SKEE 1223 DIGITAL ELECTRONICS
 CHAPTER 3: GATES AND BOOLEAN ALGEBRA

DR. MOHD SAIFUL AZIMI BIN MAHMUD
P19a-04-03-30
School of Electrical Engineering
Faculty of Engineering
Universiti Teknologi Malaysia 019-7112948
azimi@utm.my
innovative • entrepreneurial • global

LOGIC GATES

INTRODUCTION

- Logic gate is fundamental building blocks for all digital circuits.
- Each gate at least have one input and only one output.
- The output depends on the function of the gate and combination of all its inputs.

A generic two-input logic gate

LOGIC GATES

AND GATE: INTRODUCTION

- It has two or more inputs and one output.
- Performs as logic multiplication.

Logic expression

$Z=X Y$ or $Z=X \cdot Y$

Logic operation

- Output Z is 1 when all input X and Y are 1 .
- Output Z is 0 when at least one of X and Y is 0 .

AND symbol
AND Truth Table

Input		Output
X	Y	\mathbf{Z}
0	0	$\mathbf{0}$
0	1	$\mathbf{0}$
1	0	$\mathbf{0}$
1	1	$\mathbf{1}$

LOGIC GATES

AND GATE: TIMING DIAGRAM

LOGIC GATES

OR GATE: INTRODUCTION

- It has two or more inputs and one output.
- Performs as logic addition.

Logic expression

$$
Z=X+Y
$$

Logic operation

- Output Z is 1 when at least one of X and Y is 1 .
- Output Z is 0 when all input X and Y are 0 .

OR symbol

OR Truth Table

Input		Output
X	Y	\mathbf{Z}
0	0	$\mathbf{0}$
0	1	$\mathbf{1}$
1	0	$\mathbf{1}$
1	1	$\mathbf{1}$

LOGIC GATES

OR GATE: TIMING DIAGRAM

$x \begin{array}{llll} & 0 & 0 & 1\end{array}$

LOGIC GATES

NOT GATE: INTRODUCTION

- Also known as inverter gate.
- It only has one input and one output.
- Performs as logic inversion.

Logic expression

$Z=\bar{X}$ or $Z=X^{\prime}$

Logic operation

- Output Z is opposite of input X.

NOT Truth Table

Input	Output
X	Z
0	$\mathbf{1}$
1	$\mathbf{0}$

LOGIC GATES
 NOT GATE: TIMING DIAGRAM

NOT gate or inverter

LOGIC GATES
 MORE INPUTS GATE?

- Works the same way.

Example

Three inputs AND gate

Six inputs OR gate

- Logic expression: $F=A+B+C+D+E+F$
- Output: F is 1 when at least one input is 1 .

LOGIC GATES

NAND GATE: INTRODUCTION

- A Universal gate: used in combinations to perform AND, OR and NOT operations.
- NAND is a contraction of NOTAND (implies AND function with an inverted output).

Logic expression

$$
Z=\overline{X Y}
$$

Logic operation

- Output Z is 1 when at least one of X or Y is 0 .
- Output Z is 0 when all input X

NAND symbol

NAND Truth Table

Input		Output
X	Y	\mathbf{Z}
0	0	$\mathbf{1}$
0	1	$\mathbf{1}$
1	0	$\mathbf{1}$
1	1	$\mathbf{0}$

LOGIC GATES
 NAND GATE IS UNIVERSAL GATE

innovative • entrepreneurial • global

LOGIC GATES

NOR GATE: INTRODUCTION

- A Universal gate: used in combinations to perform AND, OR and NOT operations.
- NOR is a contraction of NOTOR (implies OR function with an inverted output).

NOR symbol

NOR Truth Table

Input		Output
X	Y	\mathbf{Z}
0	0	$\mathbf{1}$
0	1	$\mathbf{0}$
1	0	$\mathbf{0}$
1	1	$\mathbf{0}$

- Output Z is 0 when at least one of X or Y is 1 .

LOGIC GATES

NOR GATE IS UNIVERSAL GATE

innovative • entrepreneurial • global

LOGIC GATES

EXCLUSIVE-OR GATE (XOR GATE): INTRODUCTION

- XOR gate only has two inputs.

Logic expression

$Z=\bar{X} Y+X \bar{Y}$ or $Z=X \oplus Y$

Logic operation

- Output Z is 1 when input X and Y are different.
- Output Z is 0 when input X and Y are same.

Input		Output
X	Y	\mathbf{Z}
0	0	$\mathbf{0}$
0	1	$\mathbf{1}$
1	0	$\mathbf{1}$
1	1	$\mathbf{0}$

LOGIC GATES

EXCLUSIVE-OR GATE (XOR GATE): INTRODUCTION

- How to make XOR gate using basic gates (AND, OR and NOT)?

$$
\begin{aligned}
& Z=X \oplus Y \\
& Z=\bar{X} \cdot Y+X \cdot \bar{Y}
\end{aligned}
$$

LOGIC GATES

EXCLUSIVE-NOR GATE (XNOR GATE): INTRODUCTION

- XNOR gate only has two inputs.
- The bubble on the output of XNOR symbol indicate that its outputs opposite that of XOR gate.

Logic expression
$Z=\overline{\bar{X}} Y+X \bar{Y}$ or $Z=\overline{X \oplus Y}$

Logic operation

- Output Z is 1 when input X and Y are same.
- Output Z is 0 when input X and Y are different.

XNOR symbol

XNOR Truth Table		
Input		Output
X	Y	\mathbf{Z}
0	0	$\mathbf{1}$
0	1	$\mathbf{0}$
1	0	$\mathbf{0}$
1	1	$\mathbf{1}$

LOGIC GATES

EXCLUSIVE-NOR GATE (XNOR GATE): INTRODUCTION

- How to make XNOR gate using basic gates (AND, OR and NOT)?

$$
\begin{aligned}
& Z=\overline{X \oplus Y} \\
& Z=\overline{\bar{X} \cdot Y+X \cdot \bar{Y}}
\end{aligned}
$$

LOGIC GATES

ASSESSMENT 1

Draw the timing diagram for the following:

LOGIC GATES

ASSESSMENT 2

For the given circuit as shown below, obtain Boolean expression of F1 and F2?

LOGIC GATES

HOMEWORK

Write the algebraic expression for the following circuit.

LOGIC GATES

HOMEWORK

Write the algebraic expression for the following circuit.

LOGIC GATES

HOMEWORK

Write the algebraic expression for the following circuit.

LOGIC GATES

HOMEWORK

Write the algebraic expression for the following circuit.

BOOLEAN THEOREM

BOOLEAN THEOREM

BOOLEAN ALGEBRA

- Boolean algebra is the mathematics of digital systems.
- It is important in digital circuit analysis.
- Three terms that are used in Boolean algebra:

Variable
A symbol (letter)
used to represent
logical quantity.
Example: F, X, Y,
Z and etc. Any
variable that can
have 0 and 1
value.

Complement

The inverse of variable.

Example:
Complement of
$A=\bar{A}=A^{\prime}$

Literal

Variable or complement of variable.

BOOLEAN THEOREM

BOOLEAN ALGEBRA (ADDITION)

- In Boolean algebra, a sum term is a sum of literals.
- In logic circuits, a sum term is produced by an OR operation with no AND operation involved.
- Example: $A+B, A+\bar{B}, A+B+\bar{C}$

- A sum term equal to 1 when one or more of the literals are 1.
- A sum term equal to 0 only if each of the literals is 0 .

BOOLEAN THEOREM

BOOLEAN ALGEBRA (MULTIPLICATION)

- In Boolean algebra, a product term is a product of literals.
- In logic circuits, a product term is produced by an AND operation with no OR operation involved.
- Example: $A B, A \bar{B}, A B+\bar{C}$

- A product term equal to 1 only if each of the literals is 1.
- A product term equal to 0 when one or more of the literals are 0.

LAW AND RULES OF BOOLEAN ALGEBRA

LAW AND RULES OF BOOLEAN (0) UTM ALGEBRA

LAWS OF BOOLEAN ALGEBRA

There are three categories basic laws of Boolean algebra:

Commutative
 Laws

For addition and multiplication

Associative Laws

For addition and multiplication

Distributive Laws

Same as in

 ordinary algebra
LAW AND RULES OF BOOLEAN (0) UTM ALGEBRA

COMMUTATIVE LAWS

The commutative law for addition: The order variable are ORed make no different.

$$
A+B=B+A
$$

The commutative law for multiplication: The order variable are ANDed make no different.

LAW AND RULES OF BOOLEAN (0) UTM ALGEBRA

ASSOCIATIVE LAWS

The associative law for addition: When ORing more than two variables, result are same regardless the grouping of variable.

The commutative law for multiplication: When ANDing more than two variables, result are same regardless the grouping of variable.

LAW AND RULES OF BOOLEAN (0) UTM ALGEBRA

DISTRIBUTIVE LAWS

Expanding an expression by multiplying term by term

$$
A(B+C)=A B+A C
$$

$$
X=A(B+C)
$$

$X=A B+A C$

LAW AND RULES OF BOOLEAN (0) UTM ALGEBRA

BASIC 12 RULES

- List of Basic 12 rules that are useful in manipulating and simplifying Boolean expression.

1. $A+0=A$	7. $A \cdot A=A$
2. $A+1=1$	8. $A \cdot \bar{A}=0$
3. $A \cdot 0=0$	9. $\overline{\bar{A}}=A$
4. $A \cdot 1=1$	10. $A+A B=A$
5. $A+A=A$	11. $A+\bar{A} B=A+B$
6. $A+\bar{A}=1$	12. $(A+B)(A+C)=A+B C$

- Rule 1 to 9 can be viewed in terms of their application to logic gate.
- Rule 10 to 12 is derived in terms of simpler rules and laws previously discussed.

LAW AND RULES OF BOOLEAN (0) UTM ALGEBRA

BASIC 12 RULES

Rule 1: $A+0=A$

$$
X=A+0=A
$$

Rule 2: $A+1=1$

$$
A=1 \longrightarrow X=1
$$

$$
X=A+1=1
$$

LAW AND RULES OF BOOLEAN (0) UTM ALGEBRA

BASIC 12 RULES

Rule 3: $\boldsymbol{A} \cdot \mathbf{0}=\mathbf{0}$

$$
X=A \cdot 0=0
$$

Rule 4: $\boldsymbol{A} \cdot \mathbf{1}=\boldsymbol{A}$

$$
A=0 \longrightarrow X=0 \quad A=1 \longrightarrow
$$

$$
X=A \cdot 1=A
$$

LAW AND RULES OF BOOLEAN (0) UTM ALGEBRA

BASIC 12 RULES

Rule 5: $A+A=A$

$$
X=A+A=A
$$

Rule 6: $A+\bar{A}=1$

$$
\begin{array}{ll}
A=0 \\
\bar{A}=1
\end{array} \longrightarrow X=1
$$

$$
X=A+\bar{A}=1
$$

LAW AND RULES OF BOOLEAN (0) UTM ALGEBRA

BASIC 12 RULES

Rule 7: $\boldsymbol{A} \cdot \boldsymbol{A}=\boldsymbol{A}$

$$
X=A \cdot A=A
$$

Rule 8: $\boldsymbol{A} \cdot \overline{\boldsymbol{A}}=\mathbf{0}$

$$
\begin{array}{ll}
A=1 \\
\bar{A}=0
\end{array} \longrightarrow X=0 \quad \begin{aligned}
& A=0 \\
& \bar{A}=1
\end{aligned}
$$

$$
X=A \cdot \bar{A}=0
$$

LAW AND RULES OF BOOLEAN (0) UTM ALGEBRA

BASIC 12 RULES

Rule 9: $\overline{\bar{A}}=A$

LAW AND RULES OF BOOLEAN (C) UTM ALGEBRA

BASIC 12 RULES

Rule 10: $A+A B=A$

$$
\begin{aligned}
A+A B & =A(1+B) \\
& =A(1) \\
& =\boldsymbol{A}
\end{aligned}
$$

Factoring (Distributive law)
Rule 2: $1+B=1$
Rule 4: $A \cdot 1=A$

A	B	AB	$A+A B$	
0	0	0	0	
0	1	0	0	
1	0	0	1	
1	1	1	1	
\uparrow			\uparrow	

LAW AND RULES OF BOOLEAN (0) UTM

 ALGEBRA
BASIC 12 RULES

Rule 11: $\boldsymbol{A}+\overline{\boldsymbol{A}} \boldsymbol{B}=\boldsymbol{A}+\boldsymbol{B}$

$$
\begin{aligned}
A+\bar{A} B & =A+A B+\bar{A} B \\
& =A+B(A+\bar{A}) \\
& =A+B(1) \\
& =\boldsymbol{A}+\boldsymbol{B}
\end{aligned}
$$

Rule 10: $A+A B$
Factoring (Distributive law)
Rule 6: $A+\bar{A}=1$
Rule 4: $\mathrm{B} \cdot 1=B$

\boldsymbol{A}	\boldsymbol{B}	$\overline{\boldsymbol{A} \boldsymbol{B}}$	$\boldsymbol{A}+\overline{\boldsymbol{A} \boldsymbol{B}}$	$\boldsymbol{A}+\boldsymbol{B}$
0	0	0	0	0
0	1	1	1	1
1	0	0	1	1
1	1	0	1	

LAW AND RULES OF BOOLEAN (0) UTM

 ALGEBRA
BASIC 12 RULES

Rule 12: $(A+B)(A+C)=A+B C$

$$
\begin{array}{rlrl}
(A+B)(A+C) & =A A+A C+A B+B C & \text { Distributive law } \\
& =A+A C+A B+B C & & \text { Rule 7: } A \cdot A=A \\
& =A(1+C)+A B+B C & \text { Factoring (Distributive law) } \\
& =A(1)+A B+B C & & \text { Rule 2:C } C+1=1 \\
& =A+A B+B C & & \text { Rule 4: } A \cdot 1=A \\
& =A(1+B)+B C & & \text { Factoring (Distributive law) } \\
& =A(1)+B C & & \text { Rule 2: } \mathrm{B}+1=1 \\
& =A+B C & & \text { Rule 4: } A \cdot 1=A
\end{array}
$$

LAW AND RULES OF BOOLEAN (ㅇ)UTM ALGEBRA

BASIC 12 RULES

Rule 12: $(A+B)(A+C)=A+B C$

A	B	C	$A+B$	$A+C$	$(A+B)(A+C)$	$B C$	$A+B C$	
0	0	0	0	0	0	0	0	
0	0	1	0	1	0	0	0	
0	1	0	1	0	0	0	0	-
0	1	1	1	1	1	1	1	$C \longrightarrow$
1	0	0	1	1	1	0	1	
1	0	1	1	1	1	0	1	
1	1	0	1	1	1	0	1	
1	1	1	1	1	1	1	1	
					4	qual	4	

LAW AND RULES OF BOOLEAN (0) UTM ALGEBRA

DEMORGAN'S THEOREM

DeMorgan proposed two theorems that are important part of Boolean algebra.

Truth Table

$1^{\text {st }}$ Theorem

$$
\overline{X+Y}=\bar{X} \cdot \bar{Y}
$$

Input		Output	
X	Y	$\mathrm{X}+\mathrm{Y}$	$\mathrm{X} . \mathrm{Y}$
0	0	1	1
0	1	0	0
1	0	0	0
1	1	0	0

$$
\begin{aligned}
& X \longrightarrow \overline{X+Y}=-\bar{X} \bar{Y} \\
& \text { NOR } \\
& \text { Negative-AND } \\
& \text { innovative } \bullet \text { entrepreneurial } \bullet \text { global }
\end{aligned}
$$

LAW AND RULES OF BOOLEAN (0) UTM ALGEBRA

DEMORGAN'S THEOREM

DeMorgan proposed two theorems that are important part of Boolean algebra.

Truth Table

$2^{\text {nd }}$ Theorem

$$
\overline{X . Y}=\bar{X}+\bar{Y}
$$

Input		Output	
X	Y	$\mathrm{X} \cdot \mathrm{Y}$	$\mathrm{X}+\mathrm{Y}$
0	0	$\mathbf{1}$	$\mathbf{1}$
0	1	$\mathbf{1}$	$\mathbf{1}$
1	0	$\mathbf{1}$	$\mathbf{1}$
1	1	$\mathbf{0}$	$\mathbf{0}$

LAW AND RULES OF BOOLEAN (C)UTM ALGEBRA
 HOMEWORK

Apply DeMorgan's Theorem to each of following expressions:

1. $F=\overline{(A+B+C) D}$
2. $F=\overline{A B C+D E F}$
3. $F=\overline{A \bar{B}+\bar{C} D+E F}$

BOOLEAN EXPRESSION SIMPLIFICATION

BOOLEAN EXPRESSION SIMPLIFICATION

BOOLEAN SIMPLIFICATION

Simplify Boolean expression below:

$$
\begin{array}{rlrl}
\boldsymbol{A} \boldsymbol{B} & +\boldsymbol{A}(\boldsymbol{B}+\boldsymbol{C})+\boldsymbol{B}(\boldsymbol{B}+\boldsymbol{C}) & & \\
& =A B+A B+A C+B B+B C \\
& =A B+A C+B+B C & & \text { Distributive Law } \\
& =A B+A C+B(1+C) & & \text { Rule } 5: A B+A B=A B, \\
& =A B+A C+B & \text { Distributive Law } \\
& =B(A+1)+A C & & \text { Rule } 2: C+1=1 \\
& =B+A C & & \text { Distributive Law } \\
& \text { Rule } 2: A+1=1
\end{array}
$$

BOOLEAN EXPRESSION SIMPLIFICATION

BOOLEAN SIMPLIFICATION

Original Expression: $\boldsymbol{A} \boldsymbol{B}+\boldsymbol{A}(\boldsymbol{B}+\boldsymbol{C})+\boldsymbol{B}(\boldsymbol{B}+\boldsymbol{C})$

Simplified Expression: $\boldsymbol{B}+\boldsymbol{A C}$

BOOLEAN EXPRESSION SIMPLIFICATION

ASSESEMENT 3

Find the Boolean expression for given logic circuit. Then simplify the Boolean expression.

BOOLEAN EXPRESSION SIMPLIFICATION

ASSESSMENT 3 (SOLUTION)

Do the simplification of Boolean expression as follows:

$$
\begin{array}{ll}
F=\bar{X} Y Z+\bar{X} Y \bar{Z}+X Z & \\
F=\bar{X} Y(Z+\bar{Z})+X Z & \\
\text { Distributive Law } \\
F=\bar{X} Y(1)+X Z & \text { Rule } 6: Z+\bar{Z}=1 \\
F=\bar{X} Y+X Z & \text { Rule } 4: \bar{X} Y \cdot 1=\bar{X} Y
\end{array}
$$

Simplified Boolean expression, $\boldsymbol{F}=\overline{\boldsymbol{X}} \boldsymbol{Y}+\boldsymbol{X Z}$

innovative • entrepreneurial • global

BOOLEAN EXPRESSION SIMPLIFICATION

HOMEWORK

Simplify the following using Boolean algebra techniques and draw the simplified logic circuit:

1. $A \bar{B}+A B$
2. $A B+A(B+C)+B(B+C)$
3. $[A \bar{B}(C+B D)+\bar{A} \bar{B}] C$
4. $\overline{A B+A C}+\bar{A} \bar{B} C$

BOOLEAN EXPRESSION SIMPLIFICATION
 HOMEWORK

1. Write the algebraic expression for the following circuit.
2. Produce a truth table for the circuit.
3. Design a simpler circuit having the same output.

BOOLEAN EXPRESSION SIMPLIFICATION

HOMEWORK

1. Derive a Boolean expression from the truth table.
2. Simplify the Boolean expression using Boolean algebra.
3. Draw a logic circuit for the simplified Boolean expression using only OR and AND gates.
4. Draw the logic circuit using only 2 -input NAND gates.

A	B	C	Z
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

