
SEEE1022
INTRODUCTION TO
SCIENTIFIC
PROGRAMMING

CH5
Function

Dr. Mohd Saiful Azimi Mahmud (azimi@utm.my)
P19a-04-03-30, School of Electrical Engineering, UTM

OBJECTIVES

1. Create Function
• Create and use M-file functions with both single and multiple inputs and outputs.
• Create and use local functions and nested functions.

2. Variable scope
• Understand the difference between base and function workspace.
• Understand the variable scope of command window, script, main function, local function

and nested function.

3. Toolbox
• Understand what is MATLAB toolbox and how to use it.

1

OPERATION (RECAP)

2

STATEMENT

Assign array to a variable using
EQUAL OPERATOR

1. ASSIGNMENT

Execute statements specified
number of times using
BOOLEAN OPERATOR
or EQUAL OPERATOR

2. REPETITION

Execute statements if
condition is TRUE using
BOOLEAN OPERATOR

3. DECISION

while

for

if
if-else
if-elseif
Switch-case

syntax

COMMAND

Function that mostly
used to change the

environment

FUNCTION

Group of statement
that perform a task

functionName input1 … inputN

[output1,…,outputM]
= functionName(input1 … inputN)

Input, if exist, must
only be string

syntax

syntax

variable = expression

Arithmetic

BooleanTY
P

E

MATLAB FUNCTION

3

WHAT IS FUNCTION?

• Decision statement.
• Tells the computer to pick

and run one of several
sets of statement based
on certain condition.

• Program file
• A .m file that contains a program.
• There are two types of program file:

1. Script file- contain sequence of commands, function calls and followed by local function
if needed

2. Function file – contain only functions.

• What is function?
• Programs that accept inputs and return outputs.

• Why use function?
• Cleaner code

• Maintainability

• Reuse

• Hiding implementation

MATLAB SCRIPT

4

FUNCTION VS SCRIPT

Criteria Script Function

Usage Both scripts and functions allow you to reuse sequences
of commands by storing them in program files.

Program Fixed variables. A more flexible and easily
extensible program

Input/output No Yes

Workspace Base workspace Function workspace

MATLAB SCRIPT

5

TYPES OF FUNCTION

• Predefined MATLAB function
• Built in function – the code is not accessible to user.

• M-file function – the code is accessible to user.

• User defined function:
• M-file function

• Local function

• Nested function

• Anonymous function

• Private function

PRE-DEFINED MATLAB FUNCTION

PREDEFINED MATLAB FUNCTION

6

EXAMPLE 1

EXAMPLE 2

>> type sin

'sin' is a built-in function.

>> type sphere

function [xx,yy,zz] = sphere(varargin)

%SPHERE Generate sphere.

.

.

.

if nargout == 0

cax = newplot(cax);

surf(x,y,z,'parent',cax)

else

xx = x; yy = y; zz = z;

end

The sphere function is stored
as a function M-file, but is
provided by MATLAB.
Studying these functions may
help you understand how to
program better functions
yourself

USER DEFINED FUNCTION

USER DEFINED FUNCTION

7

M-FILE FUNCTION

• User defined functions are stored as separate M-files.

• Once created, it is available in the command window and MATLAB script.

• To use them, they must be in the current directory.

function [y1,...,yN] = myfun(x1,...,xM)

statements

Output
variables

Input
variables

Function
name

USER DEFINED FUNCTION

8

CREATING M-FILE FUNCTION

EXAMPLE 3

>> x = poly(3)

x =

121

• The function name must be
the same as the file name.

• Input argument is written
inside a bracket after the
function name.

• Output argument is written
before the equal symbol.

9

USER DEFINED FUNCTION
ADD HELP TO THE PROGRAM

EXAMPLE 4

function output = g(x,y)

% This function multiply x and y

% x and y must be the same size

output = x.*y;

>> help g

This function multiply x and y

x and y must be the same size

• Comment lines after
the function line will
appear as the help
information.

10

USER DEFINED FUNCTION
MULTIPLE INPUTS

EXAMPLE 5

function output = g(x,y)

% This function multiply x and y

% x and y must be the same size

output = x.*y;

>> a = [1 3 5];

>> b = [2 3 2];

>> c = g(a,b)

c =

2 9 10

• Multiple inputs are
separated by comma.

11

USER DEFINED FUNCTION
HANDLING INPUTS

EXAMPLE 6

>> x = g(3)

Not enough input arguments.

Error in g (line 4)

output = x.*y;

• Since line 4 needs two inputs, executing the function return
an error of not enough input arguments.

• To create a flexible input or a function that accept any
number of input arguments, variables called varargin and
nargin can be used to handle the inputs.

• However, these advance variables is not covered in this
course. Instead, refer to MATLAB documentation for detail
explanation.

12

USER DEFINED FUNCTION
MULTIPLE OUTPUTS

EXAMPLE 7

function [dist, vel, accel] = motion(t)

% this function calculates the distance, velocity

% and acceleration of a car for a given value of time t,

% assuming all of the three parameters are initially 0.

dist = t.^3/12;

vel = t.^2/4;

accel = 0.5.*t;

>> [dist,vel,accel] = motion(5)

dist =

10.4167

vel =

6.2500

accel =

2.5000

• Use square bracket and comma to
create multiple outputs.

• When using a function, different
variables name is allowed (detail
discussion, later in variable scope
topic).

13

USER DEFINED FUNCTION
OUTPUT FLEXIBILITY

EXAMPLE 8

>> t = 0:0.1:0.5

t =

0 0.1000 0.2000 0.3000 0.4000 0.5000

>> dist = motion(t)

dist =

0 0.0001 0.0007 0.0022 0.0053 0.0104

>> [dist,vel] = motion(t)

dist =

0 0.0001 0.0007 0.0022 0.0053 0.0104

vel =

0 0.0025 0.0100 0.0225 0.0400 0.0625

If you don’t ask for all output variables, the program returns the
number of variables you asked starting from the left.

14

USER DEFINED FUNCTION
OUTPUT FLEXIBILITY

EXAMPLE 9

>> t = 0:0.1:0.5

t =

0 0.1000 0.2000 0.3000 0.4000 0.5000

>> [dist,accel] = motion(t)

dist =

0 0.0001 0.0007 0.0022 0.0053 0.0104

accel =

0 0.0025 0.0100 0.0225 0.0400 0.0625

• If you need to return the last output variable, all of the
preceding output variables need to be returned as output.

• In this example, pecutan is not acceleration but velocity, since
the function written it as the second variable.

15

USER DEFINED FUNCTION
FUNCTION WITH NO INPUT/OUTPUT

EXAMPLE 10

function [] = stars()

asteriks = char(abs('*')*ones(1,10));

disp(asteriks)

>> stars()

>> stars

• No input/output argument can be written with either
empty bracket or no bracket at all.

• Using the function can also be with or without the
empty bracket.

• Alternatively, you can replace function with no input
and output with simply a script file.

function stars

asteriks = char(abs('*')*ones(1,10));

disp(asteriks)

16

USER DEFINED FUNCTION
LOCAL FUNCTIONS

• MATLAB® program files can contain more than one function.

• Recap: There are two types of program files:

1. Script file

2. Function file

• Local function can exist on both program files.

• Local function is also known as sub-function.

17

USER DEFINED FUNCTION
MAIN VS LOCAL FUNCTION

Criteria Main Function Local Function

Script file Not exist. Created after the last
line of script code.

Function file The first function. Additional function

Accessibility Can be accessed by
other function file and

command window.

Can be accessed only
within the function file.

Function name Must be unique to all
MATLAB functions.

Must be unique only
within the function file.

18

USER DEFINED FUNCTION
LOCAL FUNCTION IN FUNCTION FILE

function [y1,...,yN] = main(x1,...,xM)

statements

function [y1,...,yN] = local1(x1,...,xM)

statements

function [y1,...,yN] = local2(x1,...,xM)

statements

.

.

.

function [y1,...,yN] = localN(x1,...,xM)

statements

Syntax

19

LOCAL FUNCTION

EXAMPLE 11

USER DEFINED FUNCTION

function [add_result, minus_result] = compute(x,y)

% This function add and subtract the elements

% stored in x and y

add_result = add(x,y);

minus_result = minuss(x,y);

function result = add(x,y)

result = x+y;

function result = minuss(x,y)

result = x-y;

>> [plus,minus] = compute(2,3)

plus =

5

minus =

-1

20

USER DEFINED FUNCTION
NESTED FUNCTION

• A function that is contained within a parent function.

• Both main and local functions in a program file can include a nested function.

• Since nested function resides within a function, end command is use to mark the end of the
nested function and the parent function.

• Recap: previously end command is not compulsory for both main and local functions.

21

NESTED FUNCTION

EXAMPLE 12

USER DEFINED FUNCTION

function [circumference, area] = mycircle(d)

r = d/2;

circumference = ci; area = ar;

disp(['Circumference: ',num2str(circumference)])

disp([' Area: ',num2str(area)])

function c = ci()

c = pi*d;

end

function c = ar()

c = pi*r.^2;

end

end

>> [a,b] = mycircle([2 3]);

Circumference: 6.2832 9.4248

Area: 3.1416 7.0686

• end commands is use to
show that the nested
function reside within the
parent function.

VARIABLE SCOPE

VARIABLE SCOPE

22

BASE AND FUNCTION WORKSPACE

• Base workspace
• Stores variables that you create at the command line. This includes any variables that scripts

create.

• Stored variables are shown in the MATLAB workspace window.

• Function workspace
• Functions do not use the base workspace.

• Every function has its own function workspace.

• Each function workspace is separated from the base workspace and all other workspaces to
protect the integrity of the data.

• Variables specific to a function workspace are called local variables.

• Local variables are not known to other functions, other script file and command window.
Thus, they are not shown in the MATLAB workspace window.

23

VARIABLE SCOPE
SCOPE

Main Program File
(Script File)

A B

Base variables Local variables

Local
Function

Nested
Function

A

A B

Function File

Main
Function

Nested
Function

A

A B

Local
Function

Nested
Function

A

A B

Other
Script File

A B

24

DIFFERENT WORKSPACE

VARIABLE SCOPE

EXAMPLE 13

function result = distance(t)

result = 1/2*g*t.^2;

>> g = 9.8;

>> T = 0:0.1:1;

>> a = distance(T)

Undefined function or variable ‘g'.

Error in distance (line 2)

result = 1/2*g*t.^2;

• g need to be defined inside function distance,
not in the command window because function
distance has a different workspace.

25

PASSING ARGUMENTS

VARIABLE SCOPE

EXAMPLE 14

function [avg, med] = mystats(x)

n = length(x);

avg = mymean(x,n);

med = mymedian(x,n);

function a = mymean(v,n)

% MYMEAN Example of a local function.

a = sum(v)/n;

function m = mymedian(v,n)

% MYMEDIAN Another example of a local function.

w = sort(v);

if rem(n,2) == 1

m = w((n + 1)/2);

else

m = (w(n/2) + w(n/2 + 1))/2;

end

26

PASSING ARGUMENTS (CONT.)

VARIABLE SCOPE

EXAMPLE 14

>> data = randi(100,1,200);

>> [a,b] = mystats(data)

a =

49.4850

b =

49 • data is a base workspace variable. It is pass to the
mystats function through its input argument x.

• In function mystats, x is then pass to function mymean
and mymedian through input arguments v.

• Result of the mean and median are then pass back to the
mystats function through output arguments a and m
respectively.

• Lastly, the avg and med variables are pass back to the base
workspace into a and b respectively.

27

NESTED FUNCTION SCOPE

VARIABLE SCOPE

EXAMPLE 15

function [circumference, area] = mycircle(d)

r = d/2;

circumference = ci; area = ar;

disp(['Circumference: ',num2str(circumference)])

disp([' Area: ',num2str(area)])

function c = ci()

c = pi*d;

end

function c = ar()

c = pi*r.^2;

end

end

>> [a,b] = mycircle([2 3]);

Circumference: 6.2832 9.4248

Area: 3.1416 7.0686

• Parent variables r and d are
accessible to the nested function.

• Variable c remain local at both of
the nested functions because it is
not use by the parent function.

28

COMMAND

• Command is function that altered the environment, but does not return result.

• Syntax:

• Input, if exist can only be string. Thus, command is generally a function that takes
string arguments.

• Example of command:

• clear, who, save, axis

• Since command is a function, then a new command can be created using M-file
similar to how a function is created.

VARIABLE SCOPE

functionName input1 … inputN

TOOLBOX

TOOLBOX

29

WHAT IS TOOLBOX?

• Toolbox is a collection of the followings into one package:
1) MATLAB functions

2) System object

3) Simulink blocks

4) Examples

5) Documentation

6) Data

7) Apps

• Toolboxes can be add-on to the MATLAB from three sources:
1) MathWork toolbox – official toolboxes.

2) Community toolbox – created and shared by MATLAB users.

3) Shared toolbox installation file – the .mltbx file.

30

TOOLBOX
CREATING YOUR OWN TOOLBOX

• Once you’ve created a set of functions, you can manage them by either:
1) Group them into a directory (folder) and add them to the MATLAB search path.

2) Package the functions into MATLAB toolbox, which gives you a .mltbx file. It is an
installation file of the toolbox.

The .mltbx can be easily shared by typical file sharing method. You can also upload the file
to MATLAB Central File Exchange where other users can download your toolbox from
within MATLAB.

• To create a toolbox installation file:
• In the Environment section of the Home tab, select Package Toolbox from the Add-

Ons menu.

• In the Package a Toolbox dialog box, click the button and select your toolbox folder.

• Fill in all required information and click Package to finish the process.

