

SKEE 1223 DIGITAL ELECTRONICS CHAPTER 4: COMBINATORIAL LOGIC NETWORKS

DR. MOHD SAIFUL AZIMI BIN MAHMUD

P19a-04-03-30 School of Electrical Engineering Faculty of Engineering Universiti Teknologi Malaysia 019-7112948 azimi@utm.my

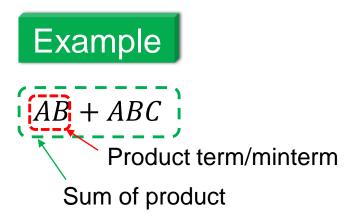
0101100 1001010 1001010

innovative • entrepreneurial • global

QR CODE FOR QUARTUS II WORKSHOP REGISTRATION

STANDARD FORMS OF BOOLEAN EXPRESSIONS

innovative • entrepreneurial • global


STANDARD FORMS OF BOOLEAN EXPRESSIONS INTRODUCTION

- All Boolean expression can be converted into two standard form:
 - 1. The Sum-of Product form (SOP).
 - 2. The Product-of-Sum form (POS).
- These standardization makes evaluation, simplification and implementation of Boolean expression more systematic and easier.

STANDARD FORMS OF BOOLEAN EXPRESSIONS SUM-OF-PRODUCT (SOP): INTRODUCTION

 SOP is defined as two or more product terms are summed by Boolean addition.

 $A\bar{B} + \bar{A}B\bar{C} + AC$

 $ABC + CDE + \overline{B}C\overline{D}$

STANDARD FORMS OF BOOLEAN EXPRESSIONS SUM-OF-PRODUCT (SOP): INTRODUCTION

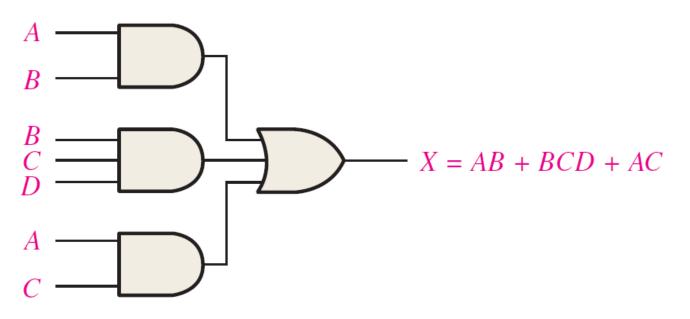
 Domain of SOP expression: The set of variables contain in the expression either in complemented and uncomplemented form.

Example

The domain of expression $A\overline{B} + \overline{A}BC + AC = A, B$ and C.

The domain of expression $AB\overline{C} + C\overline{D}E + \overline{B}C\overline{D} = A, B, C, D$ and E.

In SOP, a single overbar cannot extend more than one variable, example:


 $AB + A\overline{BC}$ Not SOP because \overline{BC}

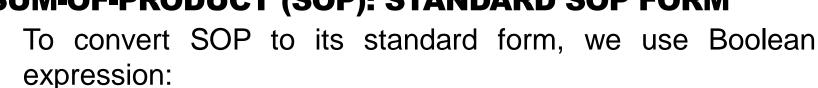
STANDARD FORMS OF BOOLEAN EXPRESSIONS

SUM-OF-PRODUCT (SOP): AND/OR IMPLEMENTATION OF SOP EXPRESSION

- Implementing an SOP expression simply requires ORing the outputs of **AND** gates.
- A product term (minterm) is produced by AND operation.
- The **SOP** terms is produced by OR operation. ●

STANDARD FORMS OF BOOLEAN EXPRESSIONS SUM-OF-PRODUCT (SOP): STANDARD SOP FORM

A standard SOP form must contains all of the variables in the domain of the expression for each product term, example:


 $\overline{ABC} + A\overline{BC} + ABC$

- Standard SOP forms are essential in constructing the truth table.
- In the following SOP form,

 $A\overline{B}C + \overline{A}\overline{B} + AB\overline{C}D$

- How many minterms are there? 3
- Is it a standard SOP form? No
- How do we convert a Boolean expression into standard SOP form?

STANDARD FORMS OF BOOLEAN EXPRESSIONS SUM-OF-PRODUCT (SOP): STANDARD SOP FORM

 $A + \overline{A} = 1$ RULE 6 A(B + C) = AB + AC DISTRIBUTIVE LAW

Example

Convert the following Boolean expression into SOP standard form. $A\overline{B}C + \overline{A}\overline{B} + AB\overline{C}D$

Solution

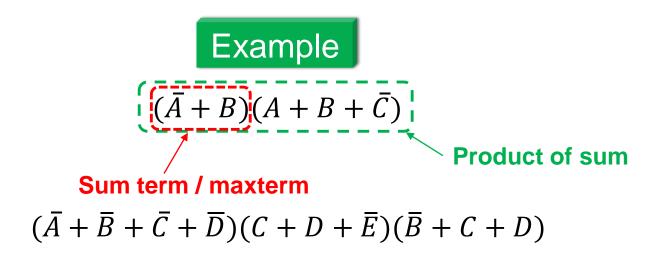
The domain of this SOP are *A*, *B*, *C* and *D*. Take one term at a time, the first term, $A\overline{B}C$ is missing *D* or \overline{D} . So, multiply $\mathbf{1} = \mathbf{D} + \overline{\mathbf{D}}$ as follow: $A\overline{B}C = A\overline{B}C(\mathbf{D} + \overline{\mathbf{D}}) = A\overline{B}CD + A\overline{B}C\overline{D}$

STANDARD FORMS OF BOOLEAN EXPRESSIONS SUM-OF-PRODUCT (SOP): STANDARD SOP FORM

The **second term**, \overline{AB} is missing *C* or \overline{C} and *D* or \overline{D} . So, multiply $\mathbf{1} = \mathbf{C} + \overline{\mathbf{C}}$ and $\mathbf{1} = \mathbf{D} + \overline{\mathbf{D}}$ as follow:

$$\bar{A}\bar{B} = \bar{A}\bar{B}(C + \bar{C})(D + \bar{D})
= (\bar{A}\bar{B}C + \bar{A}\bar{B}\bar{C})(D + \bar{D})
= \bar{A}\bar{B}CD + \bar{A}\bar{B}C\bar{D} + \bar{A}\bar{B}\bar{C}D + \bar{A}\bar{B}\bar{C}\bar{D}$$

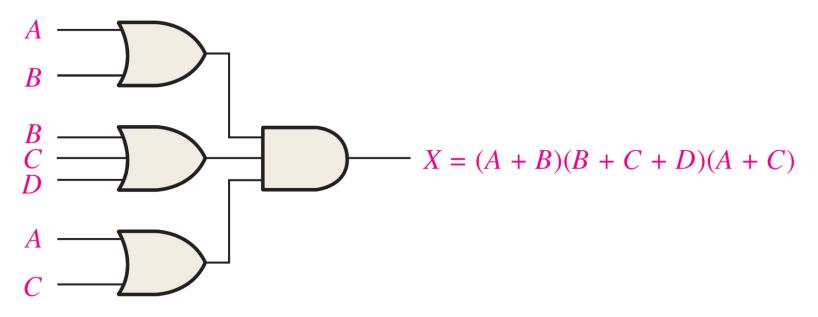
The third term, $AB\overline{C}D$ already in standard form (nothing missing).


Thus, the **standard SOP form**:

 $A\overline{B}CD + A\overline{B}C\overline{D} + \overline{A}\overline{B}CD + \overline{A}\overline{B}C\overline{D} + \overline{A}\overline{B}\overline{C}D + \overline{A}\overline{B}\overline{C}\overline{D} + AB\overline{C}D$

STANDARD FORMS OF BOOLEAN EXPRESSIONS PRODUCT OF SUM (POS): INTRODUCTION

POS is defined as two or more sum terms are multiplied.



• In POS, a single overbar cannot extend more than one variable, example:

$$(\overline{A} + \overline{B})(A + \overline{B + C})$$

Not POS because $\overline{B + C}$
innovative • entrepreneurial • global

STANDARD FORMS OF BOOLEAN EXPRESSIONS PRODUCT OF SUM (POS): AND/OR IMPLEMENTATION OF POS EXPRESSION

- Implementing a POS expression simply requires ANDing the outputs of OR gates.
- A sum term (maxterm) is produced by OR operation.
- The **product of sum** term is produced by **AND** operation.

STANDARD FORMS OF BOOLEAN EXPRESSIONS PRODUCT OF SUM (POS): STANDARD POS FORM

• A standard POS form must contains all of the variables in the domain of the expression for each sum term, example:

 $(\bar{A} + \bar{B} + \bar{C} + \bar{D})(A + B + \bar{C} + D)(A + \bar{B} + C + D)$

- Standard POS forms are essential in constructing the truth table.
- In the following POS form,

$$(A + \overline{B} + C)(\overline{B} + C + \overline{D})(A + \overline{B} + \overline{C} + D)$$

- How many maxterms are there? 3
- Is it a standard POS form? No
- How do we convert a Boolean expression into standard POS form?

STANDARD FORMS OF BOOLEAN EXPRESSIONS PRODUCT-OF-SUM (POS): STANDARD POS FORM

 $A \cdot \overline{A} = 0$ RULE 8 A + BC = (A + B)(A + C) **DISTRIBUTIVE LAW**

Example

Convert the following Boolean expression into POS standard form. D)

$$(A + B + C)(B + C + D)(A + B + C + C)$$

Solution

The domain of this POS are A, B, C and D. Take one term at a time, the first term, $(A + \overline{B} + C)$ is missing D or \overline{D} . So, add $\mathbf{0} = \mathbf{D} \cdot \overline{\mathbf{D}}$ as follow:

$$A + \overline{B} + C = A + \overline{B} + C + \mathbf{D} \cdot \overline{\mathbf{D}} = (A + \overline{B} + C + \mathbf{D})(A + \overline{B} + C + \overline{\mathbf{D}})$$

innovative • entrepreneurial • global

STANDARD FORMS OF BOOLEAN EXPRESSIONS PRODUCT-OF-SUM (POS): STANDARD POS FORM

The second term, $(\overline{B} + C + \overline{D})$ is missing *A* or \overline{A} . So, add **0** = $A \cdot \overline{A}$ as follow:

 $\overline{B} + C + \overline{D} = \overline{B} + C + \overline{D} + \overline{A} \cdot \overline{A}$ $= (\overline{A} + \overline{B} + C + \overline{D})(\overline{A} + \overline{B} + C + \overline{D})$

The third term, $(A + \overline{B} + \overline{C} + D)$ already in standard form (nothing missing).

Thus, the **standard POS form**:

$$(A + \overline{B} + C + \mathbf{D})(A + \overline{B} + C + \overline{\mathbf{D}})(A + \overline{B} + C + \overline{D})$$
$$(\overline{A} + \overline{B} + C + \overline{D})(A + \overline{B} + \overline{C} + D)$$

STANDARD FORMS OF BOOLEAN EXPRESSIONS ASSESSMENT

1. Convert the following Boolean expression into standard SOP form.

A(B + CD)

2. Convert the following Boolean expression into standard POS form.

 $(A+\bar{B})(B+C)$

innovative • entrepreneurial • global

BOOLEAN EXPRESSION AND TRUTH TABLE: INTRODUCTION

- A common way of representing a logical operation of a circuit.
- If *n* is the number of inputs, combination in truth table equal to 2ⁿ.

Example

Inputs are *A*, *B* and *C*. Thus, there will be $2^3 = 8$ combinations.

	Input					
А	В	С	F			
0	0	0				
0	0	1				
0	1	0				
0	1	1				
1	0	0				
1	0	1				
1	1	0				
1	1	1				

BOOLEAN EXPRESSION AND TRUTH TABLE: TRUTH TABLE: SOP TO TRUTH TABLE

 Develop a truth table for the standard SOP expression:

 $\overline{A}\overline{B}C + A\overline{B}\overline{C} + ABC$

- Domain = A, B and C. So, combination = $2^3 = 8$.
- Determine the inputs that makes the product term = 1.
- Currently, we have three product terms:

$$\overline{ABC} = 1? \longrightarrow 001$$

$$A\overline{B}\overline{C} = 1? \longrightarrow 100$$

 $ABC = 1? \longrightarrow 111$

• Finally, fills the truth table.

	Input		Output	Product
А	В	С	F	Terms
0	0	0	0	
0	0	1	1	ĀĒC
0	1	0	0	
0	1	1	0	
1	0	0	1	AĒĒ
1	0	1	0	
1	1	0	0	
1	1	1	1	ABC

TRUTH TABLE: **POS** TO TRUTH TABLE

- Develop a truth table for the standard POS expression: $(A + B + C)(A + \overline{B} + C)(A + \overline{B} + \overline{C})$
- $(\bar{A} + B + \bar{C})(\bar{A} + \bar{B} + C)$ • Domain = A, B and C. So,
- Domain = A', B' and C'. So, combination = $2^3 = 8$.
- Determine the inputs that makes the sum term = 0.
- Currently, we have five product terms:

 $(A + B + C) = 0? \longrightarrow 000$

	Input		Output	Sum Terms
А	В	С	F	
0	0	0	0	(A+B+C)
0	0	1	1	
0	1	0	0	$(A+\bar{B}+C)$
0	1	1	0	$(A + \overline{B} + \overline{C})$
1	0	0	1	
1	0	1	0	$(\bar{A} + B + \bar{C})$
1	1	0	0	$\left(\bar{A}+\bar{B}+C\right)$
1	1	1	1	

$$(A + \overline{B} + C) = 0? \longrightarrow 010 \quad (\overline{A} + B + \overline{C}) = 0? \longrightarrow 101$$

 $(A + \overline{B} + \overline{C}) = 0? \longrightarrow 011 \quad (\overline{A} + \overline{B} + C) = 0? \longrightarrow 110$

• Finally, fills the truth table.

TRUTH TABLE: BOOLEAN EXPRESSION AND TRUTH TABLE

Convert expression to Standard SOP/POS.

Step 2

Determine domain and combinations of binary values at input.

Find the inputs values that make the term:

- 1. Equal to 1 for SOP, e.g. ABC = 111.
- 2. Equal to **0** for **POS**, e.g. A + B + C = 000.

Fill the truth table (the remaining blanks with inverse values).

BOOLEAN EXPRESSION AND TRUTH TABLE ASSESSMENT

Make a truth table for the following functions:

- $1. \quad F = AB + A\bar{C}$
- 2. $F = (A + C)(B + \overline{C})$

BOOLEAN EXPRESSION AND TRUTH TABLE TRUTH TABLE TO SOP FORM

TRUTH TABLE: TRUTH TABLE TO SOP FORM Can write standard SOP expression simply from

Can write standard SOP expression simply from truth table.

	Input		Output	Product term/	
А	В	С	F	minterm	
0	0	0	0		
0	0	1	0		**Note that each term has
0	1	0	0		ALL variables. If a product
0	1	1	1	<i>Ā</i> BC	term has ALL variable
1	0	0	1	$Aar{B}ar{C}$	present, it is a MINTERM .
1	0	1	1	AĒC	
1	1	0	1	$ABar{C}$	
1	1	1	1	ABC	

 $F(A, B, C) = \overline{A}BC + A\overline{B}\overline{C} + A\overline{B}C + AB\overline{C} + ABC$

innovative • entrepreneurial • global

BOOLEAN EXPRESSION AND TRUTH TABLE: TRUTH TABLE: TRUTH TABLE TO POS FORM

TRUTH TABLE: TRUTH TABLE TO POS FORM Can write standard POS expression simply from truth table.

	Sum term/	Output		Input	
	maxterm	F	С	В	А
	A + B + C	0	0	0	0
*	$A + B + \overline{C}$	0	1	0	0
ŀ	$A + \overline{B} + C$	0	0	1	0
t		1	1	1	0
p		1	0	0	1
-		1	1	0	1
		1	0	1	1
		1	1	1	1

**Note that each term has ALL variables. If a sum term has ALL variable present, it is a MAXTERM.

```
F(A, B, C) = (A + B + C)(A + B + \overline{C})(A + \overline{B} + C)
```

BOOLEAN EXPRESSION AND TRUTH TABLE ACTIVITY 1

Derive the SOP expression for the logic function specified in the truth table.

	Input		Output	Sum term/
А	В	С	L	maxterm
0	0	0	1	
0	0	1	1	
0	1	0	0	
0	1	1	1	
1	0	0	0	
1	0	1	0	
1	1	0	0	
1	1	1	1	

TRUTH TABLE: MINTERM AND MAXTERM

- From previous slides, we saw that:
 - ✤ SOP Form: $F(A, B, C) = \overline{ABC} + A\overline{BC} + A\overline{BC} + AB\overline{C} + ABC$ If a product term has all variables present, it is a MINTERM.
 - ✤ POS Form: F(A, B, C) = (A + B + C)(A + B + C)(A + B + C)
 If a sum term has all variables present, it is a MAXTERM.
- All Boolean function can be written in terms of either Minterm or Maxterm notations.

TRUTH TABLE: MINTERM AND MAXTERM NOTATION

- How to write either in Minterm or Maxterm?
- Each line in a truth table represents both a Minterm and Maxterm.

Row		Input		Product term/	Sum term/
	А	В	С	minterm	maxterm
0	0	0	0	$\bar{A}\bar{B}\bar{C}=m_0$	$A + B + C = m_0$
1	0	0	1	$\bar{A}\bar{B}C = m_1$	$A + B + \bar{C} = m_1$
2	0	1	0	$\bar{A}B\bar{C} = m_2$	$A + \bar{B} + C = m_2$
3	0	1	1	$\bar{A}BC = m_3$	$A + \bar{B} + \bar{C} = m_3$
4	1	0	0	$A\overline{B}\overline{C} = m_4$	$\bar{A} + B + C = m_4$
5	1	0	1	$A\overline{B}C = m_5$	$\bar{A} + B + \bar{C} = m_5$
6	1	1	0	$AB\bar{C} = m_6$	$\bar{A} + \bar{B} + C = m_6$
7	1	1	1	$ABC = m_7$	$\bar{A} + \bar{B} + \bar{C} = m_7$

TRUTH TABLE: USING MINTERM AND MAXTERM NOTATION

• A Boolean function can be written in terms of Minterm or Maxterm notation as shorthand method of specifying the function.

	Input	t	Output	minterm/	Minterm notation
А	В	С	F	maxterm	
0	0	0	0	A + B + C	$F(A, B, C) = \overline{ABC} + A\overline{B}\overline{C} + A\overline{B}C + AB\overline{C} + ABC$
0	0	1	0	$A + B + \overline{C}$	$= m_3 + m_4 + m_5 + m_6 + m_7$
0	1	0	0	$A + \overline{B} + C$	$= \sum_{m(3,4,5,6,7)} m(3,4,5,6,7)$
0	1	1	1	ĀBC	
1	0	0	1	AĒŪ	Maxterm notation
1	0	1	1	AĒC	$F(A,B,C) = (A+B+C)(A+B+\overline{C})(A+\overline{B}+C)$
1	1	0	1	ABĒ	
1	1	1	1	ABC	$= m_0 \cdot m_1 \cdot m_2$
* <mark>Min</mark> corre	terms = $\prod M(0,1,2)$				

innovative • entrepreneurial • global

BOOLEAN EXPRESSION AND TRUTH TABLE ACTIVITY 2

Express the output function F1 in sum of minterms form.

	Input					
х	У	Z	F1			
0	0	0	0			
0	0	1	1			
0	1	0	1			
0	1	1	1			
1	0	0	1			
1	0	1	0			
1	1	0	1			
1	1	1	1			

TRUTH TABLE: MINTERM AND MAXTERM TO TRUTH TABLE

- The Minterms correspond to '1' of F, Maxterms correspond to '0' of F in truth table.
- Given minterm and maxterm as follows. Find the truth table.

Minterm notation	
$F(A, B, C) = \sum_{n=1}^{\infty} m(1, 2, 6)$	

$$= \overline{m_1} + m_2 + m_6$$
$$= \overline{ABC} + \overline{ABC} + AB\overline{C}$$

Maxterm notation

$$F(A, B, C) = \prod_{M \in M_{5}} M(0,3,4,5,7)$$

$$= M_{0} \cdot M_{3} \cdot M_{4} \cdot M_{5} \cdot M_{7}$$

$$= (A + B + C)(A + \overline{B} + \overline{C})(\overline{A} + B + C)(\overline{A} + B + \overline{C})(\overline{A} + \overline{B} + \overline{C})$$
innovative • entrepreneurial • global

<u>Find the truth table.</u>						
Minterm/	Input			Output		
Maxterm notation	A	В	С	F		
M_0	0	0	0	0		
m_1	0	0	1	1		
m_2	0	1	0	1		
M_3	0	1	1	0		
M_4	1	0	0	0		
M_5	1	0	1	0		
m_6	1	1	0	1		
M_7	1	1	1	0		
$R + \bar{C} (\bar{A})$	μĀ	₹ + 7	<u>'</u> `			

BOOLEAN EXPRESSION AND TRUTH TABLE ACTIVITY 3

Express the output function F1 in product of maxterms form.

	Input					
х	У	Z	F1			
0	0	0	0			
0	0	1	0			
0	1	0	1			
0	1	1	0			
1	0	0	1			
1	0	1	1			
1	1	0	0			
1	1	1	1			

BOOLEAN EXPRESSION AND TRUTH TABLE ASSESSMENT

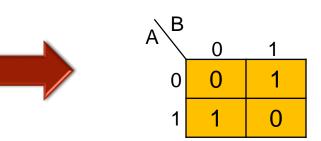
Derive the simplest SOP expression from the following functions.

- *i.* $F(A, B, C) = \sum m(3, 5, 7)$
- *ii.* $F = (A + C)(A\overline{B} + AC)(\overline{A}\overline{C} + \overline{B})$
- *iii.* $F = (B + \overline{C})(\overline{B} + C) + (\overline{A} + B + \overline{C})$
- *iv.* $F(A, B, C, D) = \prod M(2, 5, 6, 7, 10, 14)$
- Answer
- $i. \quad F = AC + BC$

K-MAP

innovative • entrepreneurial • global

K-MAP INTRODUCTION


- K-map (Karnaugh Map) is similar to truth table because it presents all of the positive values of input variables and the resulting output of each value.
- K-map represents by an array of cells in which each cell represents a binary value of the input valuable.
- It provides a systematic method for **simplifying Boolean expressions** and could produce the simplest SOP or POS expression possible.
- K-map can be used for expression with two, three, four and five variables.
- Number of cells = 2^n .
- For three variables (A, B, C) the number of cells $= 2^3 = 8$.
- For four variables (A, B, C, D) the number of cells $= 2^4 = 16$.

innovative • entrepreneurial • global

K-MAP 2-VARIABLE

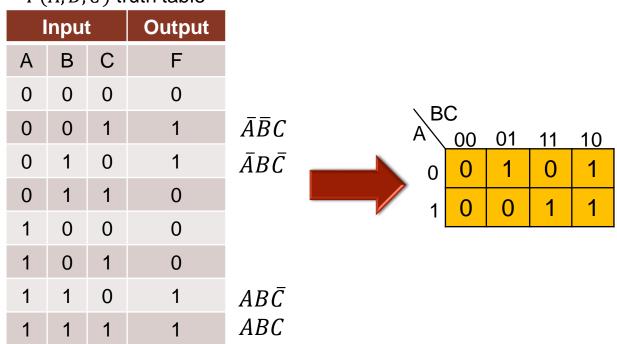
2-Variable K-Map consists of an array of four cells. •

Inp	Output				
А	В	F			
0	0	0			
0	1	1			
1	0	1			
1	1	0			

K-MAP 4-VARIABLE

• 4-Variable K-Map consists of an array of sixteen cells.

	In	put		Output			In	put		Output				
А	В	С	D	F	1	4	В	С	D	F	∖C	D		
0	0	0	0	0		1	0	0	0	0	AB	00	01	
0	0	0	1	1		1	0	0	1	0	00	0	1	
0	0	1	0	0		1	0	1	0	1	01	1	0	
0	0	1	1	1		1	0	1	1	0	11	1	1	
0	1	0	0	1		1	1	0	0	1	10	0	0	T
0	1	0	1	0		1	1	0	1	1	<u> </u>			
0	1	1	0	0		1	1	1	0	0				
0	1	1	1	0		1	1	1	1	1				


K-MAP EXAMPLE

Given the following standard SOP form, complete the truth table and K-map.

$$F = \overline{A}\overline{B}C + \overline{A}B\overline{C} + AB\overline{C} + ABC$$

F(A, B, C) truth table

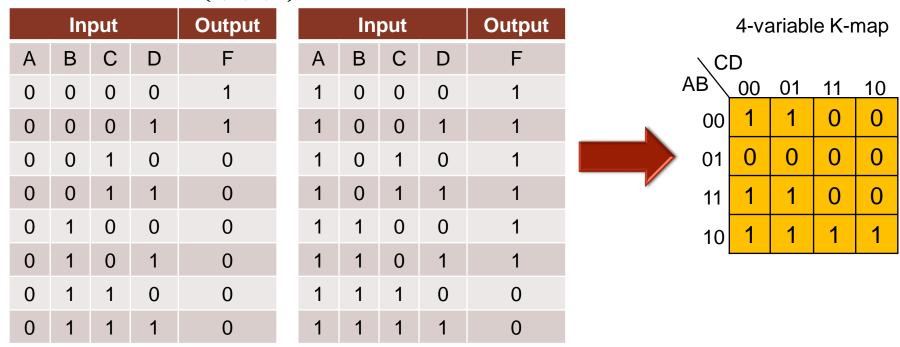
K-MAP EXAMPLE

Given the following **SOP form**, complete the truth table and K-map.

 $F = \overline{B}\overline{C} + A\overline{B} + AB\overline{C} + A\overline{B}C\overline{D} + \overline{A}\overline{B}\overline{C}D + A\overline{B}CD$

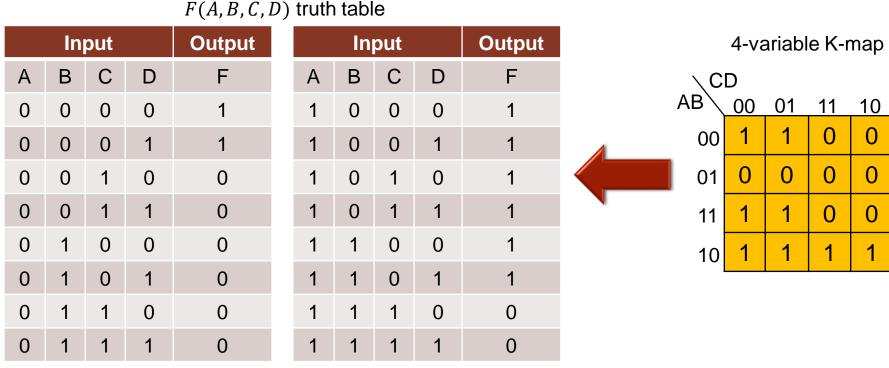
Find the **standard SOP form** first.

 $F = \overline{B}\overline{C}(A + \overline{A})(D + \overline{D}) + A\overline{B}(C + \overline{C})(D + \overline{D}) + AB\overline{C}(D + \overline{D})$ $+ A\overline{B}C\overline{D} + \overline{A}\overline{B}\overline{C}D + A\overline{B}CD$


- $= (A\bar{B}\bar{C} + \bar{A}\bar{B}\bar{C})(D + \bar{D}) + (A\bar{B}C + A\bar{B}\bar{C})(D + \bar{D}) + AB\bar{C}D$ $+ AB\bar{C}\bar{D} + A\bar{B}C\bar{D} + \bar{A}\bar{B}\bar{C}D + A\bar{B}CD$
- $= A\overline{B}\overline{C}D + A\overline{B}\overline{C}\overline{D} + \overline{A}\overline{B}\overline{C}D + \overline{A}\overline{B}\overline{C}\overline{D} + A\overline{B}CD + A\overline{B}C\overline{D}$ $+ A\overline{B}\overline{C}D + A\overline{B}\overline{C}\overline{D} + AB\overline{C}D + AB\overline{C}\overline{D} + A\overline{B}C\overline{D} + \overline{A}\overline{B}\overline{C}D$ $+ A\overline{B}CD$
- $= A\bar{B}\bar{C}D + A\bar{B}\bar{C}\bar{D} + \bar{A}\bar{B}\bar{C}D + \bar{A}\bar{B}\bar{C}\bar{D} + A\bar{B}CD + A\bar{B}C\bar{D}$ $+ AB\bar{C}D + AB\bar{C}\bar{D}$

K-MAP EXAMPLE (CONT.)

Transfer the **standard SOP form**, into the truth table and complete the K-map.


 $F = A\bar{B}\bar{C}D + A\bar{B}\bar{C}\bar{D} + \bar{A}\bar{B}\bar{C}D + \bar{A}\bar{B}\bar{C}\bar{D} + A\bar{B}CD + A\bar{B}C\bar{D} + AB\bar{C}D + AB\bar{C}\bar{D}$

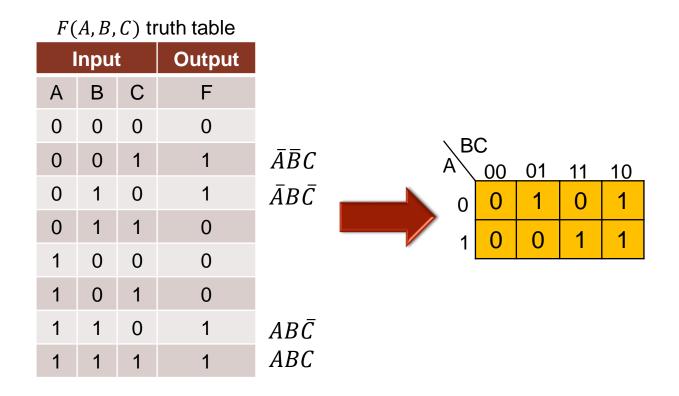
F(A, B, C, D) truth table

innovative • entrepreneurial • global

Transfer the **SOP form** directly into the K-map then complete the truth table.

 $F = \overline{B}\overline{C} + A\overline{B} + AB\overline{C} + A\overline{B}C\overline{D} + \overline{A}\overline{B}\overline{C}D + A\overline{B}CD$

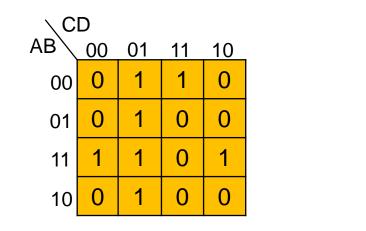
K-MAP EXAMPLE (CONT.)

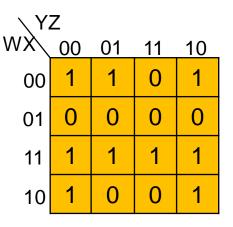


K-MAP ASSESSMENT

Given the following standard SOP form, complete the truth table and K-map.

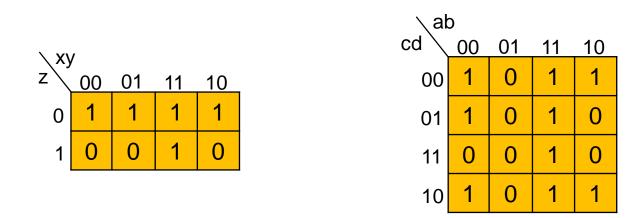
 $F = \bar{A}\bar{B}C + \bar{A}B\bar{C} + AB\bar{C} + ABC$




K-MAP ASSESSMENT

Given the following min and max terms, complete the K-map.

- 1. $F(A, B, C, D) = \sum m (1, 3, 5, 9, 12, 13, 14)$
- 2. $F(W, X, Y, Z) = \prod M(3, 4, 5, 6, 7, 9, 11)$



K-MAP ASSESSMENT

Given the following expressions, complete the K-map.

- 1. $F(x, y, z) = \overline{x}\overline{z} + \overline{y}\overline{z} + y\overline{z} + xy$
- 2. $F(a, b, c, d) = (a + \overline{b} + c)(a + \overline{b})(a + \overline{c} + \overline{d})(\overline{a} + b + c + \overline{d})$ $(b + \overline{c} + \overline{d})$

K-MAP SIMPLIFICATION

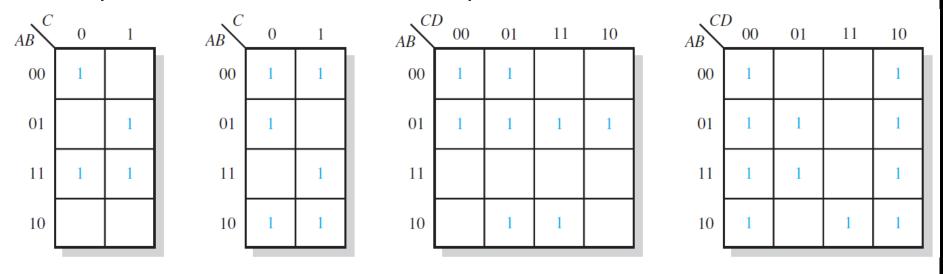
innovative • entrepreneurial • global

K-MAP SIMPLIFICATION GROUPING

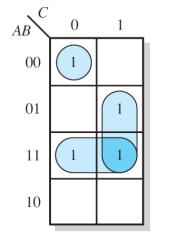
- After SOP expression has been mapped, minimum expression is obtained by grouping the 1s and determining the minimum SOP expression from the K-map.
- When grouping the 1s, the goals are:
 - 1. To maximize the size of the groups.
 - 2. To minimize the number of groups.

K-MAP SIMPLIFICATION GROUPING

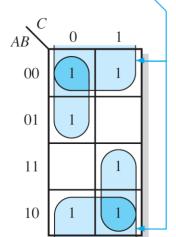
Rules for grouping of 1s

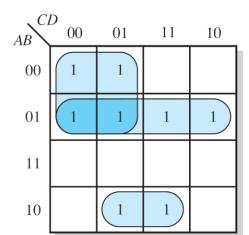

- A group must contain either 1, 2, 4, 8 or 16 cells. For xvariable K-map, 2^x cells is maximum.
- Each cell in a group must be adjacent to one or more cells in that same group, but all cells in the group don't have to be adjacent to each other.
- Always include the largest possible number of 1s in a group.
- Each 1 on the map must be included in at least one group. The 1s already in a group can be included in another group as long as the overlapping groups include common 1s.

K-MAP SIMPLIFICATION GROUPING: EXAMPLE

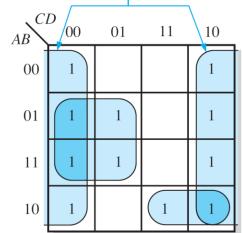


Example


Group the 1s in each of the K-map



Group the 1s in each of the K-map



Solution

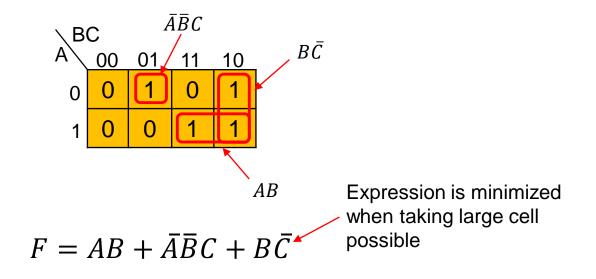
Wrap-around adjacency

K-MAP SIMPLIFICATION GROUPING: EXAMPLE

The following rules are applied to find the minimum product terms and the minimum SOP expression:

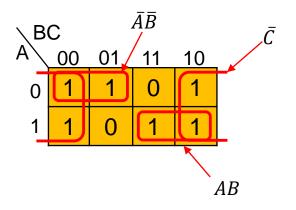
STEP 1: Group the cells that have 1s.

STEP 2: Determine the minimum product term for each group.


- For a 3-variable K-map:
 - 1. A 1-cell group yields a 3-variable product term.
 - 2. A 2-cell group yields a 2-variable product term.
 - 3. A 4-cell group yields a 1-variable product term.
 - 4. An 8-cell group yields a value of 1 for the expression.
- For a 4-variable K-map:
 - 1. A 1-cell group yields a 4-variable product term.
 - 2. A 2-cell group yields a 3-variable product term.
 - 3. A 4-cell group yields a 2-variable product term.
 - 4. An 8-cell group yields a 1-variable product term.
 - 5. A 16-cell group yields a value of 1 for the expression.

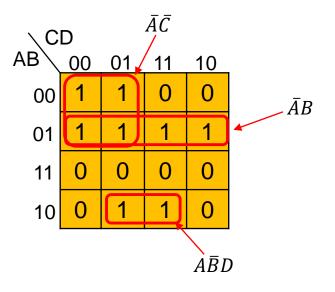
STEP 3: When all the minimum product term are derived from the K-map, they are summed to form SOP expression.

Example


Group the 1s and find the minimum SOP expression in the K-map below:

Example

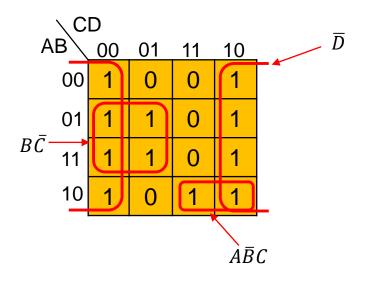
Group the 1s and find the minimum SOP expression in the K-map below:



$$F = AB + \bar{A}\bar{B} + \bar{C}$$

Example

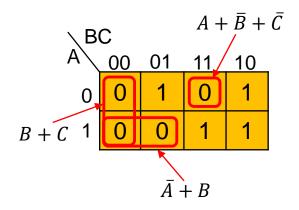
Group the 1s and find the minimum SOP expression in the K-map below:



 $F = \bar{A}B + \bar{A}\bar{C} + A\bar{B}D$

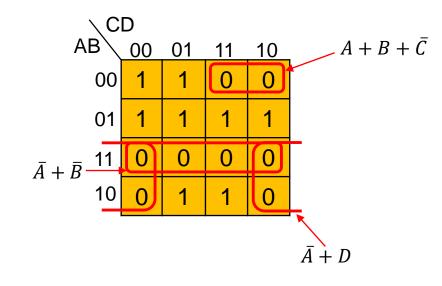
Example

Group the 1s and find the minimum SOP expression in the K-map below:


 $F = \overline{D} + B\overline{C} + A\overline{B}C$

K-map can also be used to obtain POS expression by grouping 0s.

Group the 0s and find the minimum POS expression in the K-map below:



 $F = (B + C)(\overline{A} + B)(A + \overline{B} + \overline{C})$

Example

Find the minimum POS expression in the K-Map below:

 $F = (\overline{A} + D) + (\overline{A} + \overline{B}) + (A + B + \overline{C})$

K-MAP SIMPLIFICATION HOMEWORK 1

A network switch has two control inputs (C1, C2), two data inputs (X1, X2), and one output (Z).

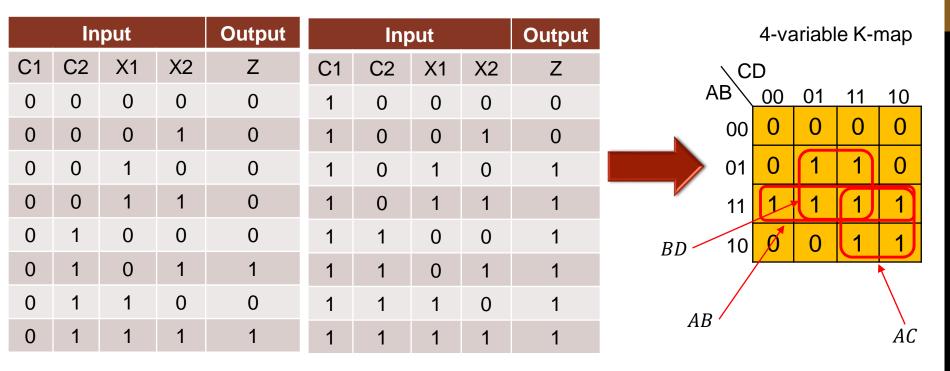
• If C1 = C2 = 0, Z = 0

• If
$$C1 = C2 = 1, Z = 1$$

- If C1 = 1 and C2 = 0, Z = X1
- If C1 = 0 and C2 = 1, Z = X2

Get the minimum SOP expression.

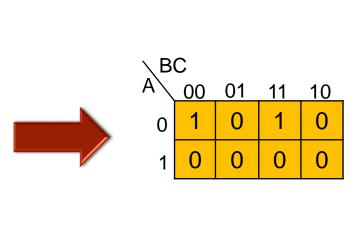
K-MAP SIMPLIFICATION HOMEWORK 2


A logic circuit controls the path of signal *A* based on the following conditions:

- The output X will be contrary to A when the control input B equals to the control input C.
- *X* will always be LOW when *B* and *C* are different.

Design the circuit using NOR gates only.

K-MAP SIMPLIFICATION HOMEWORK 1 (ANSWER)

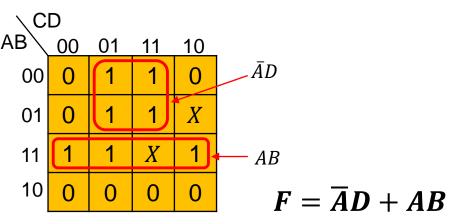

Z = BD + AB + AC

K-MAP SIMPLIFICATION HOMEWORK 2 (ANSWER)

X(A, B, C) truth table

Input			Output
А	В	С	Х
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

 $X = \overline{A}\overline{B}\overline{C} + \overline{A}BC$


K-MAP SIMPLIFICATION DON'T CARE CONDITION

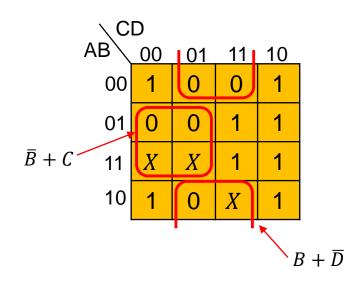
- Don't care is the condition when the output can be either '0' or '1', which is denoted by 'X' in the truth table or K-map.
- For both SOP and POS minimum expression, 'X' can be included or ignored.

Example

Find the minimum SOP expression in the K-Map below:

If the *X* is replaced by 0, find the minimum SOP expression.

$$F = \overline{A}D + AB\overline{C} + AB\overline{D}$$


innovative • entrepreneurial • global

K-MAP SIMPLIFICATION DON'T CARE CONDITION

Example

Find the minimum POS expression in the K-map below:

$$F = (\overline{B} + C) + (B + \overline{D})$$

K-MAP SIMPLIFICATION HOMEWORK 3

Simplify the following equations using K-map.

i.
$$F(A, B, C, D) = \sum m(1, 3, 6, 7) + d(4, 9, 11)$$

ii.
$$F(W, X, Y, Z) = \sum m(2, 9, 10, 12, 13) + d(1, 5, 14)$$

Answer:

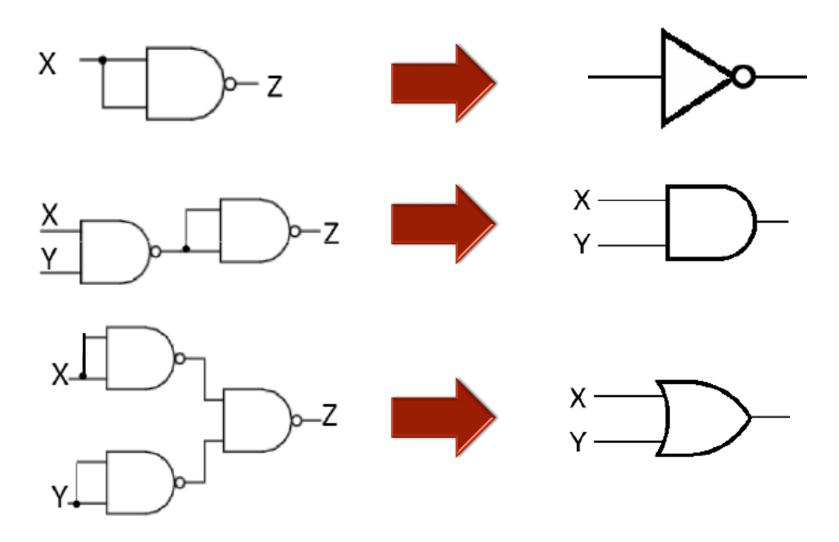
i.
$$F = \overline{B}D + \overline{A}BC = \overline{A}(B+D)(\overline{B}+C)$$

ii. $F = WX\overline{Y} + \overline{X}Y\overline{Z} + \overline{Y}Z = (X + Y + Z)(W + \overline{X})(\overline{Y} + \overline{Z})$

GATES TRANSFORMATION

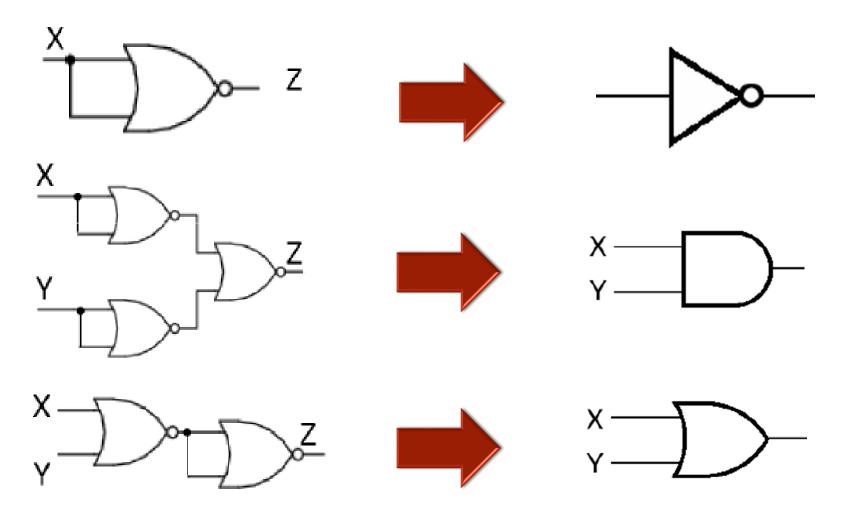
innovative • entrepreneurial • global

GATES TRANSFORMATION INTRODUCTION

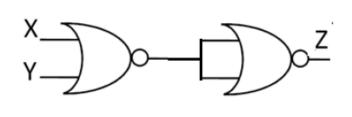

Gate transformation is a process that involves a conversion of logic circuit from:

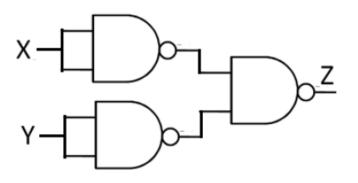
- OR-AND to NAND-NAND
- AND-OR to NOR-NOR

- DeMorgan Equivalent Circuit


GATES TRANSFORMATION NAND GATE IS UNIVERSAL GATE

GATES TRANSFORMATION NOR GATE IS UNIVERSAL GATE


GATES TRANSFORMATION DON'T CARE CONDITION


Example

Implement F(X, Y) = X + Y using only:

- a) NOR gate.
- b) NAND gate.

(a) NOR gate

(b) NAND gate

GATES TRANSFORMATION DON'T CARE CONDITION

 $F(A,B,C) = A\overline{B} + BC + \overline{A}\overline{C}$

This SOP function can be implemented using:

- a) AND-OR gate.
- b) NAND-NAND gate.

$$F(A, B, C) = (A + \overline{B} + C)(A + B + \overline{C})$$

This POS function can be implemented using:

- a) OR-AND gate.
- b) NOR-NOR gate.

GATES TRANSFORMATION ASSESSMENT

- 1. Show how a NOT function can be obtained by using the following gates only:
 - a) 3-input NAND gate.
 - b) 2-input NOR gate.
- 2. Show how a 3-input OR function can be implemented using a minimum number of:
 - a) 2-input OR gate.
 - b) 2-input NAND gate.
- 3. What is the minimum number of 2-input NAND gate required to implement the following functions:
 - a) F(A, B, C) = ABC
 - b) F(A, B, C) = AB + C