

SKEE 1223 DIGITAL ELECTRONICS

CHAPTER 2: NUMBER SYSTEMS & DIGITAL CODES

DR. MOHD SAIFUL AZIMI BIN MAHMUD

P19a-04-03-30 School of Electrical Engineering Faculty of Engineering Universiti Teknologi Malaysia 019-7112948 azimi@utm.my

TIMETABLE (SECTION 13):

Sunday: 8 am -10 am (P07-411.2) Tuesday: 8 am -10 am (P07-411.1)

innovative • entrepreneurial • global

DECIMAL, BINARY, HEXADECIMAL & OCTAL NUMBERS

NUMBER SYSTEMS INTRODUCTION

Number Systems	Examples
Decimal	0~9
Binary	0 ~ 1
Octal	0 ~ 7
Hexadecimal	0 ~ 9, A ~ F

Dec	Hex	Octal	Binary
0	0	00	0000
1	1	01	0001
2	2	02	0010
3	3	03	0011
4	4	04	0100
5	5	05	0101
6	6	06	0110
7	7	07	0111
8	8	10	1000
9	9	11	1001
10	A	12	1010
11	В	13	1011
12	С	14	1100
13	D	15	1101
14	E	16	1110
15	F	17	1111

NUMBER SYSTEMS SIGNIFICANT BIT/DIGIT

NUMBER SYSTEMS SIZE OF BIT/NIBBLE/BYTE/WORD

Unit	Size
Bit	One binary digit
Nibble	4 bit
Byte	8 bit
Word	16 bit

NUMBER SYSTEMS DECIMAL NUMBERS: INTRODUCTION

- Use **Base-10** system.
- 10 digits/symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9.
- The value of a digit is determined by its position in the number.
- For example, to express the quantity twenty three:

• The position of each digit indicates the magnitude of the quantity and can be assigned by a weight.

NUMBER SYSTEMS DECIMAL NUMBERS: INTRODUCTION

• The weight of whole numbers are positive powers of ten, that increases from right to left, beginning from $10^0 = 1$.

 $\dots 10^5 \ 10^4 \ 10^3 \ 10^2 \ 10^1 \ 10^0$

• The weight of fraction numbers are negative powers of ten, that decreases from left to right that begins with $10^{-1} = 0.1$.

$$10^2 \ 10^1 \ 10^0 \ 10^{-1} \ 10^{-2} \ 10^{-3} \dots$$

Decimal point

• The value of decimal number is a sum of the digits after each digits multiplied by its weight.

NUMBER SYSTEMS DECIMAL NUMBERS: EXAMPLE

Example

Decimal number = 2745.214

 Weights
 10^3 10^2 10^1 10^0 10^{-1} 10^{-2} 10^{-3}
 \downarrow \downarrow <

2745.214 = $(2 \times 10^3) + (7 \times 10^2) + (4 \times 10^1) + (5 \times 10^0)$ + $(2 \times 10^{-1}) + (1 \times 10^{-2}) + (4 \times 10^{-3})$

> $= (2 \times 1000) + (7 \times 100) + (4 \times 10) + (5 \times 1)$ $+ (2 \times 0.1) + (1 \times 0.01) + (4 \times 0.001)$

= 2000 + 700 + 40 + 5 + 0.2 + 0.01 + 0.004

NUMBER SYSTEMS BINARY NUMBERS: INTRODUCTION

- Use **Base-2** system.
- 2 binary digits (bits)/symbols: 0 and 1.
- Example: 00, 01, 10, 11, 100, 101, 110, 111, ...
- The value of a bit is determined by its position in the number.
- The position of 0 and 1 indicates its weight, or value within number.

- The right-most bit is the LSB (least significant bit).
- The **binary whole number** has the weight of $2^0 = 1$.
- The weight increase from right to left by power of two.

NUMBER SYSTEMS **BINARY NUMBERS: INTRODUCTION** 2^{-1} 2^{3} 2^{1} 20 2^{-3} 2^{2} 2^{-2} Weights 1 0 1 1 1 0 1 **Binary point**

- The left most bit of binary number is the **MSB** (most significant bit).
- The binary fraction number has the weight of negative powers of two which decreases from left to right that begins with $2^{-1} = 0.5$.

Positive Powers of Two (Whole Numbers)									Negative P (Fraction	owers of T al Numbe				
2 ⁸	27	2 ⁶	2 ⁵	2 ⁴	2^3	2 ²	2^1	2 ⁰	2 ⁻¹	2^{-2}	2^{-3}	2^{-4}	2^{-5}	2^{-6}
256	128	64	32	16	8	4	2	1	1/2 0.5	1/4 0.25	1/8 0.125	1/16 0.625	1/32 0.03125	1/64 0.015625

NUMBER SYSTEMS

 The decimal value of any binary number can be found by adding the weights of all bits that are 1 and discarding the weights of all bits that are 0.

Example 1

Convert the binary whole number 1101101 to decimal.

Solution

Determine the weight of each bit that is a 1, then calculates the sum of weights.

Weight: $2^6 2^5 2^4 2^3 2^2 2^1 2^0$ Binary Number: $1 \ 1 \ 0 \ 1 \ 1 \ 0 \ 1$

 $1101101 = 2^{6} + 2^{5} + 2^{3} + 2^{2} + 2^{0}$ = 64 + 32 + 8 + 4 + 1 = 109

innovative • entrepreneurial • global

NUMBER SYSTEMS OF UTM BINARY NUMBERS: BINARY TO DECIMAL CONVERSION

Example 2

Convert the fractional binary number 0.1011 to decimal.

Solution

Determine the weight of each bit that is a 1, then calculates the sum of weights.

Weight: 2⁻¹ 2⁻² 2⁻³ 2⁻⁴ Binary Number: 0.1 0 1 1

$$0.1011 = 2^{-1} + 2^{-3} + 2^{-4}$$

= 0.5 + 0.125 + 0.00625 = 0.6875

NUMBER SYSTEMS 60 UTM BINARY NUMBERS: BINARY TO DECIMAL CONVERSION

Example 3

Convert the fractional binary number 1011.101 to decimal.

Solution

Determine the weight of each bit that is a 1, then calculates the sum of weights.

NUMBER SYSTEMS BINARY NUMBERS: DECIMAL TO BINARY CONVERSION (WHOLE NUMBER)

Repeated Division-by-2 Method

- Dividing the decimal number by **2**.
- Repeating dividing each resulting quotient by 2 until there is
 0 whole-number quotient.
- Take the remainders generated from the division and form the binary number.
- The first remainder is set as LSB, and the last remainder as MSB.

NUMBER SYSTEMS BINARY NUMBERS: DECIMAL TO BINARY CONVERSION (WHOLE NUMBER)

Example

Convert the decimal number 12 to binary.

Solution

innovative • entrepreneurial • global

NUMBER SYSTEMS BINARY NUMBERS: DECIMAL TO BINARY CONVERSION (FRACTIONAL NUMBER)

Repeated Multiplication-by-2 Method

- Multiplying the decimal number by **2**.
- Repeating multiplying each resulting fractional part by 2 until the fractional product is 0.
- Take the carries generated by the multiplication to form the binary number.
- The first carry product is set as MSB, and the last carry as LSB.

NUMBER SYSTEMS BINARY NUMBERS: DECIMAL TO BINARY CONVERSION (FRACTIONAL NUMBER)

Example

Convert the fractional decimal number 0.3125 to binary.

Solution

Continue to the desired number of decimal places — or stop when the fractional part is all zeros.

innovative • entrepreneurial • global

NUMBER SYSTEMS OCTAL NUMBERS: INTRODUCTION

- Use **Base-8** system.
- 8 digits/symbols: 0, 1, 2, 3, 4, 5, 6 and 7.
- Example: 0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 20, ...
- The value of a digit is determined by its position in the number.
- The position of each digit indicates the magnitude of the quantity and can be assigned by a weight.

In octal whole number, it has a weight of 8⁰ = 1. The weight increase from right to left by power of eight.

NUMBER SYSTEMS OCTAL NUMBERS: INTRODUCTION

- In octal fraction numbers, the weight are negative powers of eight, that decreases from left to right beginning with $8^{-1} = 0.125$.
- Convenient way to express binary numbers and codes. Uses
 3-bits binary boundary.

Octal Digit	0	1	2	3	4	5	6	7
Binary Equivalent	000	001	010	011	100	101	110	111

Convert the binary 100111010 to octal numbers.

NUMBER SYSTEMS 60 UTM OCTAL NUMBERS: OCTAL TO DECIMAL CONVERSION

 The decimal equivalent can be accomplished by multiplying each digit by its weight and summing the products.

Example

Convert the octal whole number 2374₈ to decimal.

Solution

Multiply each digit by its weight, then calculates the sum of the products.

Weight: 8³ 8² 8¹ 8⁰ Octal Number: 2 3 7 4

$$2374_8 = (2 \times 8^3) + (3 \times 8^2) + (7 \times 8^1) + (4 \times 8^0)$$

= (2 × 512) + (3 × 64) + (7 × 8) + (4 × 1)
= 1024 + 192 + 56 + 4
= **1276**_{10}

NUMBER SYSTEMS OCTAL NUMBERS: DECIMAL TO OCTAL CONVERSION (WHOLE NUMBER)

Repeated Division-by-8 Method

- Dividing the decimal number by 8.
- Repeating dividing each resulting quotient by 8 until there is
 0 whole-number quotient.
- Take the remainders generated from the division and form the octal number.
- The first remainder is set as LSD, and the last remainder as MSD.

NUMBER SYSTEMS OCTAL NUMBERS: DECIMAL TO OCTAL CONVERSION (WHOLE NUMBER)

Convert the decimal number 359 to octal.

innovative • entrepreneurial • global

NUMBER SYSTEMS OCTAL NUMBERS: DECIMAL TO OCTAL CONVERSION (FRACTIONAL NUMBER)

Repeated Multiplication-by-8 Method

- Multiplying the decimal number by 8.
- Repeating multiplying each resulting fractional part by 8 until the fractional product is 0.
- Take the carries generated by the multiplication to form the octal number.
- The first carry product is set as MSD, and the last carry as LSD.

Convert the fractional decimal number 0.3125 to octal.

NUMBER SYSTEMS 60 UTN OCTAL NUMBERS: BINARY TO OCTAL CONVERSION

To convert binary to octal, simply:

Step 1

Break the binary number into **3-bits group (3-bits boundary)**, starting from LSD.

Step 2

Replace each **3-bits group** with the value equivalent to the octal number

Octal Digit	0	1	2	3	4	5	6	7
Binary Equivalent	000	001	010	011	100	101	110	111

NUMBER SYSTEMS OCTAL NUMBERS: BINARY TO OCTAL CONVERSION

Example 1

Convert the binary number 110101 to octal.

Solution

Answer =
$$65_8$$

Convert the binary number 1010011 to octal.

Solution

Binary:001010011Octal:123

Answer =
$$123_8$$

NUMBER SYSTEMS OCTAL NUMBERS: OCTAL TO BINARY CONVERSION

To convert octal to binary number, simply replace octal digit with the appropriate 3-bits group (3-bits boundary).

Example 1

Convert the octal number 13_8 to binary.

Solution

Octal: 1 3 Binary: 001 011

Answer =
$$001011_2$$

Example 2

Convert the octal number 75268 to binary.

Solution

 Octal:
 7
 5
 2
 6

 Binary:
 111
 101
 010
 110
 Answer = 11110101010_2

 innovative • entrepreneurial • global

NUMBER SYSTEMS HEXADECIMAL NUMBERS

- Use **Base-16** system.
- 16 symbols consists of 10 numeric digits and 6 alphabetic characters: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E and F.
- The value of a digit is determined by its position in the number.
- The position of each digit indicates the magnitude of the quantity and can be assigned by a weight.
- The weight of hexadecimal whole numbers are **positive powers of sixteen**, that increases from right to left, beginning from $16^0 = 1$.

NUMBER SYSTEMS HEXADECIMAL NUMBERS

- The weight of hexadecimal fraction numbers are **negative powers of sixteen**, that decrease from left to right beginning with $16^{-1} = 0.0625$.
- Compact way to express binary numbers and codes. Uses 4-bits binary boundary.

Decimal	Binary	Hexadecimal
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	А
11	1011	В
12	1100	С
13	1101	D
14	1110	Е
15	1111	F

NUMBER SYSTEMS HEXADECIMAL NUMBERS: HEXADECIMAL TO DECIMAL CONVERSION

 The decimal equivalent can be accomplished by multiplying each hexadecimal digit by its weight and summing the products.

Example

Convert the hexadecimal number $B2F8_{16}$ to decimal.

Solution

Multiply each digit by its weight, then calculates the sum of products.

Weight: $16^3 \ 16^2 \ 16^1 \ 16^0$ Hexadecimal Number: $B \ 2 \ F \ 8$ $B2F8_{16} = (B \times 16^3) + (2 \times 16^2) + (F \times 16^1) + (8 \times 16^0)$ $= (11 \times 4096) + (2 \times 256) + (15 \times 16) + 8$

 $=45816_{10}$

NUMBER SYSTEMS HEXADECIMAL NUMBERS: DECIMAL TO HEXADECIMAL CONVERSION (WHOLE NUMBER)

Repeated Division-by-16 Method

- Dividing the decimal number by **16**.
- Repeating dividing each resulting quotient part by 16 until the whole-quotient number is 0.
- Take the remainders generated by the division to form the hexadecimal number.
- The first remainder is set as LSD, and the last remainder as MSD.

NUMBER SYSTEMS HEXADECIMAL NUMBERS: DECIMAL TO HEXADECIMAL CONVERSION (WHOLE NUMBER)

Convert the decimal number 650 to hexadecimal.

NUMBER SYSTEMS

HEXADECIMAL NUMBERS: DECIMAL TO HEXADECIMAL CONVERSION (FRACTIONAL NUMBER)

Repeated Multiplication-by-16 Method

- Multiplying the decimal number by **16**.
- Repeating multiplying each resulting fractional part by 16 until the fractional product is 0.
- Take the carries generated by the multiplication to form the hexadecimal number.
- The first carry product is set as MSD, and the last carry as LSD.

Convert the decimal number 0.3125 to hexadecimal.

Solution

Answer =
$$0.5_{16}$$

NUMBER SYSTEMS HEXADECIMAL NUMBERS: BINARY TO HEXADECIMAL CONVERSION

To convert binary to hexadecimal, simply:

Break the binary number into **4-bits group (4-bits boundary)**, starting from LSD.

Step 2

Replace each 4-bits group with the value equivalent to the hexadecimal number.

NUMBER SYSTEMS HEXADECIMAL NUMBERS: BINARY TO HEXADECIMAL CONVERSION

Convert the binary number 1100101001010111 to hexadecimal.

Solution

Binary	:	1100	1010	0101	0111	
Hexadecima	l:	С	Α	5	7	Answer = $CA57_{16}$

Example 2

Convert the binary number 111111000101101001 to hexadecimal.

Solution

 Binary
 :
 0011
 1111
 0001
 0110
 1001

 Hexadecimal:
 3
 F
 1
 6
 9

 Answer
 $3F169_{16}$

36

NUMBER SYSTEMS HEXADECIMAL NUMBERS: HEXADECIMAL TO BINARY CONVERSION

 To convert hexadecimal to binary number, simply replace hexadecimal digit with the appropriate 4-bits group (4-bits boundary).

Example 1

Convert the hexadecimal number $10A4_{16}$ to binary.

Solution

Hexadecim	al:	1	0	Α	4	
Binary	•	0001	0000	1010	0100	
$Answer = 0001000010100100_2$						

NUMBER SYSTEMS HEXADECIMAL NUMBERS: HEXADECIMAL TO BINARY CONVERSION

Convert the hexadecimal number $CF8E_{16}$ to binary.

Solution					
Hexadecin Binary		С 1100	<i>F</i> 1111	8 1000	<i>E</i> 1110
Answer =	= 11	001111	100011	.10 ₂]

NUMBER SYSTEMS ASSESSMENT 1

Fill in the blanks:

Decimal	Binary	Octal	Hexadecimal
	1101.011 ₂		
	10101.11 ₂		
245.625 ₁₀			
703 ₁₀			
			A85 ₁₆

NUMBER SYSTEMS ASSESSMENT 1

Fill in the blanks:

Decimal	Binary	Octal	Hexadecimal
13.375_{10}	1101.011 ₂	15.3 ₈	<i>D</i> .6 ₁₆
21.75 ₁₀	10101.11 ₂	25.6 ₈	15. <i>C</i> ₁₆
245.625_{10}	11110101.101 ₂	365.5 ₈	F5. A ₁₆
703 ₁₀	1010111111 ₂	1277 ₈	2 <i>BF</i> ₁₆
2693 ₁₀	101010000101 ₂	5205 ₈	A85 ₁₆

BINARY ARITHMETIC

innovative • entrepreneurial • global

BINARY ARITHMETIC BINARY ADDITION: INTRODUCTION

• The four rules for adding binary digits (bits) are:

Rules	Definition
0 + 0 = 0	Sum of 0 with carry of 0
0 + 1 = 1	Sum of 1 with carry of 0
1 + 0 = 1	Sum of 1 with carry of 0
1 + 1 = 10	Sum of 0 with carry of 1

 When binary numbers are added, the last condition creates a sum of 0 in a given column and carry of 1 in the next column to the left.

BINARY ARITHMETIC BINARY ADDITION: EXAMPLE

Example

Find 11 + 1?

Solution

Carry Carry

BINARY ARITHMETIC BINARY SUBTRACTION: INTRODUCTION

• The four rules for subtracting binary digits (bits) are:

- When subtracting numbers, needs to borrow from the next column to the left if try to subtract 1 from 0.
- When one is borrowed from the next column to the left, a 10 is created in the column being subtracted.

BINARY ARITHMETIC BINARY SUBTRACTION: EXAMPLE

Example

Find 101 – 011?

Solution

Left column: When a 1 is borrowed, a 0 is left, so 0 - 0 = 0. Middle column: Borrow 1 from next column to the left, making a 10 in this column, then 10 - 1 = 1.

Right column: 1 - 1 = 0010

1¹01

-0.11

BINARY ARITHMETIC BINARY MULTIPLICATION: INTRODUCTION

• The four rules for multiplying binary digits (bits) are:

- Same manner as with decimal number
- Involves performing partial product, shifting each successive partial product one place, then adding all the partial products.

BINARY ARITHMETIC BINARY MULTIPLICATION: EXAMPLE

Example

Find 101 × 111?

Solution

• The procedure is same as with decimal number.

Example				
Find 110 ÷	11?			
Solution				
10	2			
11)110	3)6			
11	<u>6</u>			
000	0			

DIGITAL CODES

innovative • entrepreneurial • global

DIGITAL CODES INTRODUCTION

- Many digital devices interact with humans.
- Information is entered from the input device to digital system and the results will be displayed through the output device.
- As human prefer the decimal system, information often has to be converted from decimal to binary (encoding) for processing, and binary to decimal (decoding) for presentation.
- Special circuit called **encoder** and **decoder** are required to perform data conversion.

DIGITAL CODES INTRODUCTION

DIGITAL CODES 60 UTN BINARY CODED DECIMAL (BCD) CODE: INTRODUCTION

- The simplest interface between binary and digital system.
- Each decimal digit uses 4-bits.
- Each 4-bit groups is treated as separate binary number.

Decimal Digit	0	1	2	3	4	5	6	7
BCD	0000	0001	0010	0011	0100	0101	0110	0111

• Also known as **BCD 8421 code** because the numbers indicate as the weight of each bits.

DIGITAL CODES BINARY CODED DECIMAL (BCD) CODE: BCD TO DECIMAL CONVERSION

To convert BCD to decimal, simply:

Break the BCD into **4-bits group**, starting from **LSB**.

Replace each 4-bits group with the value equivalent to the decimal number.

DIGITAL CODES BINARY CODED DECIMAL (BCD) CODE: BCD TO DECIMAL CONVERSION

Convert BCD code 001101010001 to decimal

Solution

4-bit grouping	0011	0101	0001
Decimal number	3	5	1

Answer = 351_{10}

DIGITAL CODES GRAY CODE: INTRODUCTION

- Is a **non-weighted** code.
- Only a single bit change from one code word to the next sequence.
- Good to minimize the chance of error.

Decimal	Binary	Gray Code	Decimal	Binary	Gray Code
0	0000	0000	8	1000	1100
1	0001	0001	9	1001	1101
2	0010	0011	10	1010	1111
3	0011	0010	11	1011	1110
4	0100	0110	12	1100	1010
5	0101	0111	13	1101	1011
6	0110	0101	14	1110	1001
7	0111	0100	15	1111	1000

DIGITAL CODES 60 UT GRAY CODE: BINARY TO GRAY CODE CONVERSION

To convert binary to Gray Code, simply:

Step 1

The most significant bit (left-most) in the Gray Code is the same as the corresponding **MSB** in the binary number.

Going from left to right, add each adjacent pair of binary code to get next gray code. Discard carries.

DIGITAL CODES OF UT OF THE OF

Example

Convert the binary number 10110 to Gray Code.

Solution

Answer = 11101

DIGITAL CODES 60 UT GRAY CODE: GRAY CODE TO BINARY CONVERSION

To convert Gray Code to binary, simply:

Step 1

The most significant bit (left-most) in the binary number is the same as the corresponding **bit** in the Gray Code.

Step 2

Add each binary number bit generated to the Gray Code bit in the next adjacent position. Discard carries.

DIGITAL CODES GRAY CODE: GRAY CODE TO BINARY CONVERSION

Example

Solution

Convert the Gray Code 11011 to binary.

Answer = 10010

DIGITAL CODES ALPHANUMERIC CODE

- In complex digital system, such computers must process not only numeric data, but also alphabets, punctuation marks and other symbols.
- Thus, to represent numbers and alphabet characters (letters), a code called **alphanumeric code** is needed.
- At minimum, the code must represents 10 digit decimal numbers (0-9) and 26 letters (A-Z) with a total of 36 items.
- 6-bits are needed in the code that represents the numbers and letters because 5-bits is not enough $(2^5 = 32)$.
- **ASCII** is the most common alphanumeric code.

DIGITAL CODES ASCII CODE

- ASCII is the abbreviation of American Standard Code for International Interchange.
- Used in computers and electronic equipment.
- Most computer keyboards are standardized with ASCII code.
- When entering a letter, a number or control command, the corresponding ASCII code goes to the computer.
- ASCII has **128 characters**, represents by **7-bit** binary code.
- Can be considered as 8-bit with MSB = 0.
- ASCII can be divided into:
 - Non-graphic commands: The first 32 ASCII characters are only for control purpose. *E.g. Null, line feed, start of text, escape and etc.*
 - **Graphic symbols:** Letter of alphabet (lowercase and uppercase), 10 decimal digits, punctuation signs and other commonly used symbols.

DIGITAL CODES ASCII CODE

	Bits 6-4							
Bits 3-0	000	001	010	011	100	101	110	111
0000	NUL	DLE	SP	0	@	Р	"	р
0001	SOH	DC1	!	1	Α	Q	а	q
0010	STX	DC2	"	2	В	R	b	r
0011	ETX	DC3	#	3	С	S	С	S
0100	EOT	DC4	\$	4	D	Т	d	t
0101	ENQ	NAK	%	5	E	U	е	u
0110	ACK	SYN	&	6	F	V	f	v
0111	BEL	ETB	,	7	G	W	g	w
1000	BS	CAN	(8	Н	Х	h	х
1001	HT	EM)	9	I	Y	i	У
1010	LF	SUB	*	:	J	Z	j	Z
1011	VT	ESC	+	;	K	[k	{
1100	FF	FS	,	<	L	/		
1101	CR	GS	-	=	М]	m	}
1110	SO	RS		>	Ν	^	n	
1111	SI	US	/	?	0	_	0	DEL

DIGITAL CODES UNICODE

- ASCII code is sufficient for using computers in United States, but not for other regions. (i.e, currency sign €, £, ¥)
- Unicode is 31 bit standards that allows more than 110000 characters, for most language in the world.
- Each character is assigned a code point written in hexadecimal.
- Unicode is constantly changing as more characters get added.

General		Context	15	Name	
Unicode	Isolated	End	Middle	Beginning	INdiffe
0627 j	FE8D	FE8E _			'alif
0628	FE8F	FE90	FE92	FE91	bā'
ب	ب	ـب	_÷_	بـ	

DIGITAL CODES EBCDIC ALPHANUMERIC CODE

- Extended Binary Coded Decimal Interchange Code (EBCDIC).
- 8-bit character encoding.

Character or Number	ASCII-8 Binary	EBCDIC Binary
A	01000001	11000001
E	01000101	11000101
Z	01011010	11101001
0	0000	0000
1	0001	0001
5	0101	0101

DIGITAL CODES ASSESSMENT 2

Determine the binary ASCII codes that are entered from the computer's keyboard when the following C language program statement is typed in. Also express each code in hexadecimal and decimal.

	if (x>5)	
	Solution	
Symbol	Binary	Hexadecimal
i	1101001	6916
f	1100110	66 ₁₆
Space	0100000	2016
(0101000	2816
х	1111000	7816
>	0111110	3E ₁₆
5	0110101	3516
)	0101001	2916

innovative • entrepreneurial • global