SEE1022 INTRODUCTION TO SCIENTIFIC PROGRAMMING

CH3 Operation

Dr. Mohd Saiful Azimi Mahmud (azimi@utm.my) P19a-04-03-30, School of Electrical Engineering, UTM

www.utm.my innovative • entrepreneurial • global

univteknologimalaysia utm_my

utmofficial

- 1. To know the three types of operation (statement, function, command).
- 2. To know the three types of statement (assignment, repetition, decision).
- 3. To understand the operation of arithmetic expression on both matrix and array operators.
- 4. To understand the operation of Boolean expression on both relational and logical operators.

---- OPERATION

ARITHMETIC OPERATION

innovative • entrepreneurial • global

OUTM ARITHMETIC OPERATIONS

INTRODUCTION

• MATLAB has two different types of arithmetic operations: array operations and matrix operations.

Matrix Operations

• Follow the rules of linear algebra.

Array Operations

- Execute element by element operations and support multidimensional arrays.
- The period character (.) distinguishes the array operations from the matrix operations.
- However, since the matrix and array operations are the same for addition and subtraction, the character pairs .+ and .- are unnecessary.

UTM ARITHMETIC OPERATOR

OPERATOR TYPES

Matrix Operator						
Operation	Algebraic	MATLAB				
Addition	a + b	a + b				
Subtraction	a-b	a-b				
Multiplication	$a \times b$	a * b				
Right Division	a/b	a/b				
Left Division	b/a	a∖b				
Power	a^b	a ^ b				

	Array Operator			Other Matrix O		Op
	Operation	MATLAB		Operation		Μ
	Multiplication	a.* b		Colon		
	Right Division	a./b		Transpose		
	Left Division	<i>a</i> .\b		•		
	Power	a. ^b	•		1 1	
	Pure Transpose	a.'			1	
*A.K.A. Element-by-Element Operator						
					TYPE	

perator

	Operat	ion	MATLAB		Operation		MATLAB
	Multipl	lication	a.* b		Colon		a: b
	Right D	ivision	a./b		Transpose		<i>a</i> ′
	Left Div	vision	<i>a</i> .\b		•		
	Power		a. ^b	•			
	Pure Tr	anspose	a.'				
	*A.K.A. Element-by-Element Operator						
						TYPE	
o right PRECEDEI			NT				
		•					

No	Operation	
1	Transpose	
2	Parentheses	
3	Power, left to right	
4	Multiplication & Division, left to right	PRECEDENT
5	Addition & subtraction	•
6	Colon	

MATRIX OPERATOR

innovative • entrepreneurial • global

>> a =	[1 2 3]	
a =		
1	2	3
>> b =	a + 5	
b =		
6	7	8

Addition with scalar is performed on all elements of the array.

EXAMPLE 2

>> a = >> b =	[1 2;3 [4 5;6	4]; 7];
>> c =	a + b	
с =		
5	7	
9	11	

- Two matrices are added according to the corresponding elements of the two matrices.
- Both matrices must have the same size.

 Addition between array needs both arrays to be compatible in size. In this example, a is of size 1x3 and a' is of size 3x1 are not compatible.

* Please check MATLAB documentation for the full list of <u>Compatible Array Sizes for Basic Operations</u>.

MATRIX OPERATOR : MULTIPLICATION

EXAMPLE 4

>> x = 2*(3+2)
x =
 10
• Parentheses alone does not
 represent multiplication.
>> x = 2(3+2)
2(3+2)
|
Error: Unbalanced or unexpected parenthesis or bracket.

EXAMPLE 5

>> a = [1 2 3]; >> b = [4 5 6];

>> c = a*b multiplic
Error using *
Inner matrix dimensions must agree.

 * mean matrix multiplication. a and b are not the correct size for matrix multiplication in this example.

MATRIX OPERATOR : MULTIPLICATION

EXAMPLE 6

>> a = [1 2 3]; >> b = [4;5;6];	• This is a valid matrix multiplication where 1x3 column vector a is
>> c = a*b	multiplied with 3x1 row vector b.
С =	
32	

EXAMPLE 7

<pre>>> a = [1 2 3;3 4 5]; >> b = [4 5;6 7;8 9]; >> c = a*b</pre>	• In general, the number of on the first matrix must be equinated on the second
C =	
40 46	
76 88	

In general, the number of column in
the first matrix must be equal to the
number of rows in the second matrix

	5 2.2	1 7.0	0 61	
>> a = [4 a = 4 3	5 1	1 7;2 2 7	9 6]	 Transpose of a matrix is obtained by interchanging the rows and column.
2	9	6		
>> b = a'				
b =				
4	3	2		
5	1	9		
2	7	6		

>> a = [1 2 3]; >> b = a*a' b = 14

>> y = 5*6/6*5 y = 25 >> z = 6*5/5*6 z = 36

 Since multiply and division have the same precedence, the operation compute from left to right

EXAMPLE 11

>> y = -4^2 y = -16

• ^ has higher precedence than

-

• To avoid confusing on the precedence, use parentheses.

EXAMPLE 13

>> y = (-4)^2 y = 16

 Parentheses () has higher precedence than ^

 Operation between string and numeric will return numeric value.

EXAMPLE 15

>> y = 'hello' + 1
y =
 105 102 109 109 112

ARRAY OPERATOR

innovative • entrepreneurial • global

>> a = 2	+ [2 4	56]	
a =			
4	6	7	8
>> a = 2	.+ [2	456]	
a =	C	_	0
4	6	1	8
>> $h = 2$	* [2 4	5 61	
b =		0 0]	
~ 4	8	10	12
>> b = 2	.* [2	4 5 6]	
b =			
4	8	10	12

 Any operation between scalars and non-scalars can be written with or without the period (.).

$\rangle \rangle =$	$[2 \ 4 \ 5$	61.		
>> b =	[2 4 5	1];		• Eleme multi
>> c =	a.*b			• Both
4	4	10	6	• Recap of a a

•	Elements in a and b are multiplied accordingly.
•	Both array must have equal size.
•	Recap: $a * b$ need the column no. of a and row no. of b to be equal

EXAMPLE 18

>> a = [2 4 5 6];

>> c = a.*a'
Error using .*
Matrix dimensions must agree.

• a and a' are having equal number of elements but not at equal size.

UTM VECTORIZING : COMPOUND INTEREST

• With data in MATLAB constructed as array, a formula can be evaluated for a large set of values at once. This is called **vectorizing**. In vectorizing, element by element operation will be used.

Example 19

• Lets consider a formula of compound interest as below where A = invested money, r = interest rate, n = total year, and B = final balance:

$$B = A(1+r)^n$$

- If A = 100, this scalar value will result B = 236.7 for r = 0.09 and n = 10.
- To compute for several values of A, vectorizing will be the most useful instead of computing for several times. Now, lets represent A as a vector with 5 values:

A = [100, 200, 500, 1000, 4000]

• Thus, evaluating *B* based on the vector *A* will give below result:

B = [236.7, 473.5, 1183.7, 2367.4, 9469.5]

• The MATLAB code is as follows:

```
>> r = 0.09;
>> n = 10;
>> A1 = 100; %single invested value
>> B1 = A1*(1+r)^n
B1 =
  236.7364
>> A2 = [100,200,500,1000,4000]; %vectorizing invested value
>> B2 = A2*(1+r)^n
B2 =
  1.0e+03 *
  0.2367 0.4735 1.1837 2.3674 9.4695
```

WECTORIZING : VERTICAL DISPLACEMENT

EXAMPLE 20

If a stone is thrown vertically upward, its vertical displacement s after an elapsed time t is given by the formula $s = gt^2/2$ where g is the acceleration due to gravity with value 9.81. The structure plan for this problem is as follows:

- 1. Assign the data (g and t) to MATLAB variables.
- 2. Calculate the value of ${\rm s}$ according to the formula.

```
>> g = 9.81;

>> t = 0:5 %vectorizing t for 6 values of elapsed time

t =

0 1 2 3 4 5

>> s = g*t.^2/2

s =

0 4.9050 19.6200 44.1450 78.4800 122.6250

• Since the square operation must be done

to every t value, array operation is used.
```

UTM VECTORIZING : VOLUME OF CONES

EXAMPLE 21

• Supposed the diameter and height of a cone is D and H respectively. Then, the volume (∨) of the cones can be computed as:

$$V = \frac{1}{12}\pi D^2 H$$

• If you have 5 different size of cones and want to calculate their volumes, in most programming language, you need to set up a loop where D and H are constructed as vectors:

for
$$n = 1 to 5$$

$$V(n) \leftarrow \frac{1}{12}\pi D(n)^2 H(n)$$

end

- By using array operator, you can avoid the loop and calculate all the volumes at once.
- For some values of D and H, the MATLAB code will be as follow:

```
>> D = [1.00, 0.50, 3.00, 1.20, 2.00];
>> H = [2.00, 4.00, 1.00, 1.00, 2.00];
>> V = 1/2*pi*(D.^2).*H
V =
0.5236 0.2618 2.3562 0.3799 2.0944
```

ODUTION COMPLEX NUMBER ARITHMETIC

INTRODUCTION

- Complex numbers are numbers that consist of two parts, a real number and an imaginary number in the form of *a*+*bi*.
- *a* and *b* are real numbers, and *i* is the imaginary component where $i=\sqrt{-1}$
- For complex matrices, the operations ' and .' behave differently.
- The 'operator is the complex conjugate transpose where the signs of imaginary parts are changed.
- The .' operator does a pure transpose.

>> a=[1+i 2+2i; 3+3i 4+4i] a = 1+1i 2+2i 3+3i 4+4i >> a' ans = 1-1i 3-3i 2-2i 4-4i >> a.' ans = 1+1i 3+3i 2+2i 4+4i

• The array operator will return the original values while matrix operator return the matrix conjugates.

$$a = 2;$$
 $b = \begin{bmatrix} 2 & 4 \end{bmatrix};$ $c = \begin{bmatrix} 7 & 4 \\ 1 & 3 \end{bmatrix};$

Based on the above, evaluate by hand of the following expressions:

1. a+2-3	8. b'+a/2+2	15.c.*c
2.a+2*3	9. c'*c	16.b.^b
3.2*a^3+a	10.a+1:a^3/2	17.a+b.^b*c'
4.a+b	11.a+(1:a^3)/2	18.(a+2i)′
5.b*c	12.(a:a+1)*c	19.(a+2i).′
6. C'	13.c^2^a	20.[a+2i,a+3i]′
7.b*c′	14.C*C	21.[a+2i;a+3i].′

BOOLEAN OPERATION

innovative • entrepreneurial • global

BOOLEAN OPERATOR

INTRODUCTION

- Boolean algebra is a mathematical operation that return a logical value, which are either true(1) or false(0).
- Thus, in programming language, the assignment from Boolean expression will return a logical data type.
- There are two types of Boolean operator in programming language:
 - 1. Relational Operator.
 - 2. Logical Operator.
- Common usage of Boolean operators are:
 - 1. Identify particular elements from an array.
 - 2. Describing decision and repetition statements (next week topic).

INTRODUCTION

Relational Operator					
Symbol Meaning					
<	Less than				
<=	Less than or equal				
==	Equal				
~=	Not equal				
>	Greater than				
>=	Greater than or equal				

Logical Operator

Logical	Element-wise	Short-circuiting
AND	æ	& &
OR		11
NOT	~	~

Precedence

Νο	Operation
1	() Parentheses
2	^ . ^ Power, '.' Transpose
3	~ NOT
4	* . * Multiply, / . / $\ \$. $\$ Divide
5	+ Addition, - Subtraction
6	: Colon
7	Relational
8	& AND
9	OR

Logical Value

Function	Value
true	1
false	0

OUT THE TRUTH TABLE FOR LOGICAL OPERATIONS INTRODUCTION

Input A	Input B	AND A&B	OR A B	NOT ~A
0	0	0	0	1
0	1	0	1	1
1	0	0	1	0
1	1	1	1	0

• If the input is numeric data type, all nonzero values will be assign as logical 1 and zero value as logical 0.

>> a = 5; >> b = 10; >> c = a>b c = 0

• Since a>b is wrong, then the output is 0 (false).

EXAMPLE 24

• Operation with scalar is performed on all elements of the array.

>> a = [0 0 1 0 1]; >> b = [1 0 1 1 0]; >> c = a b					• OR operation will return 1 if either of the input is 1.
c = 1	0	1	1	1	

EXAMPLE 26

 For operation on numeric data type, all nonzero values will be assign as logical 1 and zero value as logical 0.

•

left to right.

EXAMPLE 27

>> a =	[1 6 5]	;
>> b =	[3 4 5]	;
>> c =	a>b~=5	
с =		
1	1	1
>> c =	a~=b>5	
с =		
0	0	0

EXAMPLE 28

>> a = 1&0|0 a = 0 >> a = 1|0&0 a = 1

•	&	has	higher	preced	lence	than

The operation executed from

- In decision and repetition statements, which will be discuss in the next chapter, mixing the relational and logical operator will be very useful in having more than one condition at once.
- For now, we will discuss on how those two can be mixed into single expression.

MIX WITH ARITHMETIC OPERATORS

EXAMPLE 30

<pre>>> a = [0 0 >> b = [1 0 >> c = a b- c =</pre>	1 0 1]; 3 2 0]; 3 1)-3	1	1	 When both arithmetic and Boolean operators are used in single expression, the output data type depends on the last operator 	
-2 -3	-2	-2	-2	execute	d.
>> whos c Name C	Size 1x5		Bytes 5	Class logical	Attributes
>> whos d Name d	Size 1x5		Bytes 40	Class double	Attributes

>> A = 1	randi(15	,3)
A =		
12	10	1
12	3	5
6	11	1
>> B = A	A<9	
В =		
0	0	1
0	1	1
1	0	1
>> A(B)		
ans =		
6		
3		
1		
5		
1		

- Relational operator can be use to identify elements based on some condition.
- In this example, B has the information on which elements are required.
- Then, by using logical indexing, elements of A which are <9 can be extracted.
- Note that when no equal operator present, MATLAB automatically assign the value to variable name ans.

>> A = randi(15,3) A =12 3 5 >> B = A<=4 | A>11 В = $\left(\right)$ >> A(B) ans =

- By mixing relational and logical operator, elements of a which are not between certain range can be identified.
- In this example, the range is between 4&11.

Determine the following value of x before checking your answer with MATLAB.

1.	x = 3>2	8. $x = 0 < 0.5 < 1$	14. $x = -2 \& 3 0$
2.	x = 2>3	9. $x = 0 < 1 \& 1 < 2$	15. $x = 2 \& ~3 0$
3.	x = -4 < = -3	10. $x = 1 < 2 1 > 4$	16. $x = 2 \& 3 3 > 2$
4.	x = 1<1	11. $x = a < 2 a > 4$ lists values of a that	17. $x = 2+3>2$
5.	$x = 2 \sim = 2$	gives false to x	18. $x = 3 - 2 = 4 < 2^2$
6.	x = 3==3	12. $x = 1 0 \& 1$	19. $x = [1 \ 2] \& [1; 2]$
7.	x = 4>=3~=2	13. $x = 2 \& 3 0$	20. x = [1:0.2:2]<2

www.utm.my innovative • entrepreneurial • global