## SKEE 1223 <br> DIGITAL ELECTRONICS <br> CHAPTER 2: NUMBER SYSTEMS \& DIGITAL CODES <br> DR. MOHD SAIFUL AZIMI BIN MAHMUD P19a-04-03-30 <br> School of Electrical Engineering <br> Faculty of Engineering Universiti Teknologi Malaysia 019-7112948 azimi@utm.my <br> TIMETABLE (SECTION 13): <br> Sunday: 8 am -10 am (P07-411.2) <br>  <br> Tuesday: 8 am -10 am (P07-411.1)

# DECIMAL, BINARY, HEXADECIMAL \& OCTAL NUMBERS 

## NUMBER SYSTEMS

INTRODUCTION

| Number Systems | Examples | Dec | Hex | Octal | Binary |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Decimal | 0~9 | 1 | 1 | 01 | 0000 |
|  |  | 2 | 2 | 02 | 0010 |
| Binary | $0 \sim 1$ | 3 | 3 | 03 | 0011 |
| Octal | 0~7 | 4 | 4 | 04 | 0100 |
|  |  | 5 | 5 | 05 | 0101 |
| Hexadecimal | $0 \sim 9, A \sim F$ | 6 | 6 | 06 | 0110 |
|  |  | 7 | 7 | 07 | 0111 |
|  |  | 8 | 8 | 10 | 1000 |
|  |  | 9 | 9 | 11 | 1001 |
|  |  | 10 | A | 12 | 1010 |
|  |  | 11 | B | 13 | 1011 |
|  |  | 12 | C | 14 | 1100 |
|  |  | 13 | D | 15 | 1101 |
|  |  | 14 | E | 16 | 1110 |
|  |  | 15 | F | 17 | 1111 |

## NUMBER SYSTEMS

 SIGNIFICANT BIT/DIGIT

Most Significant Bit Least Significant Bit (MB)
(LLB)


Most Significant Digit (BSD)

Least significant Digit (LSD)

## NUMBER SYSTEMS

## SIZE OF BIT/NIBBLE/BYTE/WORD

| Unit | Size |
| :---: | :---: |
| Bit | One binary digit |
| Nibble | 4 bit |
| Byte | 8 bit |
| Word | 16 bit |

## NUMBER SYSTEMS

## DECIMAL NUMBERS: INTRODUCTION

- Use Base-10 system.
- 10 digits/symbols: $0,1,2,3,4,5,6,7,8$ and 9 .
- The value of a digit is determined by its position in the number.
- For example, to express the quantity twenty three:

- The position of each digit indicates the magnitude of the quantity and can be assigned by a weight.


## NUMBER SYSTEMS

## DECIMAL NUMBERS: INTRODUCTION

- The weight of whole numbers are positive powers of ten, that increases from right to left, beginning from $10^{0}=1$.

$$
\ldots 10^{5} 10^{4} 10^{3} 10^{2} 10^{1} 10^{0}
$$

- The weight of fraction numbers are negative powers of ten, that decreases from left to right that begins with $10^{-1}=$ 0.1.

$$
10^{2} 10^{1} 10^{0} ; 10^{-1} 10^{-2} 10^{-3} \ldots .
$$

- The value of decimal number is a sum of the digits after each digits multiplied by its weight.


## NUMBER SYSTEMS

DECIMAL NUMBERS: EXAMPLE

## Example

Decimal number $=2745.214$
Weights


$$
\begin{aligned}
2745.214= & \left(2 \times 10^{3}\right)+\left(7 \times 10^{2}\right)+\left(4 \times 10^{1}\right)+\left(5 \times 10^{0}\right) \\
& +\left(2 \times 10^{-1}\right)+\left(1 \times 10^{-2}\right)+\left(4 \times 10^{-3}\right) \\
= & (2 \times 1000)+(7 \times 100)+(4 \times 10)+(5 \times 1) \\
& +(2 \times 0.1)+(1 \times 0.01)+(4 \times 0.001) \\
= & \mathbf{2 0 0 0}+\mathbf{7 0 0}+\mathbf{4 0}+\mathbf{5}+\mathbf{0 . 2}+\mathbf{0 . 0 1}+\mathbf{0 . 0 0 4}
\end{aligned}
$$

## NUMBER SYSTEMS

## BINARY NUMBERS: INTRODUCTION

- Use Base-2 system.
- 2 binary digits (bits)/symbols: 0 and 1 .
- Example: 00, 01, 10, 11, 100, 101, 110, 111, ...
- The value of a bit is determined by its position in the number.
- The position of 0 and 1 indicates its weight, or value within number.

Weights


- The right-most bit is the LSB (least significant bit).
- The binary whole number has the weight of $2^{0}=1$.
- The weight increase from right to left by power of two.


## NUMBER SYSTEMS <br> BINARY NUMBERS: INTRODUCTION



- The left most bit of binary number is the MSB (most significant bit).
- The binary fraction number has the weight of negative powers of two which decreases from left to right that begins with $2^{-1}=0.5$.

| Positive Powers of Two (Whole Numbers) |  |  |  |  |  |  |  |  | Negative Powers of Two (Fractional Number) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $2^{8}$ | $2^{7}$ | $2^{6}$ | $2^{5}$ | $2^{4}$ | $2^{3}$ | $2^{2}$ | $2^{1}$ | $2^{0}$ | $2^{-1}$ | $2^{-2}$ | $2^{-3}$ | $2^{-4}$ | $2^{-5}$ | $2^{-6}$ |
| 256 | 128 | 64 | 32 | 16 | 8 | 4 | 2 | 1 | $\begin{aligned} & 1 / 2 \\ & 0.5 \end{aligned}$ | $\begin{gathered} 1 / 4 \\ 0.25 \end{gathered}$ | $\begin{gathered} 1 / 8 \\ 0.125 \end{gathered}$ | $\begin{gathered} 1 / 16 \\ 0.625 \end{gathered}$ | $\begin{gathered} 1 / 32 \\ 0.03125 \end{gathered}$ | $\begin{gathered} 1 / 64 \\ 0.015625 \end{gathered}$ |

## NUMBER SYSTEMS

## BINARY NUMBERS: BINARY TO DECIMAL CONVERSION

- The decimal value of any binary number can be found by adding the weights of all bits that are 1 and discarding the weights of all bits that are 0 .


## Example 1

Convert the binary whole number 1101101 to decimal.

## Solution

Determine the weight of each bit that is a 1 , then calculates the sum of weights.

$$
\begin{array}{rccccccccc}
\text { Weight: } & 2^{6} & 2^{5} & 2^{4} & 2^{3} & 2^{2} & 2^{1} & 2^{0} \\
\text { Binary Number: } & 1 & 1 & 0 & 1 & 1 & 0 & 1
\end{array}
$$

$$
\begin{aligned}
1101101 & =2^{6}+2^{5}+2^{3}+2^{2}+2^{0} \\
& =64+32+8+4+1=109
\end{aligned}
$$

innovative • entrepreneurial • global

## NUMBER SYSTEMS

BINARY NUMBERS: BINARY TO DECIMAL CONVERSION

## Example 2

Convert the fractional binary number 0.1011 to decimal.

## Solution

Determine the weight of each bit that is a 1 , then calculates the sum of weights.

$$
\begin{array}{cccc}
\text { Weight: } & 2^{-1} & 2^{-2} & 2^{-3} \\
2^{-4} \\
\text { Binary Number: } 0.1 & 0 & 1 & 1
\end{array}
$$

$$
\begin{aligned}
0.1011 & =2^{-1}+2^{-3}+2^{-4} \\
& =0.5+0.125+0.00625=0.6875
\end{aligned}
$$

## NUMBER SYSTEMS

 BINARY NUMBERS: BINARY TO DECIMAL CONVERSION
## Example 3

Convert the fractional binary number 1011.101 to decimal.

## Solution

Determine the weight of each bit that is a 1 , then calculates the sum of weights.
Weights
 (WHOLE NUMBER)

Repeated Division-by-2 Method

- Dividing the decimal number by 2.
- Repeating dividing each resulting quotient by 2 until there is 0 whole-number quotient.
- Take the remainders generated from the division and form the binary number.
- The first remainder is set as LSB, and the last remainder as MSB.


## NUMBER SYSTEMS

BINARY NUMBERS: DECIMAL TO BINARY CONVERSION (WHOLE NUMBER)

## Example

Convert the decimal number 12 to binary.

## Solution

Remainder
 BINARY NUMBERS: DECIMAL TO BINARY CONVERSION (FRACTIONAL NUMBER)

## Repeated Multiplication-by-2 Method

- Multiplying the decimal number by 2.
- Repeating multiplying each resulting fractional part by 2 until the fractional product is 0 .
- Take the carries generated by the multiplication to form the binary number.
- The first carry product is set as MSB, and the last carry as LSB.


## NUMBER SYSTEMS

BINARY NUMBERS: DECIMAL TO BINARY CONVERSION (FRACTIONAL NUMBER)

## Example

Convert the fractional decimal number 0.3125 to binary.

## Solution



## NUMBER SYSTEMS

## OCTAL NUMBERS: INTRODUCTION

- Use Base-8 system.
- 8 digits/symbols: $0,1,2,3,4,5,6$ and 7 .
- Example: 0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 20, ...
- The value of a digit is determined by its position in the number.
- The position of each digit indicates the magnitude of the quantity and can be assigned by a weight.

| $\mathbf{8}^{\mathbf{4}}$ | $\mathbf{8}^{\mathbf{3}}$ | $\mathbf{8}^{\mathbf{2}}$ | $\mathbf{8}^{\mathbf{1}}$ | $\mathbf{8}^{\mathbf{0}}$ | $\mathbf{8}^{\mathbf{1}}$ | $\mathbf{8}^{\mathbf{- 2}}$ | $\mathbf{8}^{\mathbf{- 3}}$ | $\mathbf{8}^{-\mathbf{4}}$ | $\mathbf{8}^{-\mathbf{5}}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |  |  |
| Octal point |  |  |  |  |  |  |  |  |  |

- In octal whole number, it has a weight of $8^{0}=1$. The weight increase from right to left by power of eight.


## NUMBER SYSTEMS

## OCTAL NUMBERS: INTRODUCTION

- In octal fraction numbers, the weight are negative powers of eight, that decreases from left to right beginning with $8^{-1}=0.125$.
- Convenient way to express binary numbers and codes. Uses 3-bits binary boundary.

| Octal Digit | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Binary <br> Equivalent | 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111 |

Example Convert the binary 100111010 to octal numbers.


## NUMBER SYSTEMS

## OCTAL NUMBERS: OCTAL TO DECIMAL CONVERSION

- The decimal equivalent can be accomplished by multiplying each digit by its weight and summing the products.


## Example

Convert the octal whole number $2374_{8}$ to decimal.

## Solution

Multiply each digit by its weight, then calculates the sum of the products.

$$
\begin{aligned}
& \text { Weight: } 8^{3} 8^{2} 8^{1} 8^{0} \\
& \text { Octal Number: } 27374 \\
& 2374_{8}=\left(2 \times 8^{3}\right)+\left(3 \times 8^{2}\right)+\left(7 \times 8^{1}\right)+\left(4 \times 8^{0}\right) \\
& =(2 \times 512)+(3 \times 64)+(7 \times 8)+(4 \times 1) \\
& =1024+192+56+4 \\
& =1276_{10}
\end{aligned}
$$

## NUMBER SYSTEMS

 OCTAL NUMBERS: DECIMAL TO OCTAL CONVERSION (WHOLE NUMBER)Repeated Division-by-8 Method

- Dividing the decimal number by 8 .
- Repeating dividing each resulting quotient by 8 until there is 0 whole-number quotient.
- Take the remainders generated from the division and form the octal number.
- The first remainder is set as LSD, and the last remainder as MSD.


## NUMBER SYSTEMS

## OCTAL NUMBERS: DECIMAL TO OCTAL CONVERSION (WHOLE NUMBER)

## Example

Convert the decimal number 359 to octal.

## Solution



## NUMBER SYSTEMS

## OCTAL NUMBERS: DECIMAL TO OCTAL CONVERSION (FRACTIONAL NUMBER)

## Repeated Multiplication-by-8 Method

- Multiplying the decimal number by 8.
- Repeating multiplying each resulting fractional part by 8 until the fractional product is 0 .
- Take the carries generated by the multiplication to form the octal number.
- The first carry product is set as MSD, and the last carry as LSD.


## NUMBER SYSTEMS

## OCTAL NUMBERS: DECIMAL TO OCTAL CONVERSION (FRACTIONAL NUMBER)

## Example

Convert the fractional decimal number 0.3125 to octal.

## Solution

$0.3125 \times 8=2.50$

Stop when the fractional part is all zeros.

MSB


$$
\text { Answer }=0.24_{8}
$$

## NUMBER SYSTEMS

 OCTAL NUMBERS: BINARY TO OCTAL CONVERSIONTo convert binary to octal, simply:

## Step 1

Break the binary number into 3-bits group (3-bits boundary), starting from LSD.

## Step 2

Replace each 3-bits group with the value equivalent to the octal number

| Octal Digit | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Binary <br> Equivalent | 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111 |

## NUMBER SYSTEMS

OCTAL NUMBERS: BINARY TO OCTAL CONVERSION

## Example 1

Convert the binary number 110101 to octal.

## Solution

$\begin{array}{rcc}\text { Binary: } & 110 & 101 \\ \text { Octal: } & 6 & 5\end{array}$

$$
\text { Answer }=65_{8}
$$

Example 2
Convert the binary number 1010011 to octal.

## Solution

Binary:
001
010
011
Octal:
1
2


$$
\text { Answer }=123_{8}
$$

## NUMBER SYSTEMS

 OCTAL NUMBERS: OCTAL TO BINARY CONVERSIONTo convert octal to binary number, simply replace octal digit with the appropriate 3-bits group (3-bits boundary).

## Example 1

Convert the octal number $13_{8}$ to binary.

## Solution



## Example 2

Convert the octal number $7526_{8}$ to binary.

## Solution

| Octal: | 7 | 5 | 2 | 6 |
| :---: | :---: | :---: | :---: | :---: |
| Binary: | 111 | 101 | 010 <br> innovative $\bullet$ entrepreneurial $\bullet$ global | 110 <br> Answer $=11101010110_{2}$ |

## NUMBER SYSTEMS

## HEXADECIMAL NUMBERS

- Use Base-16 system.
- 16 symbols consists of 10 numeric digits and 6 alphabetic characters: $0,1,2,3,4,5,6,7,8,9, A, B, C, D, E$ and $F$.
- The value of a digit is determined by its position in the number.
- The position of each digit indicates the magnitude of the quantity and can be assigned by a weight.
- The weight of hexadecimal whole numbers are positive powers of sixteen, that increases from right to left, beginning from $16^{0}=1$.

\[

\]

## NUMBER SYSTEMS

## HEXADECIMAL NUMBERS

- The weight of hexadecimal fraction numbers are negative powers of sixteen, that decrease from left to right beginning with $16^{-1}=0.0625$.
- Compact way to express binary numbers and codes. Uses 4-bits binary boundary.

| Decimal | Binary | Hexadecimal |
| :---: | :---: | :---: |
| 0 | 0000 | 0 |
| 1 | 0001 | 1 |
| 2 | 0010 | 2 |
| 3 | 0011 | 3 |
| 4 | 0100 | 4 |
| 5 | 0101 | 5 |
| 6 | 0110 | 6 |
| 7 | 0111 | 7 |
| 8 | 1000 | 8 |
| 9 | 1001 | 9 |
| 10 | 1010 | A |
| 11 | 1011 | B |
| 12 | 1100 | C |
| 13 | 1101 | D |
| 14 | 1110 | E |
| 15 | 1111 | F |

## NUMBER SYSTEMS

HEXADECIMAL NUMBERS: HEXADECIMAL TO DECIMAL CONVERSION

- The decimal equivalent can be accomplished by multiplying each hexadecimal digit by its weight and summing the products.


## Example

Convert the hexadecimal number $B 2 F 8_{16}$ to decimal.

## Solution

Multiply each digit by its weight, then calculates the sum of products.

$$
\begin{aligned}
B 2 F 8_{16}= & \left(B \times 16^{3}\right)+\left(2 \times 16^{2}\right) \\
& +\left(F \times 16^{1}\right)+\left(8 \times 16^{0}\right) \\
= & (11 \times 4096)+(2 \times 256) \\
& +(15 \times 16)+8 \\
= & 45816_{10}
\end{aligned}
$$

## HEXADECIMAL NUMBERS: DECIMAL TO HEXADECIMAL CONVERSION (WHOLE NUMBER)

## Repeated Division-by-16 Method

- Dividing the decimal number by 16.
- Repeating dividing each resulting quotient part by 16 until the whole-quotient number is 0 .
- Take the remainders generated by the division to form the hexadecimal number.
- The first remainder is set as LSD, and the last remainder as MSD.


## NUMBER SYSTEMS

## HEXADECIMAL NUMBERS: DECIMAL TO HEXADECIMAL CONVERSION (WHOLE NUMBER)

## Example

Convert the decimal number 650 to hexadecimal.

## Solution



## Repeated Multiplication-by-16 Method

- Multiplying the decimal number by 16.
- Repeating multiplying each resulting fractional part by 16 until the fractional product is 0 .
- Take the carries generated by the multiplication to form the hexadecimal number.
- The first carry product is set as MSD, and the last carry as LSD.


## NUMBER SYSTEMS

## HEXADECIMAL NUMBERS: DECIMAL TO HEXADECIMAL CONVERSION (FRACTIONAL NUMBER)

## Example

Convert the decimal number 0.3125 to hexadecimal.

## Solution

## $0.3125 \times 16=5.00$



Stop when the fractional part is all zeros.

$$
\text { Answer }=0.5_{16}
$$

To convert binary to hexadecimal, simply:

## Step 1

Break the binary number into 4-bits group (4-bits boundary), starting from LSD.

## Step 2

Replace each 4-bits group with the value equivalent to the hexadecimal number.

## NUMBER SYSTEMS

HEXADECIMAL NUMBERS: BINARY TO HEXADECIMAL CONVERSION

## Example 1

Convert the binary number 1100101001010111 to hexadecimal.

## Solution

| Binary : | 1100 | 1010 | 0101 | 0111 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Hexadecimal: | $C$ | $A$ | 5 | 7 |

$$
\text { Answer }=C A 57_{16}
$$

## Example 2

Convert the binary number 111111000101101001 to hexadecimal.

## Solution

| Binary : | 0011 | 1111 | 0001 | 0110 | 1001 |
| :--- | :---: | :---: | :---: | :---: | :---: | :--- |
| Hexadecimal: | 3 | $F$ | 1 | 6 | 9 |
|  |  |  |  |  |  |
|  |  |  | innovative $\bullet$ entrepreneurial $\bullet$ global | Answer $=3 F 169_{16}$ |  |
|  |  |  |  |  |  |

## NUMBER SYSTEMS

HEXADECIMAL NUMBERS: HEXADECIMAL TO BINARY CONVERSION

- To convert hexadecimal to binary number, simply replace hexadecimal digit with the appropriate 4-bits group (4-bits boundary).


## Example 1

Convert the hexadecimal number $10 A 4_{16}$ to binary.

## Solution

| Hexadecimal: | 1 | 0 | $A$ | 4 |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Binary | $:$ | 0001 | 0000 | 1010 | 0100 |

Answer $=0001000010100100_{2}$

## NUMBER SYSTEMS

HEXADECIMAL NUMBERS: HEXADECIMAL TO BINARY CONVERSION

## Example 2

Convert the hexadecimal number $C F 8 E_{16}$ to binary.

## Solution

| Hexadecimal | C | $F$ | 8 | $E$ |
| :---: | :---: | :---: | :---: | :---: |
| Binary | 1100 | 1111 | 1000 | 1110 |
| Answer $=1100111110001110_{2}$ |  |  |  |  |

## NUMBER SYSTEMS <br> ASSESSMENT 1

Fill in the blanks:

| Decimal | Binary | Octal | Hexadecimal |
| :---: | :---: | :---: | :---: |
|  | $1101.011_{2}$ |  |  |
|  | $10101.11_{2}$ |  |  |
| $245.625_{10}$ |  |  |  |
| $703_{10}$ |  |  |  |
|  |  |  | $A 85_{16}$ |

## NUMBER SYSTEMS

## ASSESSMENT 1

Fill in the blanks:

| Decimal | Binary | Octal | Hexadecimal |
| :---: | :---: | :---: | :---: |
| $13.375_{10}$ | $1101.011_{2}$ | $15.3_{8}$ | $D .6_{16}$ |
| $21.75_{10}$ | $10101.11_{2}$ | $25.6_{8}$ | $15 . C_{16}$ |
| $245.625_{10}$ | $11110101.101_{2}$ | $365.5_{8}$ | $F 5 . A_{16}$ |
| $703_{10}$ | $1010111111_{2}$ | $1277_{8}$ | $2 B F_{16}$ |
| $2693_{10}$ | $101010000101_{2}$ | $5205_{8}$ | $A 85_{16}$ |

## BINARY ARITHMETIC

## BINARY ARITHMETIC

## BINARY ADDITION: INTRODUCTION

- The four rules for adding binary digits (bits) are:

| Rules | Definition |
| :---: | :---: |
| $0+0=0$ | Sum of 0 with carry of 0 |
| $0+1=1$ | Sum of 1 with carry of 0 |
| $1+0=1$ | Sum of 1 with carry of 0 |
| $1+1=10$ | Sum of 0 with carry of 1 |

- When binary numbers are added, the last condition creates a sum of 0 in a given column and carry of 1 in the next column to the left.


## BINARY ARITHMETIC

BINARY ADDITION: EXAMPLE

## Example

Find $11+1$ ?

## Solution

## Carry Carry



## BINARY ARITHMETIC

## BINARY SUBTRACTION: INTRODUCTION

- The four rules for subtracting binary digits (bits) are:

| Rules |
| :---: |
| $0-0=0$ |
| $1-1=0$ |
| $1-0=1$ |
| $10-1=1$ |
| $0-1$ with a borrow of 1 |

- When subtracting numbers, needs to borrow from the next column to the left if try to subtract 1 from 0 .
- When one is borrowed from the next column to the left, a 10 is created in the column being subtracted.


## BINARY ARITHMETIC

## BINARY SUBTRACTION: EXAMPLE

## Example

Find 101 - 011?

## Solution

Left column:
When a 1 is borrowed, a 0 is left, so $0-0=0$.

Middle column:
Borrow 1 from next column
to the left, making a 10 in this column, then $10-1=1$.

Right column:
$\frac{-011}{010} \longleftarrow 1-1=0$

## BINARY ARITHMETIC

## BINARY MULTIPLICATION: INTRODUCTION

- The four rules for multiplying binary digits (bits) are:

| Rules |
| :---: |
| $0 \times 0=0$ |
| $0 \times 1=0$ |
| $1 \times 0=0$ |
| $1 \times 1=1$ |

- Same manner as with decimal number
- Involves performing partial product, shifting each successive partial product one place, then adding all the partial products.


## BINARY ARITHMETIC

## BINARY MULTIPLICATION: EXAMPLE

## Example

Find $101 \times 111 ?$

## Solution



## BINARY ARITHMETIC

 BINARY DIVISION: INTRODUCTION AND EXAMPLE- The procedure is same as with decimal number.


## Example

Find $110 \div 11$ ?

## Solution

| 10 | 2 |
| ---: | ---: |
| $1 1 \longdiv { 1 1 0 }$ | $3 \longdiv { 6 }$ |
| $\frac{11}{000}$ | $\frac{6}{0}$ |

## DIGITAL CODES

## DIGITAL CODES

## INTRODUCTION

- Many digital devices interact with humans.
- Information is entered from the input device to digital system and the results will be displayed through the output device.
- As human prefer the decimal system, information often has to be converted from decimal to binary (encoding) for processing, and binary to decimal (decoding) for presentation.
- Special circuit called encoder and decoder are required to perform data conversion.


Application of encoder and decoder in a calculator

## DIGITAL CODES

INTRODUCTION


## DIGITAL CODES

## BINARY CODED DECIMAL (BCD) CODE: INTRODUCTION

- The simplest interface between binary and digital system.
- Each decimal digit uses 4-bits.
- Each 4-bit groups is treated as separate binary number.

| Decimal <br> Digit | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BCD | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 |

- Also known as BCD 8421 code because the numbers indicate as the weight of each bits.

BINARY CODED DECIMAL (BCD) CODE: BCD TO DECIMAL CONVERSION
To convert BCD to decimal, simply:

## Step 1

Break the BCD into 4-bits group, starting from LSB.

## Step 2

Replace each 4-bits group with the value equivalent to the decimal number.

## DIGITAL CODES

## BINARY CODED DECIMAL DECIMAL CONVERSION

(BCD) CODE:

## Example

Convert BCD code 001101010001 to decimal

## Solution

| 4-bit <br> grouping | $\mathbf{0 0 1 1}$ | $\mathbf{0 1 0 1}$ | $\mathbf{0 0 0 1}$ |
| :---: | :---: | :---: | :---: |
| Decimal <br> number | 3 | 5 | 1 |

Answer $=351_{10}$

## DIGITAL CODES

## GRAY CODE: INTRODUCTION

- Is a non-weighted code.
- Only a single bit change from one code word to the next sequence.
- Good - to minimize the chance of error.

| Decimal | Binary | Gray Code | Decimal | Binary | Gray Code |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0000 | 0000 | 8 | 1000 | 1100 |
| 1 | 0001 | 0001 | 9 | 1001 | 1101 |
| 2 | 0010 | 0011 | 10 | 1010 | 1111 |
| 3 | 0011 | 0010 | 11 | 1011 | 1110 |
| 4 | 0100 | 0110 | 12 | 1100 | 1010 |
| 5 | 0101 | 0111 | 13 | 1101 | 1011 |
| 6 | 0110 | 0101 | 14 | 1110 | 1001 |
| 7 | 0111 | 0100 | 15 | 1111 | 1000 |

## GRAY CODE: BINARY TO GRAY CODE CONVERSION

To convert binary to Gray Code, simply:

## Step 1

The most significant bit (left-most) in the Gray Code is the same as the corresponding MSB in the binary number.

## Step 2

Going from left to right, add each adjacent pair of binary code to get next gray code. Discard carries.

## DIGITAL CODES

## GRAY CODE: BINARY TO GRAY CODE CONVERSION

## Example

Convert the binary number 10110 to Gray Code.

## Solution



$$
\text { Answer }=11101
$$

## GRAY CODE: GRAY CODE TO BINARY CONVERSION

To convert Gray Code to binary, simply:

## Step 1

The most significant bit (left-most) in the binary number is the same as the corresponding bit in the Gray Code.

## Step 2

Add each binary number bit generated to the Gray Code bit in the next adjacent position. Discard carries.

## DIGITAL CODES

## GRAY CODE: GRAY CODE TO BINARY CONVERSION

## Example

Convert the Gray Code 11011 to binary.

## Solution



$$
\text { Answer }=10010
$$

## DIGITAL CODES

## ALPHANUMERIC CODE

- In complex digital system, such computers must process not only numeric data, but also alphabets, punctuation marks and other symbols.
- Thus, to represent numbers and alphabet characters (letters), a code called alphanumeric code is needed.
- At minimum, the code must represents 10 digit decimal numbers ( $0-9$ ) and 26 letters (A-Z) with a total of 36 items.
- 6-bits are needed in the code that represents the numbers and letters because 5 -bits is not enough ( $2^{5}=32$ ).
- ASCII is the most common alphanumeric code.


## DIGITAL CODES

## ASCII CODE

- ASCII is the abbreviation of American Standard Code for International Interchange.
- Used in computers and electronic equipment.
- Most computer keyboards are standardized with ASCII code.
- When entering a letter, a number or control command, the corresponding ASCII code goes to the computer.
- ASCII has 128 characters, represents by 7-bit binary code.
- Can be considered as 8 -bit with $\mathrm{MSB}=0$.
- ASCII can be divided into:
- Non-graphic commands: The first 32 ASCII characters are only for control purpose. E.g. Null, line feed, start of text, escape and etc.
- Graphic symbols: Letter of alphabet (lowercase and uppercase), 10 decimal digits, punctuation signs and other commonly used symbols.


## DIGITAL CODES

## ASCII CODE

| Bits 3-0 | Bits 6-4 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111 |
| 0000 | NUL | DLE | SP | 0 | @ | P |  | p |
| 0001 | SOH | DC1 | ! | 1 | A | Q | a | q |
| 0010 | STX | DC2 | " | 2 | B | R | b | r |
| 0011 | ETX | DC3 | \# | 3 | C | S | c | s |
| 0100 | EOT | DC4 | \$ | 4 | D | T | d | t |
| 0101 | ENQ | NAK | \% | 5 | E | U | e | u |
| 0110 | ACK | SYN | \& | 6 | F | V | f | v |
| 0111 | BEL | ETB |  | 7 | G | W | g | w |
| 1000 | BS | CAN | ( | 8 | H | X |  | x |
| 1001 | HT | EM | ) | 9 | 1 | Y | i | y |
| 1010 | LF | SUB | * | : | J | Z | j | y |
| 1011 | VT | ESC | + | ; | K | [ | k | \{ |
| 1100 | FF | FS |  | < | L | 1 | I | I |
| 1101 | CR | GS | - | = | M | , | m | \} |
| 1110 | SO | RS | . | > | N |  | n |  |
| 1111 | SI | US | 1 | ? | 0 | - | 0 | DEL |

## DIGITAL CODES

## UNICODE

- ASCII code is sufficient for using computers in United States, but not for other regions. (i.e, currency sign $€, £, ¥$ )
- Unicode is 31 bit standards that allows more than 110000 characters, for most language in the world.
- Each character is assigned a code point written in hexadecimal.
- Unicode is constantly changing as more characters get added.

| General Unicode | Contextual forms |  |  |  | Name |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Isolated | End | Middle | Beginning |  |
| $\begin{gathered} 0627 \\ \text { \| } \end{gathered}$ | FE8D โ | FE8E <br> L |  |  | 'alif |
| 0628 | FE8F | FE90 | FE92 | FE91 | bä' |
| ب | ب | ب | - | - |  |

## DIGITAL CODES

## EBCDIC ALPHANUMERIC CODE

- Extended Binary Coded Decimal Interchange Code (EBCDIC).
- 8-bit character encoding.

| Character or <br> Number | ASCII-8 <br> Binary | EBCDIC <br> Binary |
| :---: | :---: | :---: |
| A | 01000001 | 11000001 |
| E | 01000101 | 11000101 |
| Z | 01011010 | 11101001 |
| 0 | 0000 | 0000 |
| 1 | 0001 | 0001 |
| 5 | 0101 | 0101 |

## DIGITAL CODES

## ASSESSMENT 2

Determine the binary ASCII codes that are entered from the computer's keyboard when the following C language program statement is typed in. Also express each code in hexadecimal and decimal.

$$
\text { if }(x>5)
$$

## Solution

| Symbol | Binary | Hexadecimal |
| :--- | :---: | :---: |
| i | 1101001 | $69_{16}$ |
| f | 1100110 | $66_{16}$ |
| Space | 0100000 | $20_{16}$ |
| ( | 0101000 | $28_{16}$ |
| x | 1111000 | $78_{16}$ |
| $>$ | 0111110 | $3 \mathrm{E}_{16}$ |
| 5 | 0110101 | $35_{16}$ |
| ) | 0101001 | $29_{16}$ |

