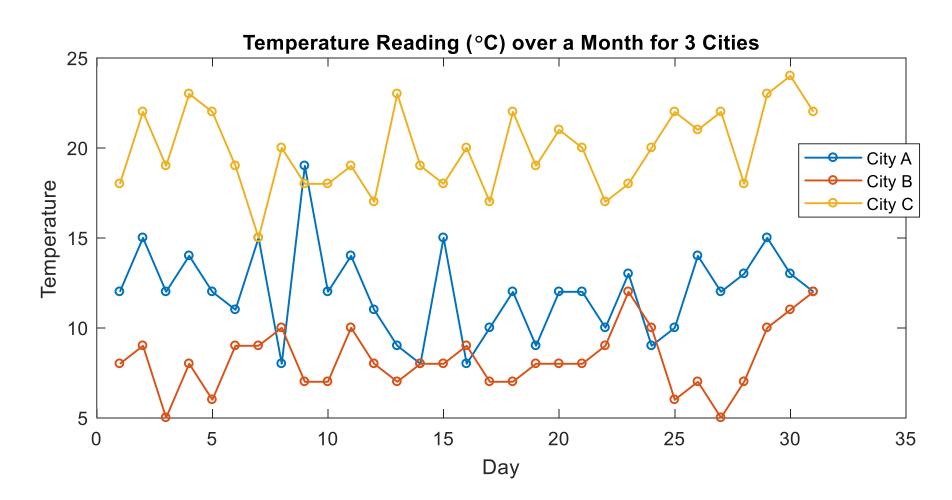
The code continues here where there are two local functions...

```
function dispdata(stat, yname)
                         N = size(stat, 2);
                         overall = [mean(stat(1,:)) mean(stat(2,:))...
                                                                                             median(stat(3,:)) max(stat(4,:)) min(stat(5,:))];
                         disp([yname ' data:-'])
                         disp('
                                                                                                                                                  Average Variance
                                                                                                                                                                                                                                                                     Median
                                                                                                                                                                                                                                                                                                                                                                     Max
Min')
                         fprintf('Dataset %d :%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.
                                                                             [1:N; stat])
                         fprintf('Overall :'), fprintf('%10.2f', overall), fprintf('\n')
  end
  function plotdata(x,y,XLABEL,YLABEL)
                         plot(x,y,'-o','LineWidth',1,'MarkerSize',4)
```

end

All of the statistical function within the function dispdata() does not need second input or set the input data as column-oriented since they are dealing with vectors.

TEMPERATURE AT 3 CITIES


EXAMPLE 3

Below is how the data is loaded and passed to the datastat() function that returns the statistical values of the data.

```
>> load dataTemp1
>> xdata = 1:daypersample:length(temp(:,1));
>> y = datastat(1:31,temp,'Day','Temperature','NONE');
>>
>> y = datastat(1:31,temp,'Day','Temperature','PLOT');
Temperature data:-
                    Median
            Average
                                 Max
                                          Min
Dataset 1 : 11.97
                   12.00 19.00
                                       8.00
                    8.00
                            12.00 5.00
Dataset 2 : 8.23
Dataset 3 : 19.87
                   20.00 24.00 15.00
Overall : 13.35
                    12.00
                            24.00
                                         5.00
>>
>> legend('City A', 'City B', 'City C')
>> title('Temperature Reading over a Month for 3 Cities')
```


TEMPERATURE AT 3 CITIES

DATA SORTING

innovative • entrepreneurial • global

SORT

Syntax

[B,I] = sort(A,dim,direction)

Description

- A : Data to be sorted.
- dim : Dimension to operate along. 1 for column-oriented (default) and 2 for row-oriented.
- direction : Sorting direction. 'ascend' (default) or 'descend'.

B : Sorted data.

: Sort index.

DATA-ORIENTATION

>> x = [6 >> y = so		8];			
y =					
2	3	6	7	8	
>> X = [3	5 2;	6 2 7]			
X =					
3	5	2			
6	2	7			
6	2 5	2 7			 Since MATLAB stored data as column-oriented by default, the second input, dim for the sort() function is only needed when sorting a data to row-oriented.
>> Yrow = Yrow = 2 2	sort(3 6	X,2) 5 7			 Similar to other functions, the dim input is not needed for vector type of data.

SORT DIRECTION

>> X = [3 5 2;	6 2 7]	
X =			
3	5	2	
6	2	7	
>> Ycola	sc = s	sort(X)	
Ycolasc	=		
3	2	2	
6	5	7	
>> Ycold	.es = s	sort(X, 'descend')	
Ycoldes	=		
6	5	7	
3	2	2	 'ascend' is the default sort
			direction for sort() function.
>> Yrowdes = sort(X,2,'descend')			Thus no need to specify the
Yrowdes	=		
5	3	2	direction input when sorting
7	6	2	data ascendingly.

DATA SORTING SORT INDEX

EXAMPLE 6

Given below are temperature values for 9 consecutive days at a city. Find the 2 highest and 2 lowest temperature values. Also find which day these highest and lowest values occur.

$x = [19 \quad 20 \quad 18 \quad 17 \quad 20 \quad 23 \quad 25 \quad 24 \quad 23]$

Solution

- Find the 2 highest and 2 lowest temperature values can be easily done using sort() function twice; first with descending order and then ascending order.
- Day, although not explicitly define by any vector from the problem, it is implicitly known as the index of the vector x. Thus, the second output argument for sort() function can be used to find the respective 2 highest and 2 lowest temperature.

DATA SORTING SORTINDEX

EXAMPLE 6

Below is the MATLAB code for Example 6

```
x = [19 20 18 17 20 23 25 24 23];
[xsortasc,iasc] = sort(x);
[xsortdes,ides] = sort(x,'descend');
N = 2;
Xlow = xsortasc(1:N);
Daylow = iasc(1:N);
Xhigh = xsortdes(1:N);
Dayhigh = ides(1:N);
```

fprintf('Highest %d\nno. Temp Day\n',N)
fprintf('%3d %6.2f %6d\n',[1:N;Xhigh;Dayhigh])
fprintf('Lowest %d\nno. Temp Day\n',N)
fprintf('%3d %8.2f %6d\n',[1:N;Xlow;Daylow])

Highe	est 2		
no.	Temp	Day	
1	25	7	
2	24	8	
Lowes	st 2		
no.	Temp	Day	
1	17	4	
2	18	3	
2	_ /	3	

DATA SORTING OUTLIERS

EXAMPLE 7

- Outliers are values in a set of data that are considered to have significant dissimilarity compared to the rest of the data. One approach to detect the dissimilarity is by checking statistical values of the dataset.
- Below is an example of an algorithm to remove N outliers from a dataset:

Start

Input: *data*, N

- 1) Compute difference between data and its average, $d = |data data_{avg}|$
- 2) Sort desceding the d and called it d_{sort} . Also find the corresponding sort index and called it i_{sort} .
- 3) Get the first N elements of i_{sort} and called it i_N .
- 4) Remove outlier of data according to index i_N .

Output: data

End

• Write a MATLAB function for the above pseudocode.

EXAMPLE 7

Below is the MATLAB code for Example 7

```
function data = remoutliers(data,N)
d = abs(data - mean(data));
[dsort,isort] = sort(d,'descend');
iN = isort(1:N);
data(iN) = [];
>> x = [2 3 6 1 0 3 4 1 1 4 9 3 1 2 2];
>> xcleaned = remoutliers(x,1)
xcleaned =
       2 3 6 1 0 3 4 1 1 4 3 1 2
>> xcleaned = remoutliers(x,2)
xcleaned =
                0 3 4 1 1 4 3 1
          3 1
                                             2. 2.
       2
```

2

DATA ANALYSIS DRILL

- Given x = [2,3,2] and y = [4,1,3], does running MATLAB code mean ([x;y]) returns similar output compared to mean ([mean (x) mean (y)])? Explain your answer.
- 2) If the answer in Question 1 is not similar, how to modify the vector concatenation of x and y of the first MATLAB code so that it will return the same value with the second MATLAB code.
- 3) Given vector x, Does std (x(:)) and std (std (x)) always return similar output? Explain your answer.
- 4) From Example 3, describe in detail the inputs and output of the <u>datastat()</u> function. Refer MATLAB documentation on any MATLAB function as an example on how the input and output are describe.
- 5) From Example 3, list down code lines in local function dispdata () when the code line "statisticVal=zeros (5, N);" within the function datastat () is change to "statisticVal=zeros (N, 5);". Then, made necessary modification to the listed codes.
- 6) Write comments for each code line for Example 3, 6 and 7.
- 7) Rewrite MATLAB script in Example 6 when the temperature readings are taken once every two days.
- 8) Write a MATLAB script for the following pseudo-code. Use outliers removal function from Example 7 for step 2:

```
Start
Input: data, T
1) Compute variance, v of data
2) If v is greater than T, remove 10% outliers from data.
3) Repeat step 1 until v \le T.
Output: data
End
```


www.utm.my innovative • entrepreneurial • global