
SEEE1022
INTRODUCTION TO
SCIENTIFIC
PROGRAMMING

CH14
Object Oriented
Programming

Dr. Mohd Saiful Azimi Mahmud (azimi@utm.my)
P19a-04-03-30, School of Electrical Engineering, UTM

WHAT IS OOP?

Procedural programming is a list of instructions to perform a task

• Has no association between functions and the data they operate on

• Example programming languages: FORTRAN, C

Object Oriented Programming is a programming paradigm organized around objects with
data and associated functions.

• Data – state

• Functions – behaviour

• Example programming languages : C++, Java, C#

1

2

WHY OOP?

Modularity

Abstraction

Reuse

Code
maintenance/Maintainability

Code expansion/Extensibility

Improved Code Understanding

Data encapsulation

Logic Encapsulation

3

OOP FUNDAMENTALS

• Class: template for creating objects, defining properties and methods, as well as
default values/behavior

• Object: instance of a class that has a state (properties) and behaviour (methods)

• Properties: data associated with an object: The variables.

• Methods: functions (behavior) defined in a class and associated with an object: The
operation.

• Attributes : modify behavior of classes and class components

• Inheritance: object or class (subclass) derived from another object or class (superclass)

• Polymorphism: single interface to entities of different types

4

OOP IN MATLAB

• Full support in MATLAB R2008b and above

• Dot notation works in R2014b and later

• MATLAB R2015a has introduced additional functionalities in term of editing
capabilities

WHAT IS A CLASS, OBJECT?

5

• A class is a template for ideas/items. It is composed of a definition of a data structure
and methods that can operate on the data structure (if created).

• An object is an actual instance of a class.

• To use a class one only needs to know the interface to the class (i.e. the methods of
the class)

6

OBJECT ORIENTED TERMINOLOGY

MATLAB OOP

7

• Class

• Property

• Constructor

• Method

• Static Method

• Constant Property

• Private Property

• Handle vs. Value Classes

• Events

• Overloading

• Inheritance

• Abstract Class

DEFINING A CLASS

8

• A class is instantiated with the classdef keyword.

• The source code must go inside a file with the same name (e.g. myRectangle.m).

classdef myRectangle

properties

% Properties (variable) go here

end

methods

% Methods (function) go here

end

end

9

DEFINING A PROPERTY

• The internal state of the class is saved as properties of the class

• No need of defining the type of each property.

• You can access the property or method using the . operator.

classdef myRectangle

properties

width; % The width of the rectangle

height; % The height of the rectangle

end

methods

% Methods go here

end

end In this example, the object
myRectangle is defined
with two properties, its
height and width.

10

DEFINING A PROPERTY

• Create an object r of class Rectangle as follows.

• Access the property using . operator.

>> r = myRectangle

r =

myRectangle with properties:

width: []

height: []

>> r.width = 5

r =

myRectangle with properties:

width: 5

height: []

• The properties of the object
can be accessed (get or set)
using the . operator.

• In this example property
width is set equals to 5.

11

DEFINING A CONSTRUCTOR

• An object is created by invoking a special method known as constructor.

• The constructor is a function with similar name to the class’s name.

• If no constructor is defined, by default MATLAB generates a constructor with no input
arguments.

function obj = ObjectName(input arguments)

Input: For basic constructor,
inputs are normally use to
set object’s properties value.

Function Name:
Similar to class
name

Output: must be written as obj.

12

DEFINING A CONSTRUCTOR

• Below is an example of defining a user-defined constructor for object myRectangle.

classdef myRectangle

properties

width; % The width of the rectangle

height; % The height of the rectangle

end

methods

%Constructor

function obj = myRectangle(w,h)

obj.width = w ;

obj.height = h ;

end

end

end

13

DEFINING A CONSTRUCTOR

• Below is how an object with user-defined constructor is created at command window.

>> r = myRectangle(3,2)

r =

myRectangle with properties:

width: 3

height: 2

>> r = myRectangle

Not enough input arguments.

Error in myRectangle (line 15)

obj.width = w ; obj.height = h ;

With the user-defined
constructor, setting value
for the object’s properties
can be done straight when
creating the object.

14

DEFINING A METHOD

• The third essential element of a class definition is a set of methods.

• Methods are operations that are common or basic to an object.

• For example, some of the basic operations that can be applied to a rectangle are:

1) Compute area.

2) Compute perimeter.

3) Scale up or down the rectangle.

4) Rotate the rectangle by 90°.

5) Trim the rectangle.

• Every method is define through a function, similar to constructor. The difference is,
method name must be different with the class name.

15

DEFINING A METHOD

• Below is an example of defining methods to an object.

classdef myRectangle

properties

width; height;

end

methods

%Constructor

function obj = myRectangle(w,h)

obj.width = w ; obj.height = h ;

end

%Methods

function a = getArea(obj)

a = obj.width*obj.height;

end

function obj = scale(obj,n)

obj.width = n*obj.width ;

obj.height = n*obj.height ;

end

end

end

16

DEFINING A METHOD

• Below is how the methods are applied onto the object myRectangle.

>> a = myRectangle(2,3)

a =

myRectangle with properties:

width: 2

height: 3

>> area = a.getArea()

area =

6

>> b = a.scale(2).getArea()

b =

24

• First, an object a of a class
myRectangle is created.

• Second, area of object a is computed
using method getArea().

• Third, area of scaled version of object
a by 2 is computed by first applying
method scale() followed by
method getArea().

17

DEFINING A CONSTANT PROPERTY

• A constant property is a property whose value cannot be modified after the first
assignment:

classdef myCircle

properties

radius;

end

properties (Constant)

PI = 3.14 ;

end

% Other definitions

end

>> a = myCircle;

>> a.PI

ans =

3.1400

>> a.PI = 2

You cannot set the read-only property ’PI’ of myCircle.

18

DEFINING A PRIVATE PROPERTY

(ATTRIBUTE)

• Properties that should not be visible (nor modifiable) from the outside.

• You can also have private methods (using an equivalent syntax).

classdef myRectangle

properties (Access = private)

trimLength = 1;

end

% Other definition

End

>> r = myRectangle(3,2)

r =

myRectangle with no properties.

19

OBJECT ARRAY

• Next slide shows a class named myRectangle. For this class there are:

1) 4 properties, which their values will be set when an object of this class is created.

2) 1 constant and also 1 private property.

3) A user-defined constructor that accept width and height value. This constructor also
set value for all of the 4 properties in (1).

4) There is 1 method that can be used to trim the myRectangle object according to
the constant and private property value.

• Use the myRectangle class to create 2 elements vector of myRectangle object
that start with certain width and height, followed by the trimmed rectangle.

20

OBJECT ARRAY

classdef myRectangle

properties

width; height; area; perimeter;

end

properties (Constant)

trimLength = 1;

end

properties (Access = private)

minimumTrim = 4;

end

methods

% Constructor

function obj = myRectangle(w,h)

obj.width = w ; obj.height = h ;

obj.area = obj.width*obj.height;

obj.perimeter = 2*obj.width + 2*obj.height;

end

% Methods

function obj = trim(obj)

if obj.width > obj.minimumTrim

obj.width = obj.width - 2*obj.trimLength;

end

end

end

end

21

OBJECT ARRAY

• Below is the solution for the Example

>> a = myRectangle(5,7);

>> rectarray = [a a.trim()]

rectarray =

1×2 myRectangle array with properties:

width

height

area

perimeter

trimLength

>> rectarray(2)

ans =

myRectangle with properties:

width: 3

height: 7

area: 35

perimeter: 24

trimLength: 1

22

CASE STUDY: GRAPHICS OBJECT

• When plot function is performed, various graphics objects are created to display the
graphs. 3 of the objects are as below:

1) Figure

2) Axes

3) Line

• These objects has their own properties and methods, which can be used to customize
plotting.

• To customize the plotting, function figure, axes and plot based on the following
syntax should be used:

f = figure(___) Get Figure object

ax = axes(f,___) Get Axes object

h = plot(ax,___) Get Line object

23

GRAPHICS OBJECT

• Below is a user-defined function to create a plot inside another plot where properties
of the Axes and Line objects are customized.

function plotinplot(x,y,xin,yin)

% This function will plot y vs x as the main plot and yin vs xin as the

% smaller plot inside the main plot

avgy = mean(y)*ones(1,length(x));

avgyin = mean(yin)*ones(1,length(xin));

hfig = figure('Name','Plot in Plot'); % Create Figure object

hax = axes('Parent',hfig); % Create Axes object on hfig

haxin = axes('Parent',hfig,'Position',[0.2 0.2 0.2 0.2]); % Create Axes object by

% specifying Position property.

p = plot(hax,x,y,x,avgy); % Create Line object array on hax object

pin = plot(haxin,xin,yin,xin,avgyin); % Cretae Line object array on haxin object

xlabel(hax,'X Axis'), ylabel(hax,'Y Axis'), title(hax,'Plot inside a plot')

p(2).LineStyle = '--'; % Set p(2) object property

pin(2).LineStyle = '--'; % Set pin(2) object property

haxytick = sort([hax.YTick avgy(1)]);

hax.YTick = haxytick; % Set Ytick property of hax object

haxin.XTick = []; % Set several haxin propeties

haxin.YTick = avgyin(1); % .

haxxtick = hax.XTick; % .

haxin.XLim = [haxxtick(1) haxxtick(end)]; % .

haxin.YLim = [haxytick(1) haxytick(end)]; % .

24

GRAPHICS OBJECT

• Below is how two signals are plotted using the plotinplot() function.

• Note that the plotinplot() function is also displaying a line indicating the average
value of the plotted signal.

>> x = -10:.005:40;

>> y1 = 1.5*cos(x) + exp(.07*x).*sin(3*x);

>> y2 = 1.5*sin(x) + exp(.07*x).*cos(5*x) + 2;

>>

>> plotinplot(x,y1,x,y2)

25

GRAPHICS OBJECT

27

REFERENCES

• Matthew J. Zahr, Advanced MATLAB for Scientific Programming, Stanford University,
21st April 2015

• Simone Scardapane, Adaptive Algorithms and Parallel Programming - OOP in MATLAB,
2014-2015

