
SEEE1022
INTRODUCTION TO
SCIENTIFIC
PROGRAMMING

CH3
Operation

Dr. Mohd Saiful Azimi Mahmud (azimi@utm.my)
P19a-04-03-30, School of Electrical Engineering, UTM

OBJECTIVES

1. To know the three types of operation (statement, function, command).
2. To know the three types of statement (assignment, repetition, decision).
3. To understand the operation of arithmetic expression on both matrix and array operators.
4. To understand the operation of Boolean expression on both relational and logical operators.

1

OPERATION

2

STATEMENT

Assign array to a variable using
EQUAL OPERATOR

1. ASSIGNMENT

Execute statements specified
number of times using
BOOLEAN OPERATOR
or EQUAL OPERATOR

2. REPETITION

Execute statements if
condition is TRUE using
BOOLEAN OPERATOR

3. DECISION

while

for

if
if-else
if-elseif
Switch-case

syntax

COMMAND

Function that mostly
used to change the

environment

FUNCTION

Group of statement
that perform a task

functionName input1 … inputN

[output1,…,outputM]
= functionName(input1 … inputN)

Input, if exist, must
only be string

syntax

syntax

variable = expression

Arithmetic

BooleanTY
P

E

ARITHMETIC OPERATION

ARITHMETIC OPERATIONS

3

INTRODUCTION

• MATLAB has two different types of arithmetic operations: array operations and matrix
operations.

Matrix Operations

Array Operations

• The period character (.) distinguishes the array operations from the matrix operations.
• However, since the matrix and array operations are the same for addition and subtraction, the

character pairs .+ and .- are unnecessary.

• Follow the rules of linear algebra.

• Execute element by element operations and support multidimensional arrays.

ARITHMETIC OPERATOR

4

OPERATOR TYPES

Other Matrix Operator

*A.K.A. Element-by-Element Operator

Operation Algebraic MATLAB

Addition 𝑎 + 𝑏 𝑎 + 𝑏

Subtraction 𝑎 − 𝑏 𝑎 − 𝑏

Multiplication 𝑎 × 𝑏 𝑎 ∗ 𝑏

Right Division 𝑎/𝑏 𝑎/𝑏

Left Division 𝑏/𝑎 𝑎\b

Power 𝑎𝑏 𝑎 ^ 𝑏

Operation MATLAB

Multiplication 𝑎.∗ 𝑏

Right Division 𝑎./𝑏

Left Division 𝑎. \b

Power 𝑎. ^𝑏

Pure Transpose 𝑎. ′

Operation MATLAB

Colon 𝑎: 𝑏

Transpose 𝑎′

Matrix Operator

No Operation

1 Transpose

2 Parentheses

3 Power, left to right

4 Multiplication & Division, left to right

5 Addition & subtraction

6 Colon

PRECEDENT

TY
P

E

Array Operator

MATRIX OPERATOR

MATRIX OPERATOR : ADDITION

5

EXAMPLE 1

>> a = [1 2 3]

a =

1 2 3

>> b = a + 5

b =

6 7 8

• Addition with scalar is
performed on all elements of
the array.

EXAMPLE 2

>> a = [1 2;3 4];

>> b = [4 5;6 7];

>> c = a + b

c =

5 7

9 11

• Two matrices are added according to
the corresponding elements of the
two matrices.

• Both matrices must have the same
size.

MATRIX OPERATOR : ADDITION

6

EXAMPLE 3

* Please check MATLAB documentation for the full list of
Compatible Array Sizes for Basic Operations.

>> a = [1 2 3]

a =

1 2 3

>> b = a + a’

Error using +

Matrix dimensions must agree.

• Addition between array needs
both arrays to be compatible
in size. In this example, a is of
size 1x3 and a’ is of size 3x1
are not compatible.

https://www.mathworks.com/help/matlab/matlab_prog/compatible-array-sizes-for-basic-operations.html?requestedDomain=www.mathworks.com

MATRIX OPERATOR : MULTIPLICATION

7

EXAMPLE 4

EXAMPLE 5

>> x = 2*(3+2)

x =

10

>> x = 2(3+2)

2(3+2)

|

Error: Unbalanced or unexpected parenthesis or bracket.

• Parentheses alone does not
represent multiplication.

>> a = [1 2 3];

>> b = [4 5 6];

>> c = a*b

Error using *

Inner matrix dimensions must agree.

• * mean matrix multiplication. a and
b are not the correct size for matrix
multiplication in this example.

MATRIX OPERATOR : MULTIPLICATION

8

EXAMPLE 6

EXAMPLE 7

>> a = [1 2 3];

>> b = [4;5;6];

>> c = a*b

c =

32

• This is a valid matrix multiplication
where 1x3 column vector a is
multiplied with 3x1 row vector b.

>> a = [1 2 3;3 4 5];

>> b = [4 5;6 7;8 9];

>> c = a*b

c =

40 46

76 88

• In general, the number of column in
the first matrix must be equal to the
number of rows in the second matrix

MATRIX OPERATOR : TRANSPOSE

9

EXAMPLE 8

EXAMPLE 9

>> a = [4 5 2;3 1 7;2 9 6]

a =

4 5 2

3 1 7

2 9 6

>> b = a’

b =

4 3 2

5 1 9

2 7 6

• Transpose of a matrix is obtained
by interchanging the rows and
column.

>> a = [1 2 3];

>> b = a*a’

b =

14

MATRIX OPERATOR : PRECEDENCE

10

EXAMPLE 10

EXAMPLE 11

>> y = 5*6/6*5

y =

25

>> z = 6*5/5*6

z =

36

• Since multiply and division
have the same precedence,
the operation compute from
left to right

>> y = -4^2

y =

-16

• ^ has higher precedence than
-

MATRIX OPERATOR : PRECEDENCE

11

EXAMPLE 12

EXAMPLE 13

>> y = (5*6)/(6*5)

y =

1

>> z = (6*5)/(5*6)

z =

1

• To avoid confusing on the
precedence, use parentheses.

>> y = (-4)^2

y =

16

• Parentheses () has higher
precedence than ^

MATRIX OPERATOR : STRING

12

EXAMPLE 14

EXAMPLE 15

>> y = ‘A’ + 1

y =

66

>> z = char(y)

z =

B

• Operation between string
and numeric will return
numeric value.

>> y = ‘hello’ + 1

y =

105 102 109 109 112

ARRAY OPERATOR

ARRAY OPERATOR : SCALAR

13

EXAMPLE 16

>> a = 2 + [2 4 5 6]

a =

4 6 7 8

>> a = 2 .+ [2 4 5 6]

a =

4 6 7 8

>> b = 2 * [2 4 5 6]

b =

4 8 10 12

>> b = 2 .* [2 4 5 6]

b =

4 8 10 12

• Any operation between
scalars and non-scalars can
be written with or without
the period (.).

ARRAY OPERATOR : ARRAY SIZE

14

EXAMPLE 17

EXAMPLE 18

>> a = [2 4 5 6];

>> b = [2 1 2 1];

>> c = a.*b

c =

4 4 10 6

• Elements in a and b are
multiplied accordingly.

• Both array must have equal size.

• Recap: a*b need the column no.
of a and row no. of b to be equal

>> a = [2 4 5 6];

>> c = a.*a’

Error using .*

Matrix dimensions must agree.

• a and a’ are having equal
number of elements but not at
equal size.

VECTORIZING : COMPOUND INTEREST

15

• With data in MATLAB constructed as array, a formula can be evaluated for a large set of values
at once. This is called vectorizing. In vectorizing, element by element operation will be used.

Example 19

• Lets consider a formula of compound interest as below where 𝐴 = invested money, 𝑟 =
interest rate, 𝑛 = total year, and 𝐵 = final balance:

𝐵 = 𝐴 1 + 𝑟 𝑛

• If 𝐴 = 100, this scalar value will result 𝐵 = 236.7 for 𝑟 = 0.09 and 𝑛 = 10.

• To compute for several values of 𝐴, vectorizing will be the most useful instead of computing for
several times. Now, lets represent 𝐴 as a vector with 5 values:

𝐴 = [100, 200, 500, 1000, 4000]

• Thus, evaluating 𝐵 based on the vector 𝐴 will give below result:

𝐵 = [236.7, 473.5, 1183.7, 2367.4, 9469.5]

VECTORIZING : COMPOUND INTEREST

16

• The MATLAB code is as follows:

>> r = 0.09;

>> n = 10;

>> A1 = 100; %single invested value

>> B1 = A1*(1+r)^n

B1 =

236.7364

>> A2 = [100,200,500,1000,4000]; %vectorizing invested value

>> B2 = A2*(1+r)^n

B2 =

1.0e+03 *

0.2367 0.4735 1.1837 2.3674 9.4695

VECTORIZING : VERTICAL DISPLACEMENT

17

EXAMPLE 20

If a stone is thrown vertically upward, its vertical displacement s after an elapsed time t is given
by the formula 𝑠 = 𝑔𝑡2/2 where g is the acceleration due to gravity with value 9.81. The
structure plan for this problem is as follows:

1. Assign the data (g and t) to MATLAB variables.

2. Calculate the value of s according to the formula.

>> g = 9.81;

>> t = 0:5 %vectorizing t for 6 values of elapsed time

t =

0 1 2 3 4 5

>> s = g*t.^2/2

s =

0 4.9050 19.6200 44.1450 78.4800 122.6250

• Since the square operation must be done
to every t value, array operation is used.

VECTORIZING : VOLUME OF CONES

18

EXAMPLE 21

• Supposed the diameter and height of a cone is D and H respectively. Then, the volume (V) of
the cones can be computed as:

𝑉 =
1

12
𝜋𝐷2𝐻

• If you have 5 different size of cones and want to calculate their volumes, in most programming
language, you need to set up a loop where D and H are constructed as vectors:

for 𝑛 = 1 𝑡𝑜 5

𝑉 𝑛 ←
1

12
𝜋𝐷 𝑛 2𝐻 𝑛

end

• By using array operator, you can avoid the loop and calculate all the volumes at once.

• For some values of D and H, the MATLAB code will be as follow:
>> D = [1.00, 0.50, 3.00, 1.20, 2.00];

>> H = [2.00, 4.00, 1.00, 1.00, 2.00];

>> V = 1/2*pi*(D.^2).*H

V =

0.5236 0.2618 2.3562 0.3799 2.0944

COMPLEX NUMBER ARITHMETIC

19

• Complex numbers are numbers that consist of two parts, a real number and an imaginary
number in the form of 𝑎+𝑏𝑖.

• 𝑎 and 𝑏 are real numbers, and 𝑖 is the imaginary component where 𝑖=√(−1)

• For complex matrices, the operations ' and .' behave differently.  

• The ' operator is the complex conjugate transpose where the signs of imaginary parts are
changed.

• The .' operator does a pure transpose.

INTRODUCTION

COMPLEX NUMBER ARITHMETIC

20

EXAMPLE 22

>> a=[1+i 2+2i; 3+3i 4+4i]

a =

1+1i 2+2i

3+3i 4+4i

>> a’

ans =

1-1i 3-3i

2-2i 4-4i

>> a.’

ans =

1+1i 3+3i

2+2i 4+4i

• The array operator will return
the original values while matrix
operator return the matrix
conjugates.

ARITHMETIC OPERATOR DRILL

21

1. a+2-3

2. a+2*3

3. 2*a^3+a

4. a+b

5. b*c

6. c’

7. b*c’

8. b’+a/2+2

9. c’*c

10.a+1:a^3/2

11.a+(1:a^3)/2

12.(a:a+1)*c

13.c^2^a

14.c*c

15.c.*c

16.b.^b

17.a+b.^b*c’

18.(a+2i)’

19.(a+2i).’

20.[a+2i,a+3i]’

21.[a+2i;a+3i].’

𝑎 = 2; 𝑏 = 2 4 ; 𝑐 =
7 4
1 3

;

Based on the above, evaluate by hand of the following expressions:

BOOLEAN OPERATION

BOOLEAN OPERATOR

22

• Boolean algebra is a mathematical operation that return a logical value, which are either
true(1) or false(0).

• Thus, in programming language, the assignment from Boolean expression will return a logical
data type.

• There are two types of Boolean operator in programming language:

1. Relational Operator.

2. Logical Operator.

• Common usage of Boolean operators are:

1. Identify particular elements from an array.

2. Describing decision and repetition statements (next week topic).

INTRODUCTION

BOOLEAN OPERATOR

23

INTRODUCTION

Symbol Meaning

< Less than

<= Less than or equal

== Equal

~= Not equal

> Greater than

>= Greater than or equal

Relational Operator

Logical Element-wise Short-circuiting

AND & &&

OR | ||

NOT ~ ~

Logical Operator

No Operation

1 () Parentheses

2 ^ .^ Power, ’.’ Transpose

3 ~ NOT

4 * .* Multiply, / ./ \ .\ Divide

5 + Addition, - Subtraction

6 : Colon

7 Relational

8 & AND

9 | OR

Precedence

Function Value

true 1

false 0

Logical Value

TRUTH TABLE FOR LOGICAL OPERATIONS

24

INTRODUCTION

Input
A

Input
B

AND
A&B

OR
A|B

NOT
~A

0 0 0 0 1

0 1 0 1 1

1 0 0 1 0

1 1 1 1 0

• If the input is numeric data type, all nonzero values will be assign
as logical 1 and zero value as logical 0.

RELATIONAL OPERATOR

25

EXAMPLE 23

EXAMPLE 24

>> a = 5;

>> b = 10;

>> c = a>b

c =

0

• Since a>b is wrong, then the
output is 0(false).

>> a = [1 4 5 2];

>> b = 4;

>> c = a<b

c =

1 0 0 1

>> d = b<=a

d =

0 1 1 0

• Operation with scalar is
performed on all elements of
the array.

LOGICAL OPERATOR

26

EXAMPLE 25

EXAMPLE 26

>> a = [0 0 1 0 1];

>> b = [1 0 1 1 0];

>> c = a|b

c =

1 0 1 1 1

• OR operation will return 1 if
either of the input is 1.

>> a = [1 4;5 2]

a =

1 4

5 2

>> b = a & [0 2;4 0]

b =

0 1

1 0

• For operation on numeric data
type, all nonzero values will be
assign as logical 1 and zero
value as logical 0.

OPERATORS PRECEDENCE

27

EXAMPLE 27

EXAMPLE 28

>> a = [1 6 5];

>> b = [3 4 5];

>> c = a>b~=5

c =

1 1 1

>> c = a~=b>5

c =

0 0 0

• The operation executed from
left to right.

>> a = 1&0|0

a =

0

>> a = 1|0&0

a =

1

• & has higher precedence than
|

MIX OPERATORS

28

EXAMPLE 29

• In decision and repetition statements, which will be discuss in the next chapter, mixing the
relational and logical operator will be very useful in having more than one condition at once.

• For now, we will discuss on how those two can be mixed into single expression.

>> a = [1 4 5 2 9 2 5 7];

>> b = a>2 & a<8

b =

0 1 1 0 0 0 1 1

• b is identifying elements of a
with values between 3&7

MIX WITH ARITHMETIC OPERATORS

29

EXAMPLE 30

>> a = [0 0 1 0 1];

>> b = [1 0 3 2 0];

>> c = a|b-3

c =

1 1 1 1 1

>> d = (a|b)-3

d =

-2 -3 -2 -2 -2

>> whos c

Name Size Bytes Class Attributes

c 1x5 5 logical

>> whos d

Name Size Bytes Class Attributes

d 1x5 40 double

• When both arithmetic
and Boolean operators
are used in single
expression, the output
data type depends on
the last operator
executed.

IDENTIFY ELEMENTS

30

EXAMPLE 31

>> A = randi(15,3)

A =

12 10 1

12 3 5

6 11 1

>> B = A<9

B =

0 0 1

0 1 1

1 0 1

>> A(B)

ans =

6

3

1

5

1

• Relational operator can be use
to identify elements based on
some condition.

• In this example, B has the
information on which elements
are required.

• Then, by using logical indexing,
elements of A which are <9
can be extracted.

• Note that when no equal
operator present, MATLAB
automatically assign the value
to variable name ans.

IDENTIFY ELEMENTS

31

EXAMPLE 32

>> A = randi(15,3)

A =

12 10 1

12 3 5

6 11 1

>> B = A<=4 | A>11

B =

1 0 1

1 1 0

0 0 1

>> A(B)

ans =

12

12

3

1

1

• By mixing relational and logical
operator, elements of a which
are not between certain range
can be identified.

• In this example, the range is
between 4&11.

BOOLEAN OPERATOR DRILL

32

Determine the following value of x before checking
your answer with MATLAB.

1. x = 3>2

2. x = 2>3

3. x = -4<=-3

4. x = 1<1

5. x = 2~=2

6. x = 3==3

7. x = 4>=3~=2

8. x = 0<0.5<1

9. x = 0<1&1<2

10. x = 1<2|1>4

11. x = a<2|a>4

lists values of a that
gives false to x

12. x = 1|0&1

13. x = 2&3|0

14. x = ~2&3|0

15. x = 2&~3|0

16. x = 2&3|3>2

17. x = 2+3>2

18. x = 3-~2==4<2^2

19. x = [1 2]&[1;2]

20. x = [1:0.2:2]<2

