

SKEE 1223 DIGITAL ELECTRONICS CHAPTER 3: GATES AND BOOLEAN ALGEBRA

DR. MOHD SAIFUL AZIMI BIN MAHMUD

P19a-04-03-30 School of Electrical Engineering Faculty of Engineering Universiti Teknologi Malaysia 019-7112948 azimi@utm.my

0101100 1001010 1001010

LOGIC GATES

LOGIC GATES INTRODUCTION

- Logic gate is fundamental building blocks for all digital circuits.
- Each gate at least have one input and only one output.
- The output depends on the function of the gate and combination of all its inputs.

LOGIC GATES AND GATE: INTRODUCTION

- It has two or more inputs and one output.
- Performs as logic multiplication.

Logic expression

$$Z = XY \text{ or } Z = X \cdot Y$$

Logic operation

- Output Z is 1 when all input X and Y are 1.
- Output Z is 0 when at least one of X and Y is 0.

AND symbol

AND Truth Table

Inp	Output	
Х	Y	Z
0	0	0
0	1	0
1	0	0
1	1	1

LOGIC GATES AND GATE: TIMING DIAGRAM

LOGIC GATES OR GATE: INTRODUCTION

- It has two or more inputs and one output.
- Performs as logic addition.

Logic expression

Z = X + Y

Logic operation

- Output Z is 1 when at least one of X and Y is 1.
- Output Z is 0 when all input X and Y are 0.

OR symbol

OR Truth Table

Inp	Output	
Х	Y	Z
0	0	0
0	1	1
1	0	1
1	1	1

LOGIC GATES OR GATE: TIMING DIAGRAM

LOGIC GATES NOT GATE: INTRODUCTION

- Also known as inverter gate.
- It only has one input and one output.
- Performs as logic inversion.

Logic expression

 $Z = \overline{X}$ or Z = X'

Logic operation

• Output *Z* is opposite of input *X*.

NOT symbol

NOT Truth Table

Input	Output
Х	Z
0	1
1	0

LOGIC GATES NOT GATE: TIMING DIAGRAM

LOGIC GATES MORE INPUTS GATE?

• Works the same way.

Example

Three inputs AND gate

- Logic expression: F = ABC
- Output: *F* is 1 when all inputs are 1.

Six inputs OR gate

- Logic expression: F = A + B + C + D + E + F
 - Output: *F* is 1 when at least one input is 1.

LOGIC GATES NAND GATE: INTRODUCTION

- A Universal gate: used in combinations to perform AND, OR and NOT operations.
- NAND is a contraction of NOT-AND (implies AND function with an inverted output).

• Output Z is **0** when **all input** X and Y are **1**.

NAND symbol

NAND Truth Table

Ing	Output	
Х	Y	Z
0	0	1
0	1	1
1	0	1
1	1	0

LOGIC GATES NAND GATE IS UNIVERSAL GATE

LOGIC GATES NOR GATE: INTRODUCTION

- A Universal gate: used in combinations to perform AND, OR and NOT operations.
- NOR is a contraction of NOT-OR (implies OR function with an inverted output).

- Output Z is 1 when all input X and Y are 0.
- Output Z is 0 when at least one of X or Y is 1.

NOR symbol

NOR Truth Table

Output	Input		
Z	Y	Х	
1	0	0	
0	1	0	
0	0	1	
0	1	1	

LOGIC GATES NOR GATE IS UNIVERSAL GATE

LOGIC GATES EXCLUSIVE-OR GATE (XOR GATE): INTRODUCTION

• XOR gate only has two inputs.

Logic expression

$$Z = \overline{X}Y + X\overline{Y} \text{ or } Z = X \oplus Y$$

Logic operation

- Output Z is 1 when input X and Y are different.
- Output Z is 0 when input X and Y are same.

XOR symbol

Inp	Output	
Х	Y	Z
0	0	0
0	1	1
1	0	1
1	1	0

15

LOGIC GATES EXCLUSIVE-OR GATE (XOR GATE): INTRODUCTION

How to make XOR gate using basic gates (AND, OR and NOT)?

$$Z = X \oplus Y$$
$$Z = \overline{X} \cdot Y + X \cdot \overline{Y}$$

LOGIC GATES **EXCLUSIVE-NOR GATE (XNOR GATE): INTRODUCTION**

- XNOR gate only has two inputs. •
- The bubble on the output of • XNOR symbol indicate that its outputs opposite that of XOR gate.

Logic expression

$$Z = \overline{\overline{X}Y + X\overline{Y}} \text{ or } Z = \overline{X \oplus Y}$$

Logic operation

- Output Z is 1 when input X and Y are same.
- Output Z is **0** when **input X** and Y are different.

XNOR Truth Table

Output	Input		
Z	Y	Х	
1	0	0	
0	1	0	
0	0	1	
1	1	1	

XNOR symbol

LOGIC GATES 50 UT 10 UT

How to make XNOR gate using basic gates (AND, OR and NOT)?

$$Z = \overline{X \oplus Y}$$
$$Z = \overline{\overline{X} \cdot Y + X \cdot \overline{Y}}$$

Draw the timing diagram for the following:

LOGIC GATES ASSESSMENT 2

For the given circuit as shown below, obtain Boolean expression of F1 and F2?

BOOLEAN THEOREM

BOOLEAN THEOREM BOOLEAN ALGEBRA

- Boolean algebra is the mathematics of digital systems.
- It is important in digital circuit analysis.
- Three terms that are used in Boolean algebra:

BOOLEAN THEOREM BOOLEAN ALGEBRA (ADDITION)

- In Boolean algebra, a **sum term** is a sum of literals.
- In logic circuits, a sum term is produced by an OR operation with no AND operation involved.
- Example: A + B, $A + \overline{B}$, $A + B + \overline{C}$

- A sum term equal to 1 when one or more of the literals are 1.
- A sum term equal to **0** only if **each** of the literals is 0.

BOOLEAN THEOREM BOOLEAN ALGEBRA (MULTIPLICATION)

- In Boolean algebra, a **product term** is a product of literals.
- In logic circuits, a product term is produced by an AND operation with no OR operation involved.
- Example: AB, $A\overline{B}$, $AB + \overline{C}$

- A product term equal to 1 only if each of the literals is 1.
- A product term equal to 0 when one or more of the literals are 0.

LAW AND RULES OF BOOLEAN ALGEBRA

LAW AND RULES OF BOOLEAN OUTMALAYSA ALGEBRA LAWS OF BOOLEAN ALGEBRA

There are three categories basic laws of Boolean algebra:

LAW AND RULES OF BOOLEAN O UTM ALGEBRA COMMUTATIVE LAWS

The commutative law for addition: The order variable are ORed make no different.

$$A + B = B + A$$

$$A = B + A = B + A$$

$$A = B = B + A$$

The commutative law for multiplication: The order variable are ANDed make no different.

LAW AND RULES OF BOOLEAN O UTM ALGEBRA ASSOCIATIVE LAWS

The associative law for addition: When ORing more than two variables, result are same regardless the grouping of variable.

$$A + (B + C) = (A + B) + C$$

$$A \longrightarrow A + (B + C)$$

$$B \longrightarrow B + C$$

$$A \longrightarrow A + (B + C)$$

$$B \longrightarrow A + (B + C)$$

$$B \longrightarrow A + (B + C)$$

$$C \longrightarrow A + B$$

$$C \longrightarrow (A + B) + C$$

The commutative law for multiplication: When ANDing more than two variables, result are same regardless the grouping of variable.

LAW AND RULES OF BOOLEAN O UTM ALGEBRA DISTRIBUTIVE LAWS

Expanding an expression by multiplying term by term

$$A(B+C) = AB + AC$$

X = A(B + C)

LAW AND RULES OF BOOLEAN O UTM ALGEBRA BASIC 12 RULES

 List of Basic 12 rules that are useful in manipulating and simplifying Boolean expression.

1. $A + 0 = A$	7. A.A = A
2. $A + 1 = 1$	$8. A \cdot \bar{A} = 0$
3. $A \cdot 0 = 0$	9. $\overline{\overline{A}} = A$
4. $A \cdot 1 = 1$	10.A + AB = A
5. A + A = A	$11.A + \overline{A}B = A + B$
$6. A + \bar{A} = 1$	12.(A+B)(A+C) = A + BC

- Rule 1 to 9 can be viewed in terms of their application to logic gate.
- Rule 10 to 12 is derived in terms of simpler rules and laws previously discussed.

LAW AND RULES OF BOOLEAN (5) UTM ALGEBRA BASIC 12 RULES

Rule 1: A + 0 = A

X = A + 0 = A

Rule 2: A + 1 = 1

X = A + 1 = 1

LAW AND RULES OF BOOLEAN O UTMUSA ALGEBRA BASIC 12 RULES

Rule 3: $A \cdot 0 = 0$

 $X = A \bullet 0 = 0$

Rule 4: $A \cdot 1 = A$

 $X = A \bullet 1 = A$

LAW AND RULES OF BOOLEAN (5) UTM ALGEBRA BASIC 12 RULES

Rule 5: A + A = A

X = A + A = A

Rule 6: $A + \overline{A} = 1$

LAW AND RULES OF BOOLEAN (5) UTM ALGEBRA BASIC 12 RULES

Rule 7: $A \cdot A = A$

$$A = 0 \qquad \qquad X = 0 \qquad \qquad A = 1 \qquad \qquad X = 1 \qquad \qquad A = 1 \qquad \qquad X = 1$$

$$X = A \bullet A = A$$

Rule 8: $A \cdot \overline{A} = 0$

 $X = A \bullet \overline{A} = 0$

LAW AND RULES OF BOOLEAN \bigcirc **UTERATION ALGEBRA BASIC 12 RULES** Rule 9: $\overline{\overline{A}} = A$

 $\overline{A} = A$

LAW AND RULES OF BOOLEAN (5) UTM ALGEBRA BASIC 12 RULES

Rule 10: A + AB = A

A + AB = A(1 + B)Factoring (Distributive law)= A(1)Rule 2: 1 + B = 1= ARule 4: $A \cdot 1 = A$

LAW AND RULES OF BOOLEAN O UTM ALGEBRA BASIC 12 RULES

Rule 11: $A + \overline{A}B = A + B$

 $A + \overline{AB} = A + AB + \overline{AB}$ Rule 10: A + AB $= A + B(A + \overline{A})$ Factoring (Distributive law)= A + B(1)Rule 6: $A + \overline{A} = 1$ = A + BRule 4: $B \cdot 1 = B$

LAW AND RULES OF BOOLEAN O UTM ALGEBRA BASIC 12 RULES

Rule 12: (A + B)(A + C) = A + BC

(A + B)(A + C) = AA + AC + AB + BC Distributive law

= A + AC + AB + BCRule 7: $A \cdot A = A$ = A(1+C) + AB + BCFactoring (Distributive law)= A(1) + AB + BCRule 2: C + 1 = 1= A + AB + BCRule 4: $A \cdot 1 = A$ = A(1+B) + BCFactoring (Distributive law)= A(1) + BCRule 2: B + 1 = 1= A + BCRule 4: $A \cdot 1 = A$

LAW AND RULES OF BOOLEAN O UTM ALGEBRA

BASIC 12 RULES

Rule 12: (A + B)(A + C) = A + BC

A	В	С	A + B	A + C	(A + B)(A + C)	BC	A + BC	
0	0	0	0	0	0	0	0	
0	0	1	0	1	0	0	0	
0	1	0	1	0	0	0	0	
0	1	1	1	1	1	1	1	
1	0	0	1	1	1	0	1	
1	0	1	1	1	1	0	1	↓
1	1	0	1	1	1	0	1	
1	1	1	1	1	1	1	1	
					†	— equal ——	1	

LAW AND RULES OF BOOLEAN O UTM ALGEBRA DEMORGAN'S THEOREM

DeMorgan proposed two theorems that are important part of Boolean algebra. Truth Table

LAW AND RULES OF BOOLEAN O UTM ALGEBRA DEMORGAN'S THEOREM

DeMorgan proposed two theorems that are important part of Boolean algebra. Truth Table

NAND Negative-OR innovative • entrepreneurial • global

LAW AND RULES OF BOOLEAN O UTM ALGEBRA HOMEWORK

Apply DeMorgan's Theorem to each of following expressions:

- 1. $F = \overline{(A + B + C)D}$
- 2. $F = \overline{ABC + DEF}$
- 3. $F = \overline{A\overline{B} + \overline{C}D + EF}$

BOOLEAN EXPRESSION SIMPLIFICATION

BOOLEAN EXPRESSION SIMPLIFICATION BOOLEAN SIMPLIFICATION

Simplify Boolean expression below: AB + A(B + C) + B(B + C)

- = AB + AB + AC + BB + BC
- = AB + AC + B + BC
- = AB + AC + B(1+C)
- = AB + AC + B
- = B(A+1) + AC

- Distributive Law Rule 5: AB + AB = AB, Rule 7: BB = BDistributive Law Rule 2: C + 1 = 1
- Distributive Law
- *Rule* 2: A + 1 = 1

= B + AC

BOOLEAN EXPRESSION SIMPLIFICATION BOOLEAN SIMPLIFICATION

Original Expression: AB + A(B + C) + B(B + C)

Faster, compact design and lower cost

B + AC

B

BOOLEAN EXPRESSION SIMPLIFICATION ASSESEMENT 3

Find the Boolean expression for given logic circuit. Then simplify the Boolean expression.

 $F = \overline{X}YZ + \overline{X}Y\overline{Z} + XZ$

BOOLEAN EXPRESSION SIMPLIFICATION ASSESSMENT 3 (SOLUTION)

Do the simplification of Boolean expression as follows:

$$F = \overline{X}YZ + \overline{X}Y\overline{Z} + XZ$$

$$F = \overline{X}Y(Z + \overline{Z}) + XZ$$

$$F = \overline{X}Y(1) + XZ$$

$$F = \overline{X}Y(1) + XZ$$

$$F = \overline{X}Y + XZ$$

$$Rule \ 6: Z + \overline{Z} = 1$$

$$Rule \ 4: \overline{X}Y \cdot 1 = \overline{X}Y$$

Simplified Boolean expression, $F = \overline{X}Y + XZ$

BOOLEAN EXPRESSION SIMPLIFICATION HOMEWORK

Simplify the following using Boolean algebra techniques and draw the simplified logic circuit:

- 1. $A\overline{B} + AB$
- 2. AB + A(B + C) + B(B + C)
- 3. $[A\overline{B}(C + BD) + \overline{A}\overline{B}]C$
- $4. \quad \overline{AB + AC} + \overline{A}\overline{B}C$

BOOLEAN EXPRESSION SIMPLIFICATION HOMEWORK

- 1. Write the algebraic expression for the following circuit.
- 2. Produce a truth table for the circuit.
- 3. Design a simpler circuit having the same output.

BOOLEAN EXPRESSION SIMPLIFICATION HOMEWORK

- 1. Derive a Boolean expression from the truth table.
- 2. Simplify the Boolean expression using Boolean algebra.
- Draw a logic circuit for the simplified Boolean expression using only OR and AND gates.
- 4. Draw the logic circuit using only 2-input NAND gates.

Α	В	С	Z
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1