
SEEE1022
INTRODUCTION TO
SCIENTIFIC
PROGRAMMING

CH13
Differential Equation

Dr. Mohd Saiful Azimi Mahmud (azimi@utm.my)
P19a-04-03-30, School of Electrical Engineering, UTM

OBJECTIVES

After studying this chapter you should be able to:
1. Understand and create function handle to available function.
2. Understand and create anonymous function from mathematical expression and

existing function.
3. Understand and use the function functions.
4. Solve integration and difference using integral() and diff() functions.
5. Solve differential equation using ode23() function.

1

FUNCTION HANDLE

2

FUNCTION HANDLE

• A function handle is a MATLAB variable that stores an association (a handle) to
a function. With the handle, a function can be called indirectly.

• The data type of this variable is written as function_handle.

• To create a handle for a function, precede the function name with an @ sign. For
example, below is how y is set as the function handle to function myfunction():

y = @myfunction;

• Usage of the function handle:

1. To construct anonymous function.

2. To pass a function to another function (known as function functions).

3. To call local functions from outside the main function.

WHAT IS FUNCTION HANDLE?

3

FUNCTION HANDLE
ANONYMOUS FUNCTION

• Recap: Generally, function is a program that can accept inputs and return
outputs.

• Similar to the standard function, anonymous function can also accept inputs
and return outputs.

• The differences are:
1. Instead of a program file, anonymous function is a variable. The data type of

anonymous function is function_handle. The @ operator creates the handle.

2. Anonymous function can contain only a single executable statement.

3. Since anonymous function is a variable, saving the function is similar to saving
other type of variable. E.g., using the save() function.

4. It is called anonymous function because the function does not have a name while
standard function comes with a name. Anonymous function is called indirectly
upon its function handle name.

4

FUNCTION HANDLE
CREATING ANONYMOUS FUNCTION

• Syntax:

• The executable statement can be either one of the followings:
1) Mathematical expression.

2) Named function.

• The output arguments are not define explicitly. The number of the output arguments is
depending on the executable statement type.
1) Mathematical expression: Single output argument.

2) Named Function: Similar to the output arguments of the named function.

f = @(x) executable statement

Input
argument

Function
handle name

Handle creator

FUNCTION HANDLE

5

EXAMPLE 1

ANONYMOUS FUNCTION TO MATH EXPRESSION

Below is a standard function save as .m file. Since the function only consist of a single
executable statement, the function can also be written as anonymous function.

Below is how the function is written as anonymous function.

function f = mypoly(x)

f = x^2 + 1;

>> mypolyFH = @(x) x^2 + 1

mypolyFH =

function_handle with value:

@(x)x^2+1

>> a = mypolyFH(2)

a =

5

FUNCTION HANDLE

6

ANONYMOUS FUNCTION TO NAMED EXPRESSION

EXAMPLE 2

Writing available function as an anonymous function is a way to simplify the function. For
example, meshgrid is a function that accept vectors as input and can return up to 3
output arguments. At certain situation, this function can be simplified as anonymous
function to accept scalars rather than vectors.

>> mygrid = @(x)meshgrid(0:x,0:2);

>> [a,b] = mygrid(4)

a =

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

b =

0 0 0 0 0

1 1 1 1 1

2 2 2 2 2

FUNCTION HANDLE

7

ADDITIONAL PARAMETERS

• Additional parameters to the anonymous function are variables define in the
executable statement but not declared as input to the function. For example, below is
an anonymous function with one additional parameter z.

y = @(x) x.^2 + z

• The value of z must be define before the anonymous function is created.

• This additional parameters will be useful to add extra variables to the function input of
the function functions.

• Next slide will discuss on the function functions.

FUNCTION HANDLE

8

FUNCTION FUNCTIONS

• A function that accept function handle as its input argument is called function
functions.

• Since anonymous function is also a function handle, it can be used as the input to the
function functions.

• Later in this chapter, function integral() and ode23() are both the example of
function functions.

• Creating function input for function functions should follow the input argument
requirement of the function functions.

• For example, function integral() specify the function input as below:

9

FUNCTION HANDLE
FUNCTION FUNCTIONS

EXAMPLE 3

To plot 𝑦 𝑥 = 2𝑥2 + 3 for 𝑥 = 0: 0.1: 10, below is the MATLAB code when using
function plot():

We can simplify the code as below using function fplot() where an anonymous
function is used as the function handle to the fplot():

Alternatively, we can write a function file for the equation and use function handle to call
the function as below.

>> x = 0:0.1:10;

>> y = 2*x.^2 + 3;

>> plot(x,y)

>> fplot(@(x)2*x.^2+3,[0 10])

function y = myEq(x)

y = 2*x.^2+3;

>> fplot(@myEq,[0 10])

10

FUNCTION HANDLE
ADDITIONAL PARAMETER EXAMPLE

EXAMPLE 4

Below is MATLAB script showing 𝑐 as the additional parameter to the anonymous
function.

for c = 10:5:25

subplot(2,2,c/5-1), fplot(@(x)2*x.^3-c*x.^2+2,[0 10])

xlabel('x')

ylabel('y = 2x^3 - cx^2 + 2')

title(['Plot for c = ' num2str(c)])

end

11

FUNCTION HANDLE
ADDITIONAL PARAMETER EXAMPLE

EXAMPLE 4

INTEGRATION & DIFFERENTIATION

13

INTEGRATION & DIFFERENTIATION
INTEGRAL

• Syntax

y = integral(fun,xmin,xmax)

Description

fun : Integrand, specified as a function handle, which defines the function
to be integrated from xmin to xmax.
For scalar-valued problems, the function y = fun(x) must accept a
vector argument, x, and return a vector result, y. This generally
means that fun must use array operators instead of matrix
operators. For example, use .* (times) rather than * (mtimes). If you
set the 'ArrayValued' option to true, then fun must accept a scalar
and return an array of fixed size.

xmin : Lower limit of x.

xmax : Upper limit of x.

y : Integration result.

14

INTEGRATION & DIFFERENTIATION
INTEGRAL

Solve:

1) 𝑦1 = න
0

10

2𝑥2 + 6𝑥 + 1ⅆ𝑥 2) 𝑦2 = න
5.5

16.1

𝑥2 + 1ⅆ𝑥

EXAMPLE 5

>> y1 = integral(@(x)2*x.^2+6*x+1,0,10)

y1 =

976.6667

>> y2 = integral(@(x)x.^2+1,5.5,16.1)

y2 =

1.3462e+03

15

INTEGRATION & DIFFERENTIATION
AREA UNDER GRAPH

𝑦2 = 𝑥

𝑦1 = 8𝑥 − 𝑥2

𝑥𝑐
𝑥

𝑦

EXAMPLE 6

Given 2 functions of 𝑦 shown on the above figure, find the area of the shaded region.

Solution

1) Find 𝑥𝑐 by finding roots of when 𝑦1 = 𝑦2. Or, it is the roots of 𝑦1 − 𝑦2.

2) Find area under both the quadratic function, 𝑦1 and linear function, 𝑦2 for 𝑥 from 0 to 𝑥𝑐.

3) If area under graph 𝑦1 is 𝑞1 and area under graph 𝑦2 is 𝑞2, area of the shaded area is then
𝑎 = 𝑞1 − 𝑞2

16

INTEGRATION & DIFFERENTIATION
AREA UNDER GRAPH

Below is the MATLAB script of Example 6

EXAMPLE 6

xc = roots([-1 8 0]-[0 1 0]);

area = integral(@(x)-x.^2+8*x,xc(1),xc(2))...

- integral(@(x)x,xc(1),xc(2));

fprintf('Shaded Area = %.2funit\xB2\n\n',area)

Shaded Area = 57.17unit²

Note that both the quadratic and
linear functions are written as
polynomial vectors when using the
roots() function.

17

INTEGRATION & DIFFERENTIATION
DERIVATIVE FUNCTION: diff() / h

• Syntax

Y = diff(X,n)/h^n %Approximate Derivatives

Description

X : Input array.

n : Derivative order.

h : Interval between data points.

Y : Difference result.

18

INTEGRATION & DIFFERENTIATION
DERIVATIVE

Find derivative of 𝑦 𝑡 = 9.8𝑡2 + 20.13𝑡 − 0.03 for 𝑡 = 0 𝑡𝑜 10.

EXAMPLE 7

h = 0.001;

t = 0:h:10;

y = 9.8*t.^2 + 20.13*t - 0.03;

dydt = diff(y)/h;

plot(t(2:end),[y(2:end); dydt])

xlabel('t')

title('Derivative Approximation Using diff()/h')

legend('y(t)','y''(t)’)

>> size(y)

ans =

1 10001

>> size(dydt)

ans =

1 10000

Note that the size of dydt
is always shorter by 1
sample compared to y.

19

INTEGRATION & DIFFERENTIATION
DERIVATIVE

20

INTEGRATION & DIFFERENTIATION
DERIVATIVE APPROXIMATION ERROR

• Differentiate the following function for 𝑥 = 0 𝑡𝑜 1 using the diff()/h function.

𝑓 𝑥 = 0.3 + 20𝑥 − 180𝑥2 + 650𝑥3 − 880𝑥4 + 360𝑥5

• Then, compare the results with the exact solution given by:

𝑓′ 𝑥 = 20 − 360𝑥 + 1950𝑥2 − 3520𝑥3 + 1800𝑥4

• To do the above, write a script that estimates the differentiation of 𝑓(𝑥) by setting ℎ
equals to 1, 0.5 and 0.1, and compares the results with the exact solution graphically.

EXAMPLE 8

21

INTEGRATION & DIFFERENTIATION
DERIVATIVE APPROXIMATION ERROR

• Below is the MATLAB script for Example 8

EXAMPLE 8

h = [1 0.5 0.1 0.01];

linestyle = {':k','--b','-.r','-'};

for n = 1:4

x = 0:h(n):10;

y = 0.3 + 20*x - 180*x.^2 + 650*x.^3 - 880*x.^4 + 360*x.^5;

ydot = diff(y)/h(n);

plot(x(2:end),ydot,linestyle{n})

hold on

end

x = 0:0.001:10;

ydotexact = 20 - 360*x + 1950*x.^2 - 3520*x.^3 + 1800*x.^4;

plot(x(2:end),ydotexact(2:end),'k','LineWidth',1)

xlabel('x')

ylabel('y''(x)')

title('Derivative Approximation Error')

legend('h=1','h=0.5','h=0.1','Exact solution')

hold off

22

INTEGRATION & DIFFERENTIATION
DERIVATIVE APPROXIMATION ERROR

EXAMPLE 8

* The error decreases when h value becomes smaller.
In this example, ℎ = 0.01 gives unnoticeable error.

23

INTEGRATION & DIFFERENTIATION
2ND ORDER DERIVATIVE

• Solve and plot
𝑑2𝑦

𝑑𝑡2
for the following function. Set time span 𝑡 from 0𝑠 to 50𝑠.

𝑦 𝑡 = −4.0622𝑒 − 05𝑡4 + 0.0036𝑡3 − 0.0229𝑡2 + 1.4151𝑡

• Then find 𝑦′′ 5 .

EXAMPLE 9

h=0.01;

t = 0:h:50;

y = -4.0622e-05*t.^4 + 0.0036*t.^3 - 0.0229*t.^2 + 1.4151*t;

ydot = diff(y,2)/h^2;

plot(t(3:end),ydot)

xlabel('x')

ylabel('y''''(x)')

title('2^{nd} Order Derivative')

fprintf('y''''(5) = %.4f\n',ydot(5/h+1))

y''(5) = 0.0502

2nd order results is
always shorter by 2
samples compared to
the original vector y.

24

INTEGRATION & DIFFERENTIATION
2ND ORDER DERIVATIVE

EXAMPLE 9

DIFFERENTIAL EQUATION

25

DIFFERENTIAL EQUATION
INTRODUCTION

• Differential equation is an equation involving derivatives of a function.

• In MATLAB, differential can be solve using function ode23().

• Syntax

[t,y] = ode23(odefun,tspan,y0)

Description

odefun : Function to be solve, specified as function handle.

tspan : Integral interval.

y0 : Initial condition.

y : Solution.

t : Evaluation points

26

DIFFERENTIAL EQUATION
odefun FUNCTION HANDLE

• Above is the description from the MATLAB documentation of the function handle for
function ode23().

• The example given in the documentation can also be written as an anonymous function as
below:

@(t,y)5*y-3

27

DIFFERENTIAL EQUATION
CHARGING OF AN RC CIRCUIT

𝑖(𝑡) 𝑅

𝐶𝑣𝑖𝑛

+

−

𝑣𝑐

EXAMPLE 10

To find how the capacitor is charging, below is the differential equation of above circuit
derived from KCL

𝑣𝑖𝑛 = 𝑣𝑅 + 𝑣𝑐 = 𝑅𝐶𝑣𝑐
′ + 𝑣𝑐

By setting 𝑅 = 10𝑘Ω, 𝐶 = 10𝜇𝐹, 𝑣𝑖𝑛 = 10𝑉 and 𝑣𝑐 = 0𝑉 at 𝑡 = 0, use function ode23()
to plot the 𝑣𝑐 for 𝑡 from 0𝑠 to 2𝑠.

28

DIFFERENTIAL EQUATION
CHARGING OF AN RC CIRCUIT

EXAMPLE 10

To solve the differential equation for 𝑣𝑐 using function ode23():

1) Rearrange the equation by setting the 𝑣𝑐
′ placed at the left side of the equation as below

and write the appropriate odefun function handle.

𝑣𝑐
′ =

𝑣𝑖𝑛 − 𝑣𝑐
𝑅𝐶

=
10 − 𝑣𝑐
0.1

= 100 − 10𝑣𝑐

odefun = @(t,vc)100-10*vc

2) Set initial value for 𝑣𝑐. In this example, it is set to 0.

3) Set time interval. In this example, it is set as [0 2].

4) Write the ode23() function and run the code.

29

DIFFERENTIAL EQUATION
CHARGING OF AN RC CIRCUIT

EXAMPLE 10

Below is the MATLAB script for Example 10

[t,vc] = ode23(@(t,vc)100-10*vc, [0 2], 0);

plot(t,vc)

xlabel('t(s)'), ylabel('v_c (t)')

title('Charging of RC Circuit')

grid on

30

DIFFERENTIAL EQUATION
CHARGING OF AN RC CIRCUIT

EXAMPLE 10

It can be seen from the above figure, the steady state voltage of the capacitor is 10𝑉, which is
similar to the 𝑣𝑖𝑛.

31

DIFFERENTIAL EQUATION
CHARGING AND DISCHARGING OF RC CIRCUIT

EXAMPLE 11

Repeat Example 10 with the following 𝑣𝑖𝑛.

Solution

Above 𝑣𝑖𝑛 can be coded as 1*(t<1) or simply as (t<1). The only modification needed for
function odefun() is to replace the 𝑣𝑖𝑛 with the new equation where the derivative
equation is now ddt=((t<1)-vc)/0.1.

𝑣𝑖𝑛 = ቊ
1 𝑓𝑜𝑟 𝑡 < 1

0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

32

DIFFERENTIAL EQUATION
CHARGING AND DISCHARGING OF RC CIRCUIT

EXAMPLE 11

Solution

To solve the differential equation for 𝑣𝑐 using function ode23():

1) From Example 10, we have

𝑣𝑐
′ = 10 𝑣𝑖𝑛 − 𝑣𝑐 or 𝑣𝑖𝑛 − 𝑣𝑐 / 0.1

In this example, 𝑣𝑖𝑛 is no longer a constant value where its value turns to 0 when 𝑡 ≥ 1. To solve this, we can code 𝑣𝑖𝑛
either using decision statement or logical vector. Since anonymous function can only have one executable statement,
logical vector method is used in this example. Here 𝑣𝑖𝑛 can be coded as 1*(t<1) or simply as (t<1) and the
odefun function handle is written as below:

odefun = @(t,vc)10*((t<1)-vc)

2) Similar to Example 10, initial value for 𝑣𝑐 is 0 and time interval is[0 2].

3) Write the ode23() function and run the code.

33

DIFFERENTIAL EQUATION
CHARGING AND DISCHARGING OF RC CIRCUIT

EXAMPLE 11

Below is the MATLAB script for Example 11

[t,vc] = ode23(@(t,vc)10*((t<1)-vc), [0 2], 0);

plot(t,vc)

xlabel('t(s)')

ylabel('v_c (t)')

title('Charging and Discharging of RC Circuit')

grid on

34

DIFFERENTIAL EQUATION
CHARGING AND DISCHARGING OF RC CIRCUIT

EXAMPLE 11

35

DIFFERENTIAL EQUATION
2ND ORDER DIFFERENTIAL EQUATION
• Function ode23() only solve 1st order differential equation. Thus, to solve the 2nd

order differential equation, two stage 1st order differentiation is written in for the
odefun function handle.

• For example, to solve 𝑦′′ = 2𝑦′ + 5𝑦 + 1, write the function as the following by
setting 𝑦 = 𝑦1 and 𝑦′ = 𝑦2:
𝑦1
′ = 𝑦2

𝑦2
′ = 2𝑦′ + 5𝑦 + 1 = 2𝑦2 + 5𝑦1 + 1

odefun = @(t,y)[y(2); 2*y(2)+5*y(1)+1];

1st derivative.
Always written

it this way.

2nd derivative. Written
according to the differential
equation to be solved.

36

DIFFERENTIAL EQUATION
2ND ORDER DIFFERENTIAL EQUATION

• Then, the function ode23() is given with 2 initial values (one for 𝑦1 and one for 𝑦2),
specified as a vector. In this example the initial value is specified by vector

inity = [𝑦1 𝑦2]=[0 0]

tspan = [0 2];

inity = [0 0];

[t,y] = ode23(@odefun(t,y),inity,tspan);

function d2dt = odefun(t,y)

d2dt = [y(2); 2*y(2)+5*y(1)+1];

37

DIFFERENTIAL EQUATION
RLC RESONANCE CIRCUIT

EXAMPLE 12

• One of the RLC circuit usage is as a resonance circuit, a circuit that generate an oscillating
signal at specific frequency. The frequency can be computed as:

𝐹 =
1

2𝜋 𝐿𝐶

• The differential equation of the above RLC circuit is as below where the inductor
contributed to the 2nd order differential equation. Plot 𝑣𝑜𝑢𝑡 for 𝐶 equals to 50𝜇𝐹, 100𝜇𝐹
and 635𝜇𝐹.

𝑣𝑖𝑛 = 𝑅𝐶𝑣𝑜𝑢𝑡
′ + 𝐿𝐶𝑣𝑜𝑢𝑡

′′ + 𝑣𝑜𝑢𝑡

𝑅 = 1Ω

𝐶𝑣𝑖𝑛 = 10𝑉

+

−

𝑣𝑜𝑢𝑡

𝐿 = 10𝐻

38

DIFFERENTIAL EQUATION
RLC RESONANCE CIRCUIT

EXAMPLE 12

Solution

To solve the differential equation for 𝑣𝑜𝑢𝑡 using function ode23():

1) Rearrange the equation by setting the 𝑣𝑜𝑢𝑡
′′ placed at the left side of the equation as below and write it in the function

odefun().

𝑣𝑜𝑢𝑡
′′ = 10 − 𝑣𝑜𝑢𝑡 − 𝐶𝑣𝑜𝑢𝑡

′ /10𝐶

2) Write the differential equation as 1st derivative equation by setting 𝑣1 = 𝑣𝑜𝑢𝑡 and 𝑣2 = 𝑣𝑜𝑢𝑡
′ .

𝑣1
′ = 𝑣2

𝑣2
′ = 10 − 𝑣1 − 𝐶𝑣2 /10𝐶

3) Set initial value for 𝑣1 and 𝑣2 as [0 0]and time interval as[0 2].

4) Write the ode23() function and run the code.

5) 𝐶 is set as the additional parameter to the anonymous function since function ode23() allowed only two inputs to
the anonymous function.

39

DIFFERENTIAL EQUATION
RLC RESONANCE CIRCUIT

EXAMPLE 12

Below is the MATLAB code for Example 13.12.

C = [50e-6 100e-6 635e-6];

for n = 1:3

odefun = @(t,v)[v(2); (10-v(1)-C(n)*v(2))/(10*C(n))];

[t,y] = ode23(odefun, [0 2], [0 0]);

F = 1/(2*pi*sqrt(10*C(n)));

subplot(3,1,n), plot(t,y(:,2))

xlabel('Time (s)')

ylabel('v_{out}')

titletext = sprintf(['Resonator at F = %.2fHz '...

'(R=1\x03A9, L=10H, C=%g\xB5'],F,C(n)/1e-6);

title([titletext 'F)'])

grid on

end

40

DIFFERENTIAL EQUATION
RLC RESONANCE CIRCUIT

EXAMPLE 12

41

DIFFERENTIAL EQUATION
QUIZ 2
PROVE THAT:

System

1) Parallel RLC Circuit:

Differential
Equation

𝑉′′ +
1

𝑅𝐶
𝑉′ +

1

𝐿𝐶
𝑉 = 0

Odefun @(t,V)[V(2); -V(2)/(R*C)-V(1)/(L*C)]

2) 2nd Order Active Lowpass Filter:

Differential
Equation

𝑉𝑜𝑢𝑡
′′ + 1.4142Ω𝑐𝑉𝑜𝑢𝑡

′ + Ω𝑐
2𝑉𝑜𝑢𝑡 = 𝐻𝑉𝑖𝑛

Where Ω𝑐 is the filter cutoff frequency in 𝑟𝑎ⅆ𝑠−1 and 𝐻 is the filter gain

Odefun @(t,vout)[vout(2); H*vin-1.4142*wc*vout(2)-(wc^2)*vout(1)];

