
SEEE1022
INTRODUCTION TO
SCIENTIFIC
PROGRAMMING

CH2
Variables

Dr. Mohd Saiful Azimi Mahmud (azimi@utm.my)
P19a-04-03-30, School of Electrical Engineering, UTM

OBJECTIVES

1. To understand what is syntax, variables and operation of programming language.
2. To be able to create array of different sizes.
3. To be able to access array in order to get and set the array’s elements.
4. To understand the different data type of variables and how to create and use them.
5. To understand the constant variables available in MATLAB.

1

INTRODUCTION

PROGRAMMING LANGUAGE BASIC
SYNTAX

• Particular layout of words and symbols describing variables and operation.

VARIABLES

• Stored value, which can be retrieved by referring to an associated name.

OPERATION

• Action taken to the variables to either create a new variable or perform a new operation.

2

LEARNING THE LANGUAGE

Syntax

MATLAB

Documentation

Operation

Variables

VERB

NOUN

GRAMMAR

DICTIONARY

3

PROGRAMMING LANGUAGE BASIC

VARIABLES

Data Type

Size

Value

P
R

O
P

ER
TI

ES
OPERATION

NEW VARIABLES /

ACTION

Statement

Function

TY
P

E

Assignment

Decision

Repetition

Group of statements

that perform a task

Command

4

VARIABLES
INTRODUCTION

• A variable is created simply by assigning a value to it at the command line or in a program. For
example:

• Attempt to a non-existent variable, you will get an error message.

>> a = 5
• This is read as: variable ‘a’ is assigned a value of 5
• We are telling the machine to store the value on the right

hand side of the equation in a memory location, and to
name that location as ‘a’

>> a = 1+b

Undefined function or variable ‘b’

• In MATLAB, all variables are arrays. To understand this, lets get to next slide on the properties of
the variables.

5

VARIABLES PROPERTIES

ARRAY

SIZE

Scalar

Matrix

1 × 1

Vector
1 × 𝑛
𝑚 × 1

𝑚 × 𝑛

Array
1 × 1
1 × 𝑛
𝑚 × 1
𝑚 × 𝑛

Multi-

dimen

sional

Constant

Variable

VALUE

TYPE

Number

Char & string

Special number

Test matrix

The name
fix, but the
value can
be changed

Fix value

DATA

TYPE

Numeric

Character

array

Logical

abc

Floating point

Integer

A.K.A CLASS

Complex number

Structure

Cell Array{}

6

WORKSPACE

• Variable properties can be found in the workspace window of the MATLAB desktop.
• Workspace — Explore data that you create or import from files.
• Command Window — Enter commands at the command line, indicated by the prompt (>>).

DESCRIPTION

Command Window Workspace

7

whos COMMAND

• Instead of the workspace, the properties of a variables can also be retrieved by typing whos
command on the command window.

DESCRIPTION

>> a = 5

a =

5

>> whos

Name Size Bytes Class Attributes

a 1x1 8 double

8

ARRAY

• Referring to the slide VARIABLES PROPERTIES, it is known that all variables are array.

• Two important basic on array are on how to create the array and how to access the
elements within the array.

• Accessing array is an action to either get or set the elements of an array.

• Thus, we are going to discuss the create and access array topics before we go to the
details on the data type and value type properties of the variables.

• The create and access array topics are obviously related to the array size.

DESCRIPTION

9

ARRAY SIZE

MatrixScalar Multi-dimensional
array

Vector

Or

Single
column

Single row

10

CREATE & ACCESS ARRAY METHOD

a = [1 2;3 4]

a = [1,2

3,4]

SPACE / COMMA TO
SEPARATE COLUMN

ELEMENT

SEMICOLON / NEW
LINE TO SEPARATE
ROW ELEMENT

a = j:m:k

a = j:k

a = [1:3;3:5]

USING SQUARE BRACKET

USING COLON OPERATOR

C
R

E
A

T
E

 A
R

R
A

Y

A
C

C
E

S
S

IN
G

 A
R

R
A

Y

SUBSCRIPT

LINEAR INDEX

2 4 1

10 9 5

7 8 15

2 4 1

10 9 5

7 8 15

1,1 1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3

1 4 7

2 5 8

3 6 9

a(1,1) = 2

a(3,2) = 8

a([1 2],1)

= [2 10]

a(1) = 2

a(6) = 8

a([1 2])

= [2 10]

11

CREATING ARRAY

CREATE ARRAY : COLUMN & ROW VECTOR
EXAMPLE 1

EXAMPLE 2

>> x = [1 2 3 4]

x =

1 2 3 4

>> x = [1,2,3,4]

x =

1 2 3 4

• To create a vector, enclose a
list of values in bracket.

• Use space or comma as a
delimiter in a row vector.

>> y = [1;2;3;4]

y =

1

2

3

4

• Use a semicolon as a delimiter
to create a new row.

12

CREATE ARRAY : MATRIX
EXAMPLE 3

EXAMPLE 4

>> x = [1 2 3 4;2 3 4 5;3 4 5 6]

x =

1 2 3 4

2 3 4 5

3 4 5 6

• Use a semicolon as a
delimiter to create a new
row.

>> x = [1 2 3 4;

2 3 4 5;

3 4 5 6]

x =

1 2 3 4

2 3 4 5

3 4 5 6

• It’s easier to keep track of
how many values you’ve
entered into a matrix, if
you enter each row on a
separate line. The
semicolons are optional.

13

CREATE ARRAY : COLON OPERATOR
EXAMPLE 5

EXAMPLE 6

>> x = 1:4

x =

1 2 3 4

>> x = [1:4]

x =

1 2 3 4

• Evenly spaced values matrices
can be entered much more
readily using colon operator.

• The bracket is optional for row
vector array.

>> y = 1:2:5

y =

1 3 5

>> y = 1:-1:-1

y =

1 0 -1

• Use two colon operator to
have increment other than 1.

14

CREATE ARRAY : LINSPACE
EXAMPLE 7

>> x = linspace(1,10,3)

x =

1.0000 5.5000 10.0000

>> y = linspace(-1,0,4)

y =

-1.0000 -0.6667 -0.3333 0

• similar to the colon operator but gives
direct control over the number of points
and always includes the endpoints.

starting value end value number of element

15

CREATE ARRAY : FROM OTHER ARRAY
EXAMPLE 8

EXAMPLE 9

>> a = [1 2]

a =

1 2

>> b = [3 4 a]

x =

3 4 1 2

• We can also create array from
other array.

>> a = [1 2]

a =

1 2

>> b = [3 4;a]

b =

3 4

1 2

• When creating a new row,
make sure the number of
columns elements are similar
for all rows.

16

ACCESSING ARRAY

SUBSCRIPTING : GET ELEMENT

EXAMPLE 1

EXAMPLE 2

Subscripting is based on the row and column position of an element.

>> a = [5 6 7 8]

a =

5 6 7 8

>> b = a(1,3)

b =

7

• ‘b’ is taking one element from
‘a’ at row 1 and column 3.

>> a = [1,2;3,4]

a =

1 2

3 4

>> b = a(2,1)

b =

3

• ‘b’ is taking one element from
‘a’ at row 2 and column 1.

17

Row Column

1

1 2 3 4

1

1 2

2

SUBSCRIPTING : SETTING ELEMENTS VALUE

EXAMPLE 4

EXAMPLE 3

18

>> a = [5 6 7 8]

a =

5 6 7 8

>> a(1,2) = 0

a =

5 0 7 8

• Second element of ‘a’ is
replaced with new value.1

1 2 3 4

>> a = [1,2;3,4]

a =

1 2

3 4

>> a(1,2) = 0

a =

1 0

3 4

• Element of ‘a’ at row 1 and
column 2 is replaced with new
value.

1

1 2

2

SUBSCRIPTING : COLON OPERATOR

To access more than one elements at once, use colon subscripting

A(:,j) is the jth column of A.

A(i,:) is the ith row of A.

A(:,:) is the equivalent two-dimensional array. For matrices this is the same as A.

A(:,j:k) is A(:,j), A(:,j+1),...,A(:,k).

A(:,:,k) is the kth page of three-dimensional array A.

A(i,j,k,:) is a vector in four-dimensional array A. The vector includes A(i,j,k,1), A(i,j,k,2),
A(i,j,k,3), and so on.

A(j:k) is A(j),A(j+1),...,A(k).

A(:) is all the elements of A, regarded as a single column.
On the left side of an assignment statement, A(:) fills A, preserving its shape from before.

: Colon operator alone means all elements

j:k Elements from j to k

19

SUBSCRIPTING : GET ELEMENTS USING

COLON

EXAMPLE 6

EXAMPLE 5

20

>> a = [1 2 3;5 6 7];

a =

1 2 3

5 6 7

>> b = a(1,:)

b =

1 2 3

• ‘b’ is all elements of the first
row of ‘a’.1

1 2

2

3

>> a = [1,2,3;3,4,5]

a =

1 2 3

3 4 5

>> b = a(:,2:3)

b =

2 3

4 5

• ‘b’ is taking elements of ‘a’ at
all rows but limited to
elements at column 2 to 3
only.

1

1 2

2

3

SUBSCRIPTING : CREATE HIGHER

DIMENSIONAL ARRAY

EXAMPLE 7

• Previously, we can only create an array up to matrix size, which is 2-D.

• To create array higher than the 2-D, we first create the matrix and extend the dimension
using subscripting method.

>> a = [1,2,3;3,4,5]

a =

1 2 3

3 4 5

>> a(:,:,2) = 1

a(:,:,1) =

1 2 3

3 4 5

a(:,:,2) =

1 1 1

1 1 1

• ‘a’ is first create as a matrix.
Then the third dimension is
create by setting the third
subscript for ‘a’.

• In this example, the second layer
of the matrix is set to all one.

• On command window, the array
is shown layer by layer.

21

Multi-dimensional array

1st

layer

2nd

layer

3rd

layer

a(: , : , 1)
a(: , : , 2)

a(: , : , 3)

2nd

layer

LINEAR INDEXING

• Linear indexing refer to an element of an array based on a single integer number
associated to the element.

• The index numbering starts from the top left element, moving to the last row and then
continue to the next column.

• Below is an example of the index numbering on 3x3 array.

1 4 7

2 5 8

3 6 9

• Get elements using linear indexing return an array with similar size and arrangement to
its indexing array.

22

LINEAR INDEXING : GET AN ELEMENT

EXAMPLE 2

EXAMPLE 1

>> a = [5 6 7 8]

a =

5 6 7 8

>> b = a(3)

b =

7

• ‘b’ is taking element no. 3 from
‘a’.

>> a = [1,2;3,4]

a =

1 2

3 4

>> b = a(2)

b =

3

• ‘b’ is taking element no. 2 from
‘a’.

23

1 2 3 4

1

2

3

4

LINEAR INDEXING : SET AN ELEMENT

EXAMPLE 4

EXAMPLE 3

>> a = [5 6 7 8]

a =

5 6 7 8

>> a(2) = 0

a =

5 0 7 8

• Second element of ‘a’ is
replaced with new value.

>> a = [1,2;3,4]

a =

1 2

3 4

>> a(3) = 0

a =

1 0

3 4

• Element no. 3 of ‘a’ is replaced
with new value.

24

1 2 3 4

1

2

3

4

LINEAR INDEXING : GET ELEMENTS USING

COLON

EXAMPLE 6

EXAMPLE 5

>> a = [5 6 7 8]

a =

5 6 7 8

>> b = a(1:3)

b =

5 6 7

• ‘b’ is taking element no. 1 to
no. 3 from ‘a’.

>> a = [1,2;3,4]

a =

1 2

3 4

>> b = a(1:3)

b =

1 3 2

• ‘b’ is taking elements no. 1 to
no. 3 from ‘a’ and return as a
row vector.

25

1 2 3 4

1

2

3

4

LINEAR INDEXING : CONVERT TO COLUMN

VECTOR
EXAMPLE 7

>> a = [1 2 3;3 4 5;5 6 7]

a =

1 2 3

3 4 5

5 6 7

>> b = a(:)

b =

1 3 5 2 4 6 3 5 7

• ‘b’ is taking all elements from
‘a’ and return as a row vector.

26

1

2

4

5

3 6

7

8

9

LINEAR INDEXING : VECTOR INDICES

EXAMPLE 8

The indices can also be in the form of an array

>> a = [1 2 3;3 4 5;5 6 7]

a =

1 2 3

3 4 5

5 6 7

>> n = [1 3 4 9]

n =

1 3 4 9

>> b = a(n)

b =

1 5 2 7

• b is taking element no. 1, 3, 4
and 9 from a and return as a
row vector since n is a row
vector.

27

1

2

4

5

3 6

7

8

9

LINEAR INDEXING : VECTOR INDICES

EXAMPLE 9

>> a = [1 2 3;3 4 5;5 6 7]

a =

1 2 3

3 4 5

5 6 7

>> n = [3:7]

n =

3 4 5 6 7

>> a(n) = 0

a =

1 0 0

3 0 5

0 0 7

• Elements no. 3 to 7 of a are
replaced with zero.

28

1

2

4

5

3 6

7

8

9

LINEAR INDEXING : MATRIX INDICES

EXAMPLE 10

>> a = [1 2 3;3 4 5;5 6 7]

a =

1 2 3

3 4 5

5 6 7

>> n = [1 2;5 7]

n =

1 2

5 8

>> b = a(n)

b =

1 3

4 5

• b is taking element no. 1, 2, 5
and 8 of array a.

• b is return as an array with
similar size and arrangement
to the indexing array n.

29

1

2

4

5

3 6

7

8

9

DATA TYPE

NUMERIC : FLOATING POINT & INTEGER

• Numeric class (data type) include signed and unsigned integer, single and double
precision floating point number and complex number.

• By default, MATLAB stores all numeric values as double-precision floating point.

• To create other numeric type, you need to type the function type,

>> a = 5
• By default, this create variable ‘a’ with

double-precision floating point.

>> a = int8(5)
• This create variable ‘a’ with signed 8-bit

integer.
• Refer to MATLAB documentation for the full

list of the numeric type.

30

NUMERIC : COMPLEX NUMBER

• In MATLAB, The special values i and j stand for √(−1) to represent imaginary number. For
example:

• If z is a complex number, real(z), imag(z), conj(z), and abs(z) all have the
obvious meanings.

• A complex number may be represented in polar coordinates of 𝑧 = 𝑟𝑒𝑗𝜃 where
angle(z) and abs(z) return the 𝜃 and 𝑟 values respectively

>> x = 1+3*i

x =

1.0000 + 3.0000i

>> x = 1+3i

x =

1.0000 + 3.0000i

• The imaginary part of the
complex number can be
entered with or without the
asterisk ‘*’.

31

CHARACTER ARRAY : STRING

• Character array data type is normally use to create string (a sequence of characters).

• We can create a string by enclosing a sequence of characters in single quotation marks.

>> myString = ‘Hello, World’

myString =

Hello, World

>> otherString = ‘You’’re right’

otherString =

You’re right • If the text contains a single
quotation mark, include two
quotation marks within the
string definition.

32

CHARACTER ARRAY : STRING SIZE

• By using whos command, we can observe that the array size of the string is the total
number of characters of the string.

>> myString = ‘Hello, World’

myString =

Hello, World

>> whos myString

Name Size Bytes Class Attributes

myString 1x12 24 char

33

1 2 4 53 6 7 8 9 10 1112

CHARACTER ARRAY : 2-D CHARACTER

ARRAY
• To create a two-dimensional character array, make sure the number of elements on

each row are the same.

• To avoid the error, pad the lesser string with space.

>> Q = [‘Holly’;’Stevan’;’Megan’]

Error using vertcat

Dimensions of matrices being concatenated are not

consistent.

>> Q = [‘Holly ’;

’Stevan’;

’Megan ’]

Q =

Holly

Stevan

Megan

34

1 2 4 53 1 2 4 531 2 4 53 6

CHARACTER ARRAY : 2-D CHARACTER

ARRAY
• Or we can use function char to automatically pad the string with spaces.

>> Q = char(‘Holly’,’Stevan’,’Megan’)

Q =

Holly

Stevan

Megan

35

1 2 4 53 1 2 4 531 2 4 53 6

LOGICAL

• Logical value is a value indicating the truth condition.

• It has only two values, represented by either true or false.

• True is given value 1, while false is given value 0.

• Logical values are very useful in indexing and implementing decision statement (will be
discussed next week).

• Numeric data type can be converted into logical data type using function logical. All
values not equals to zero will be converted to true and zero value will be converted to
false.

EXAMPLE 1

>> a = [1 3 0 -2 8 0];

>> b = logical(a)

b =

1 1 0 1 1 0

36

LOGICAL : ARRAY INDEXING

• A logical array can be used as the index to an array.

EXAMPLE 2

>> A = [1 2 3; 4 5 6; 7 8 9]

A =

1 2 3

4 5 6

7 8 9

>> B = logical([0 1 0; 1 0 1; 0 0 1])

B =

0 1 0

1 0 1

0 0 1

>> A(B)

ans =

4

2

6

9

• Every true element in the indexing
array B is treated as a positional
index into the array A.

• The logical indexing return array is
always a column vector array except
for row vector indexing array.

37

LOGICAL : ARRAY INDEXING

• A logical array can be used as the index to an array.

EXAMPLE 3

>> A = [1 2 3; 4 5 6; 7 8 9]

A =

1 2 3

4 5 6

7 8 9

>> B = logical([0 1 0 1 0 1])

B =

0 1 0 1 0 1

>> A(B)

ans =

4 2 8

• For column vector indexing array,
the return array is also a column
vector

38

1

2

4

5

3 6

7

8

9

1 2 4 53 6

DATA TYPE CONVERSION

• Below are some of the function to convert between data types:

Function Description

Double, single Convert to double and single precision respectively

int8,int16,

int32,int64

Convert to signed integer

Uint8,uint16,

uint32,uint64

Convert to unsigned integer

int2str Convert integer to string

num2str Convert number to string

str2double Convert string to double-precision value

str2num Convert string to number

mat2str Convert matrix to string

logical Convert numeric values to logicals

39

DATA TYPE CONVERSION

EXAMPLE 1

>> a = 10.329

a =

10.329

>> b = int8(a)

b =

10

• Converting double to 8-bit integer is a
way to round the value 10.329 to the
nearest integer.

EXAMPLE 2

>> a = 256.57;

>> b = int8(a)

b =

127

>> b = int16(a)

b =

257

• Make sure to use the right integer
conversion since every n-bit integer
conversion has its limited range.

• In this example, int8 has the
maximum value of 127. Value greater
than the limit will be capped.

40

Maximum value determination:
• int8 has total stored value of 28 =

256. As it is signed integer, the value
can goes between -127 to 127.

• uint8 has total stored value of 28 =
256. As it is unsigned integer, the value
can goes between 0 to 256.

DATA TYPE CONVERSION

EXAMPLE 3

>> str = ‘123’

str =

123

>> a = str2num(str)

a =

123

>> b = double(str)

b =

49 50 51

• If a string is a number, use
str2num to convert it into
numeric.

• If double is use, it will convert
every char of ‘123’ into its
numeric value.

41

CONSTANT

CONSTANT

• Constant is a value, predetermined by MATLAB.

• Other than the above scalars, there are also matrix type constants.

Constant Description

i, j Imaginary unit

pi Ratio of circle's circumference to its diameter

Inf Infinity

NaN Not-a-Number

Constant Description

magic Magic square

hadamard Hadamart matrix

hilb Hilbert matrix

42

CONSTANT

EXAMPLE 1

EXAMPLE 2

>> a = pi

a =

3.1416

>> b = sin(pi)

b =

1.2246e-16

• The expression sin(pi) is not
exactly zero because pi is not
exactly π.

>> a = 1/0

a =

Inf

>> b = 0/0

b =

NaN

• NaN is a representation of a
numeric value other than infinity
that can not be defined.

43

NaN

These operations produce NaN:

1. Any arithmetic operation on a NaN, such as sqrt(NaN)

2. Addition or subtraction, such as magnitude subtraction of infinities as (+Inf)+(-Inf)

3. Multiplication, such as 0*Inf

4. Division, such as 0/0 and Inf/Inf

5. Remainder, such as rem(x,y) where y is zero or x is infinity

44

