SEEE1022 INTRODUCTION TO SCIENTIFIC PROGRAMMING

CH13 Differential Equation

Dr. Mohd Saiful Azimi Mahmud (azimi@utm.my) P19a-04-03-30, School of Electrical Engineering, UTM

(0)UTM OBJECTIVES

After studying this chapter you should be able to:

1. Understand and create function handle to available function.
2. Understand and create anonymous function from mathematical expression and existing function.
3. Understand and use the function functions.
4. Solve integration and difference using integral() and diff() functions.
5. Solve differential equation using ode23() function.

(6) UTM

FUNCTION HANDLE

(3)UTM FUNCTION HANDLE

WHAT IS FUNCTION HANDLE?

- A function handle is a MATLAB variable that stores an association (a handle) to a function. With the handle, a function can be called indirectly.
- The data type of this variable is written as function_handle.
- To create a handle for a function, precede the function name with an @ sign. For example, below is how y is set as the function handle to function myfunction():

$$
y=@ m y f u n c t i o n ;
$$

- Usage of the function handle:

1. To construct anonymous function.
2. To pass a function to another function (known as function functions).
3. To call local functions from outside the main function.

(0)UTM FUNCTION HANDLE

ANONYMOUS FUNCTION

- Recap: Generally, function is a program that can accept inputs and return outputs.
- Similar to the standard function, anonymous function can also accept inputs and return outputs.
- The differences are:

1. Instead of a program file, anonymous function is a variable. The data type of anonymous function is function_handle. The @ operator creates the handle.
2. Anonymous function can contain only a single executable statement.
3. Since anonymous function is a variable, saving the function is similar to saving other type of variable. E.g., using the save() function.
4. It is called anonymous function because the function does not have a name while standard function comes with a name. Anonymous function is called indirectly upon its function handle name.

(0)UTM FUNCTION HANDLE CREATING ANONYMOUS FUNCTION

- Syntax:

- The executable statement can be either one of the followings:

1) Mathematical expression.
2) Named function.

- The output arguments are not define explicitly. The number of the output arguments is depending on the executable statement type.

1) Mathematical expression: Single output argument.
2) Named Function: Similar to the output arguments of the named function.

(0) UTM FUNCTION HANDLE
 ANONYMOUS FUNCTION TO MATH EXPRESSION

EXAMPLE 1

Below is a standard function save as .m file. Since the function only consist of a single executable statement, the function can also be written as anonymous function.

```
function f = mypoly(x)
f = x^2 + 1;
```

Below is how the function is written as anonymous function.

```
>> mypolyFH = @(x) x^2 + 1
mypolyFH =
    function_handle with value:
        @ (x) x^2+1
>> a = mypolyFH(2)
a =
    5
```


(0) UTM FUNCTION HANDLE
 ANONYMOUS FUNCTION TO NAMED EXPRESSION

EXAMPLE 2

Writing available function as an anonymous function is a way to simplify the function. For example, meshgrid is a function that accept vectors as input and can return up to 3 output arguments. At certain situation, this function can be simplified as anonymous function to accept scalars rather than vectors.

```
>> mygrid = @(x)meshgrid(0:x,0:2);
>> [a,b] = mygrid(4)
a =
\begin{tabular}{lllll}
0 & 1 & 2 & 3 & 4
\end{tabular}
\begin{tabular}{lllll}
0 & 1 & 2 & 3 & 4
\end{tabular}
    0
b =
\begin{tabular}{lllll}
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 \\
2 & 2 & 2 & 2 & 2
\end{tabular}
```


(3)UTM FUNCTION HANDLE

ADDITIONAL PARAMETERS

- Additional parameters to the anonymous function are variables define in the executable statement but not declared as input to the function. For example, below is an anonymous function with one additional parameter z.

$$
y=@(x) x \cdot \wedge 2+z
$$

- The value of z must be define before the anonymous function is created.
- This additional parameters will be useful to add extra variables to the function input of the function functions.
- Next slide will discuss on the function functions.

(0)UTM FUNCTION HANDLE

FUNCTION FUNCTIONS

- A function that accept function handle as its input argument is called function functions.
- Since anonymous function is also a function handle, it can be used as the input to the function functions.
- Later in this chapter, function integral() and ode23() are both the example of function functions.
- Creating function input for function functions should follow the input argument requirement of the function functions.
- For example, function integral () specify the function input as below:

[^0]
(0) UTM FUNCTION HANDLE

FUNCTION FUNCTIONS

EXAMPLE 3

To plot $y(x)=2 x^{2}+3$ for $x=0: 0.1: 10$, below is the MATLAB code when using function plot():

```
>> x = 0:0.1:10;
>> y = 2*x.^2 + 3;
>> plot(x,y)
```

We can simplify the code as below using function fplot () where an anonymous function is used as the function handle to the fplot ():

```
>> fplot(@(x)2*x.^2+3,[0 10])
```

Alternatively, we can write a function file for the equation and use function handle to call the function as below.

```
function y = myEq(x)
y = 2*x.^2+3;
```

```
>> fplot(@myEq,[0 10])
```


(0)UTM FUNCTION HANDLE

ADDITIONAL PARAMETER EXAMPLE

EXAMPLE 4

Below is MATLAB script showing c as the additional parameter to the anonymous function.

```
for c = 10:5:25
    subplot(2,2,c/5-1), fplot(@(x)2*x.^3-c*x.^2+2,[0 10])
    xlabel('x')
    ylabel('y = 2x^3 - cx^2 + 2')
    title(['Plot for c = ' num2str(c)])
end
```


(0)UTM FUNCTION HANDLE

 ADDITIONAL PARAMETER EXAMPLE

 ADDITIONAL PARAMETER EXAMPLE}

EXAMPLE 4

(6) UTM

INTEGRATION \& DIFFERENTIATION

© \mathbf{C} UTM INTEGRATION \& DIFFERENTIATION INTEGRAL

- Syntax

```
y = integral(fun,xmin,xmax)
```


Description

fun : Integrand, specified as a function handle, which defines the function to be integrated from xmin to xmax.
For scalar-valued problems, the function $y=f u n(x)$ must accept a vector argument, x, and return a vector result, y. This generally means that fun must use array operators instead of matrix operators. For example, use .* (times) rather than * (mtimes). If you set the 'ArrayValued' option to true, then fun must accept a scalar and return an array of fixed size.
xmin : Lower limit of x.
xmax : Upper limit of x.
y : Integration result.

(3)UTM INTEGRATION \& DIFFERENTIATION

INTEGRAL

EXAMPLE 5

Solve:

$$
\text { 1) } y_{1}=\int_{0}^{10} 2 x^{2}+6 x+1 d x \quad \text { 2) } y_{2}=\int_{5.5}^{16.1} x^{2}+1 d x
$$

```
>> y1 = integral(@(x)2*x.^2+6*x+1,0,10)
y1 =
    976.6667
>> y2 = integral(@(x)x.^2+1,5.5,16.1)
y2 =
    1.3462e+03
```


(0)UTM INTEGRATION \& DIFFERENTIATION
 AREA UNDER GRAPH

EXAMPLE 6

Given 2 functions of y shown on the above figure, find the area of the shaded region.

Solution

1) Find x_{c} by finding roots of when $y_{1}=y_{2}$. Or, it is the roots of $y_{1}-y_{2}$.
2) Find area under both the quadratic function, y_{1} and linear function, y_{2} for x from 0 to x_{c}.
3) If area under graph y_{1} is q_{1} and area under graph y_{2} is q_{2}, area of the shaded area is then $a=q_{1}-q_{2}$

(3)UTM INTEGRATION \& DIFFERENTIATION AREA UNDER GRAPH

EXAMPLE 6

Below is the MATLAB script of Example 6

```
xc = roots([-1 8 0]-[00 1 0]);
area = integral(@(x)-x.^2+8*x,xc(1),xc(2))...
    - integral(@(x)x,xc(1),xc(2));
fprintf('Shaded Area =%.2funit\xB2\n\n',area)
```

Shaded Area = 57.17unit²

Note that both the quadratic and linear functions are written as polynomial vectors when using the roots () function.

© \mathbf{C} UTM INTEGRATION \& DIFFERENTIATION

DERIVATIVE FUNCTION: diff() / h

- Syntax

```
\(Y=\operatorname{diff}(X, n) / h^{\wedge} n \quad\) oApproximate Derivatives
```

Description
$X \quad:$ Input array.
n : Derivative order.
h : Interval between data points.
Y : Difference result.

(0)UTM INTEGRATION \& DIFFERENTIATION DERIVATIVE

EXAMPLE 7

Find derivative of $y(t)=9.8 t^{2}+20.13 t-0.03$ for $t=0$ to 10 .

```
h = 0.001;
t = 0:h:10;
y = 9.8*t.^2 + 20.13*t - 0.03;
dydt = diff(y)/h;
plot(t(2:end),[y(2:end); dydt])
xlabel('t')
title('Derivative Approximation Using diff()/h')
legend('y(t)','y''(t)')
```

```
>> size(y)
ans =
```

$1 \quad 10001$
>> size (dydt)
ans $=$

1

Note that the size of dydt is always shorter by 1 sample compared to y.

(0) UTM INTEGRATION \& DIFFERENTIATION
 DERIVATIVE

(0) UTM INTEGRATION \& DIFFERENTIATION

DERIVATIVE APPROXIMATION ERROR

EXAMPLE 8

- Differentiate the following function for $x=0$ to 1 using the $\operatorname{diff}() / h$ function.

$$
f(x)=0.3+20 x-180 x^{2}+650 x^{3}-880 x^{4}+360 x^{5}
$$

- Then, compare the results with the exact solution given by:

$$
f^{\prime}(x)=20-360 x+1950 x^{2}-3520 x^{3}+1800 x^{4}
$$

- To do the above, write a script that estimates the differentiation of $f(x)$ by setting h equals to $1,0.5$ and 0.1 , and compares the results with the exact solution graphically.

(3)UTM INTEGRATION \& DIFFERENTIATION DERIVATIVE APPROXIMATION ERROR

EXAMPLE 8

- Below is the MATLAB script for Example 8

```
h = [lllll
linestyle = {':k','--b','-.r','-'};
for n = 1:4
    x = 0:h(n):10;
    y = 0.3 + 20*x - 180*x.^2 + 650*x.^3 - 880*x.^4 4 + 360*x.^5;
    ydot = diff(y)/h(n);
    plot(x(2:end),ydot,linestyle{n})
    hold on
end
x = 0:0.001:10;
ydotexact = 20-360*x + 1950*x.^2 - 3520*x.^3 + 1800*x.^4;
plot(x(2:end),ydotexact(2:end),'k','LineWidth',1)
xlabel('x')
ylabel('y''(x)')
title('Derivative Approximation Error')
legend('h=1','h=0.5','h=0.1','Exact solution')
hold off
```


(0)UTM INTEGRATION \& DIFFERENTIATION DERIVATIVE APPROXIMATION ERROR

EXAMPLE 8

* The error decreases when h value becomes smaller.

In this example, $h=0.01$ gives unnoticeable error.

(0)UTM INTEGRATION \& DIFFERENTIATION $\mathbf{2}^{\text {ND }}$ ORDER DERIVATIVE

EXAMPLE 9

- Solve and plot $\frac{d^{2} y}{d t^{2}}$ for the following function. Set time span t from $0 s$ to $50 s$.

$$
y(t)=-4.0622 e-05 t^{4}+0.0036 t^{3}-0.0229 t^{2}+1.4151 t
$$

- Then find $y^{\prime \prime}(5)$.

```
h=0.01;
t = 0:h:50;
y = -4.0622e-05*t.^4 + 0.0036*t.^3 - 0.0229*t.^2 + 1.4151*t;
ydot = diff(y,2)/h^2;
plot(t(3:end),ydot)
xlabel('x')
ylabel('y''''(x)')
title('2^{nd} Order Derivative')
fprintf('y''''(5) = %.4f\n',ydot(5/h+1))
```

$y^{\prime \prime}(5)=0.0502$

(0) UTM INTEGRATION \& DIFFERENTIATION $2^{\text {ND }}$ ORDER DERIVATIVE

EXAMPLE 9

(6) UTM

DIFFERENTIAL EQUATION

(3)UTM DIFFERENTIAL EQUATION

INTRODUCTION

- Differential equation is an equation involving derivatives of a function.
- In MATLAB, differential can be solve using function ode23().
- Syntax

```
[t,y] = ode23(odefun,tspan,y0)
```


Description

odefun : Function to be solve, specified as function handle.
tspan : Integral interval.
y0 : Initial condition.
y : Solution.
t : Evaluation points

(3) UTM DIFFERENTIAL EQUATION odefun FUNCTION HANDLE

Functions to solve, specified as a function handle which defines the functions to be integrated.
The function dydt $=$ odefun (t, y), for a scalar t and a column vector y, must return a column vector dydt of data type single or double that corresponds to $f(t, y)$. odefun must accept both input arguments, t and y , even if one of the arguments is not used in the function.

For example, to solve $y^{\prime}=5 y-3$, use the function:
function dydt $=\operatorname{odefun}(t, y)$
dydt = 5*y-3;

- Above is the description from the MATLAB documentation of the function handle for function ode23().
- The example given in the documentation can also be written as an anonymous function as below:

```
@(t,y) 5* y-3
```


(0)UTM DIFFERENTIAL EQUATION CHARGING OF AN RC CIRCUIT

EXAMPLE 10

To find how the capacitor is charging, below is the differential equation of above circuit derived from KCL

$$
v_{i n}=v_{R}+v_{c}=R C v_{c}^{\prime}+v_{c}
$$

By setting $R=10 \mathrm{k} \Omega, C=10 \mu F, v_{\text {in }}=10 \mathrm{~V}$ and $v_{c}=0 \mathrm{~V}$ at $t=0$, use function ode 23 () to plot the v_{c} for t from $0 s$ to $2 s$.

(3)UTM DIFFERENTIAL EQUATION

CHARGING OF AN RC CIRCUIT

EXAMPLE 10

To solve the differential equation for v_{c} using function ode23():

1) Rearrange the equation by setting the v_{c}^{\prime} placed at the left side of the equation as below and write the appropriate odefun function handle.
$v_{c}^{\prime}=\frac{v_{i n}-v_{c}}{R C}=\frac{10-v_{c}}{0.1}=100-10 v_{c}$
odefun $=$ @(t, vc) $100-10 * \mathrm{vc}$
2) Set initial value for v_{c}. In this example, it is set to 0 .
3) Set time interval. In this example, it is set as [llll $\left.\begin{array}{ll}0 & 2\end{array}\right]$.
4) Write the ode23 () function and run the code.

(3)UTM DIFFERENTIAL EQUATION CHARGING OF AN RC CIRCUIT

EXAMPLE 10

Below is the MATLAB script for Example 10

```
[t,vc] = ode23(@(t,vc)100-10*vc, [0 2], 0);
plot(t,vc)
xlabel('t(s)'), ylabel('v_c (t)')
title('Charging of RC Circuit')
grid on
```


() UTM DIFFERENTIAL EQUATION CHARGING OF AN RC CIRCUIT

EXAMPLE 10

Charging of RC Circuit

It can be seen from the above figure, the steady state voltage of the capacitor is 10 V , which is similar to the $v_{i n}$.

(0)UTM DIFFERENTIAL EQUATION CHARGING AND DISCHARGING OF RC CIRCUIT

EXAMPLE 11

Repeat Example 10 with the following $v_{i n}$.

Solution

Above $v_{\text {in }}$ can be coded as $1^{*}(t<1)$ or simply as ($t<1$). The only modification needed for function odefun () is to replace the $v_{i n}$ with the new equation where the derivative equation is now $d d t=((t<1)-v c) / 0.1$.

(0) UTM DIFFERENTIAL EQUATION
 CHARGING AND DISCHARGING OF RC CIRCUIT

EXAMPLE 11

Solution

To solve the differential equation for v_{c} using function ode23():

1) From Example 10, we have

$$
v_{c}^{\prime}=10\left(v_{i n}-v_{c}\right) \text { or }\left(v_{i n}-v_{c}\right) / 0.1
$$

In this example, $v_{i n}$ is no longer a constant value where its value turns to 0 when $t \geq 1$. To solve this, we can code $v_{\text {in }}$ either using decision statement or logical vector. Since anonymous function can only have one executable statement, logical vector method is used in this example. Here $v_{\text {in }}$ can be coded as $1^{*}(t<1)$ or simply as ($t<1$) and the odefun function handle is written as below:

$$
\text { odefun }=@(t, v c) 10 *((t<1)-v c)
$$

2) Similar to Example 10, initial value for v_{c} is 0 and time interval is [$0 \quad 2$].
3) Write the ode23 () function and run the code.

(3)UTM DIFFERENTIAL EQUATION CHARGING AND DISCHARGING OF RC CIRCUIT

EXAMPLE 11

Below is the MATLAB script for Example 11

```
[t,vc] = ode23(@(t,vc) 10*((t<1)-vc), [0 2], 0);
plot(t,vc)
xlabel('t(s)')
ylabel('v_c (t)')
title('Charging and Discharging of RC Circuit')
grid on
```


(0)UTM DIFFERENTIAL EQUATION CHARGING AND DISCHARGING OF RC CIRCUIT

(3)UTM DIFFERENTIAL EQUATION

$2^{\text {ND }}$ ORDER DIFFERENTIAL EQUATION

- Function ode23 () only solve $1^{\text {st }}$ order differential equation. Thus, to solve the $2^{\text {nd }}$ order differential equation, two stage $1^{\text {st }}$ order differentiation is written in for the odefun function handle.
- For example, to solve $y^{\prime \prime}=2 y^{\prime}+5 y+1$, write the function as the following by setting $y=y_{1}$ and $y^{\prime}=y_{2}$:

$$
\begin{aligned}
& y_{1}^{\prime}=y_{2} \\
& y_{2}^{\prime}=2 y^{\prime}+5 y+1=2 y_{2}+5 y_{1}+1
\end{aligned}
$$

```
odefun = @(t,y)[y(2); 2*y(2)+5*y(1)+1];
```

$1^{\text {st }}$ derivative. Always written it this way.
$2^{\text {nd }}$ derivative. Written according to the differential equation to be solved.

(0)UTM DIFFERENTIAL EQUATION

$2^{\text {ND }}$ ORDER DIFFERENTIAL EQUATION

- Then, the function ode23() is given with 2 initial values (one for y_{1} and one for y_{2}), specified as a vector. In this example the initial value is specified by vector

$$
\text { inity }=\left[\begin{array}{ll}
y_{1} & y_{2}
\end{array}\right]=\left[\begin{array}{ll}
0 & 0
\end{array}\right]
$$

```
tspan = [l0 2];
inity = [0 0];
[t,y] = ode23(@odefun(t,y),inity,tspan);
function d2dt = odefun(t,y)
d2dt = [y(2); 2*y(2)+5*y(1)+1];
```


(3)UTM DIFFERENTIAL EQUATION

RLC RESONANCE CIRCUIT

EXAMPLE 12

- One of the RLC circuit usage is as a resonance circuit, a circuit that generate an oscillating signal at specific frequency. The frequency can be computed as:

$$
F=\frac{1}{2 \pi \sqrt{L C}}
$$

- The differential equation of the above RLC circuit is as below where the inductor contributed to the $2^{\text {nd }}$ order differential equation. Plot $v_{\text {out }}$ for C equals to $50 \mu F, 100 \mu F$ and $635 \mu F$.

$$
v_{\text {in }}=R C v_{o u t}^{\prime}+L C v_{o u t}^{\prime \prime}+v_{\text {out }}
$$

(0) UTM DIFFERENTIAL EQUATION
 RLC RESONANCE CIRCUIT

EXAMPLE 12

Solution

To solve the differential equation for $v_{\text {out }}$ using function ode23 () :

1) Rearrange the equation by setting the $v_{o u t}^{\prime \prime}$ placed at the left side of the equation as below and write it in the function odefun().

$$
v_{\text {out }}^{\prime \prime}=\left(10-v_{\text {out }}-C v_{\text {out }}^{\prime}\right) / 10 C
$$

2) Write the differential equation as $1^{\text {st }}$ derivative equation by setting $v_{1}=v_{\text {out }}$ and $v_{2}=v_{o u t}^{\prime}$.

$$
\begin{aligned}
& v_{1}^{\prime}=v_{2} \\
& v_{2}^{\prime}=\left(10-v_{1}-C v_{2}\right) / 10 C
\end{aligned}
$$

3) Set initial value for v_{1} and v_{2} as $\left[\begin{array}{ll}0 & 0\end{array}\right]$ and time interval as $\left[\begin{array}{ll}0 & 2\end{array}\right]$.
4) Write the ode23 () function and run the code.
5) C is set as the additional parameter to the anonymous function since function ode23() allowed only two inputs to the anonymous function.

(3)UTM DIFFERENTIAL EQUATION

RLC RESONANCE CIRCUIT

EXAMPLE 12

Below is the MATLAB code for Example 13.12.

```
C = [50e-6 100e-6 635e-6];
for n = 1:3
    odefun = @(t,v)[v(2); (10-v(1)-C(n)*v(2))/(10*C(n))];
    [t,y] = ode23(odefun, [0 2], [0 0]);
    F = 1/(2*pi*sqrt(10*C(n)));
    subplot(3,1,n), plot(t,y(:,2))
    xlabel('Time (s)')
    ylabel('v_{out}')
    titletext = sprintf(['Resonator at F = %.2fHz '...
        '(R=1\x03A9, L=10H, C=%g\xB5'],F,C(n)/1e-6);
    title([titletext 'F)'])
    grid on
end
```


(0)UTM DIFFERENTIAL EQUATION

RLC RESONANCE CIRCUIT

EXAMPLE 12

[^1]univteknologimalaysia
©
utm_my
wWW.utm.my
innovative • entrepreneurial • global

[^0]: V fun - Integrand
 function handle

[^1]: (3)UTM DIFFERENTIAL EQUATION

 QUIZ 2
 PROVE THAT:
 System

 1) Parallel RLC Circuit:

 | Differential
 Equation | $V^{\prime \prime}+\frac{1}{R C} V^{\prime}+\frac{1}{L C} V=0$ |
 | ---: | :--- |
 | Odefun | $@(t, \mathrm{~V})\left[\mathrm{V}(2) ;-\mathrm{V}(2) /\left(\mathrm{R}^{\star} \mathrm{C}\right)-\mathrm{V}(1) /\left(\mathrm{L}^{*} \mathrm{C}\right)\right]$ |

 2) $\mathbf{2}^{\text {nd }}$ Order Active Lowpass Filter:

 Differential
 Equation
 Odefun @(t,vout)[vout(2); H*vin-1.4142*wc*vout(2)-(wc^2)*vout(1)];

