SEEE 1223 DIGITAL ELECTRONICS
 CHAPTER 6: COMBINATIONAL MSI

DR. MOHD SAIFUL AZIMI BIN MAHMUD
P19a-04-03-30
School of Electrical Engineering
Faculty of Engineering
Universiti Teknologi Malaysia 019-7112948
azimi@utm.my
innovative • entrepreneurial • global

MSI CIRCUIT

MSI CIRCUIT

INTRODUCTION

- MSI (Medium scale integrated) circuits are logic circuit that contains 11 to 99 logic gates in a circuit.

Multiplexer \& Demultiplexer

Encoder \& Decoder

MULTIPLEXER

 INTRODUCTION- Multiplexer (Mux) is a device that allows digital information from several sources to be routed onto a single line for transmission over that line to a common destination.
- Basic Multiplexer has 2^{n} data-inputs, n data-selector inputs and one single output.
- Multiplexers are also known as data selectors.
- Multiplexers usually written as $(Y) \times 1$ or (Y) : 1 , where Y is the number of input data lines.

Example

A 4 input data line multiplexer is written as $4: 1$ mux.

MULTIPLEXER

2:1 MUX

- 2:1 Mux consists of 2 inputs, 1 selector and 1 output.

Function:
$F=D 0$ when $S=0$
$F=D 1$ when $S=1$

Function Table

S	F
0	$D 0$
1	$D 1$

Symbol for 2:1 Mux

- How to design a 2:1 mux using:
- K-map? What are the input and output?
- By inspection of its function?

MULTIPLEXER

2:1 MUX

- Design 2:1 Mux using K-map.
- As we known, 2:1 mux consists of 2 inputs, 1 output and 1 selector.
- Inputs = D0,D1,S
- Output = F

Function:
$\boldsymbol{F}=\boldsymbol{D} \mathbf{0}$ when $\mathrm{S}=\mathbf{0}$
$F=D 1$ when $S=1$
Truth Table

Inputs			Output
$D 1$	$D 0$	S	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	1	1
1	1	1	1

Can you draw the logic circuit?

MULTIPLEXER

2:1 MUX

- Design 2:1 Mux by inspection of its function

As we know, 2:1 mux function:

$$
\begin{aligned}
& F=D 0 \text { when } S=0 \longrightarrow F=D 0 \cdot \bar{S} \\
& F=D 1 \text { when } S=1 \longrightarrow F=D 1 \cdot S
\end{aligned}
$$

Symbol for 2:1 Mux

- Therefore, $F=D 0 \cdot \bar{S}+D 1 \cdot S$

MULTIPLEXER

4:1 MUX

- 4:1 Mux consists of 4 inputs, 2 selectors and 1 output.

Function:

$F=D 0$ when $S 1=0$ and $S 0=0$
$F=D 1$ when $S 1=0$ and $S 0=1$
$F=D 2$ when $S 1=1$ and $S 0=0$
$F=D 3$ when $S 1=1$ and $S 0=1$
Function Table

$S 1$	$S 0$	F
0	0	$D 0$
0	1	$D 1$
1	0	$D 2$
1	1	$D 3$

Symbol for 4:1 Mux

- How to design a 4:1 mux using:
- K-map? What are the input and output?
- By its function?

MULTIPLEXER

4:1 MUX

- Since 4:1 Mux has six inputs ($D 3, D 2, D 1, D 0, S 1, S 0$) and one output (F), therefore it is difficult/time consuming to use K -maps.
- Thus by looking at the functions of $4: 1$ mux:

Function:
$F=D 0$ when $S 1=0$ and $S 0=0 \rightarrow F=D 0 \cdot \overline{S 1} \cdot \overline{S 0}$
$F=D 1$ when $S 1=0$ and $S 0=1 \rightarrow F=D 1 \cdot \overline{S 1} \cdot S 0$
$F=D 2$ when $S 1=1$ and $S 0=0 \rightarrow F=D 2 \cdot S 1 \cdot \overline{S 0}$
$F=D 3$ when $S 1=1$ and $S 0=1 \rightarrow F=D 3 \cdot S 1 \cdot S 0$
Symbol for 4:1 Mux

- Therefore, $F=D 0 \cdot \overline{S 1} \cdot \overline{S 0}+D 1 \cdot \overline{S 1} \cdot S 0+D 2 \cdot S 1 \cdot \overline{S 0}+D 3 \cdot S 1 \cdot S 0$

Can you draw the logic circuit?

MULTIPLEXER

8:1 MUX

- 8:1 Mux consists of 8 inputs, 3 selectors and 1 output.

D0	
D1	
D2	
D3	
D4 F	
D5	
D6	
D7	
	S2 S1 S0

Function:	$S 2$	$S 1$	$S 0$	F
$F=D 0$ when $S 2=0, S 1=0$ and $S 0=0$	0	0	0	$D 0$
$F=D 1$ when $S 2=0, S 1=0$ and $S 0=1$	0	0	1	$D 1$
$F=D 2$ when $S 2=0, S 1=1$ and $S 0=0$	0	1	0	$D 2$
$F=D 3$ when $S 2=0, S 1=1$ and $S 0=1$	0	1	1	$D 3$
$F=D 4$ when $S 2=1, S 1=0$ and $S 0=0$	1	0	0	$D 4$
$F=D 5$ when $S 2=1, S 1=0$ and $S 0=1$	1	0	1	$D 5$
$F=D 6$ when $S 2=1, S 1=1$ and $S 0=0$	1	1	0	$D 6$
$F=D 7$ when $S 2=1, S 1=1$ and $S 0=1$	1	1	1	$D 7$

Symbol for 8:1 Mux

What is the logic expression for F ?

MULTIPLEXER

MULTIPLEXER APPLICATIONS

Example

Implement $F(A, B, C, D)=\sum m(2,3,5,6,8,10,11,13)$ using an $8: 1$ Mux

Inputs					Output	
A	B	C	D	F		
0	0	0	0	0		
0	0	0	1	0	0	
0	0	1	0	1		
0	0	1	1	1	1	
0	1	0	0	0		
0	1	0	1	1	D	
0	1	1	0	1		
0	1	1	1	0	\bar{D}	

Inputs				Output	
A	B	C	D	F	
1	0	0	0	1	
1	0	0	1	0	\bar{D}
1	0	1	0	1	
1	0	1	1	1	1
1	1	0	0	0	
1	1	0	1	1	D
1	1	1	0	0	
1	1	1	1	0	0

8:1 Mux

MULTIPLEXER
 MULTIPLEXER EXPANSIONS

- A few multiplexers can be combined to built a bigger multiplexer.

Example

A 4:1 Mux can be built by combining three 2:1 Mux.

MULTIPLEXER
 MULTIPLEXER EXPANSIONS

Example

A 8:1 Mux can be built by combining two 4:1 Mux and one 2:1 Mux.

innovative • entrepreneurial • global

MULTIPLEXER

MULTIPLEXER INTEGRATED CIRCUIT (IC)

- Mux (and other common logic blocks) can be bought as a packaged integrated circuits (IC).
- Commonly used IC is TTL (Transistor-Transistor Logic) and CMOS (Complementary Metal-Oxide Semiconductor).

Example

An inverter IC in TTL is named 74LS04 (LS for Low Speed TTL). While inverter IC in CMOS is named 74HC04 (HC for High Speed CMOS).

- 2:1 Mux IC: 74LS157/74HC157 (74x157)
- 4:1 Mux IC: 74LS153/74HC153 (74x153)
- 8:1 Mux IC: 74LS151/74HC151 (74x151)

MULTIPLEXER

MULTIPLEXER IC: 74x157 (QUAD 2:1 MUX)

- 74×157 is a quad 2:1 Mux.
- Contains of four 2:1 Mux.
- Controlled by a single common selector input.
- It has one active-Iow enable input.

Connection Diagram

Logic Symbols

When $S=0$ and $\bar{E}=0 ; Z_{a}=I_{0 a}, Z_{b}=$ $I_{0 b}, Z_{c}=I_{0 c}, Z_{d}=I_{0 d}$

MULTIPLEXER

MULTIPLEXER IC: 74x157 (QUAD 2:1 MUX)

Truth Table

Inputs				Output
\bar{E}	S	I_{0}	I_{1}	Z
H	X	X	X	L
L	H	X	L	L
L	H	X	H	H
L	L	L	X	L
L	L	H	X	H
$\mathrm{H}=\mathrm{HIGH}$ Voltage Level L= LOW Voltage Level X = Immaterial (Irrelevant)				

Output Z selects I_{0} or I_{1} depending on select S (with $E=0$)

MULTIPLEXER IC: 74x153 (DUAL 4:1 MUX)

- 74×153 is a dual 4:1 Mux.
- Contains of two 4:1 Mux.
- Controlled by a two common selector input.
- It has two active-Iow enable input.

Connection Diagram

Logic Symbols

MULTIPLEXER
 MULTIPLEXER IC: 74x153 (DUAL 4:1 MUX)

Function Table

SELECT INPUTS		DATA INPUTS					OUTPUT ENABLE
S_{0}	$\mathrm{~S}_{1}$	nl_{0}	nl_{1}	$\mathrm{nl}_{\mathbf{2}}$	nl_{3}	$\mathrm{n} \overline{\mathrm{E}}$	OUTPUT
X	X	X	X	X	X	H	nY
L	L	L	X	X	X	L	L
L	L	H	X	X	X	L	L
H	L	X	L	X	X	L	H
H	L	X	H	X	X	L	L
L	H	X	X	L	X	L	H
L	H	X	X	H	X	L	L
H	H	X	X	X	L	L	H
H	H	X	X	X	H	L	L

Output $n Y$ selects $n l_{0}, n l_{1}, n l_{2}$ or $n l_{3}$ depending on S_{1} and S_{0} (with $n \bar{E}=0$).

MULTIPLEXER

MULTIPLEXER IC: 74x151 (8:1 MUX)

- 74×151 is a $8: 1$ Mux.
- Contains of one 8:1 Mux.
- It has two outputs

1. Active High
2. Active Low

- It has one active-Iow enable input.

Pin Assignments for DIP, SOIC, SOP and TSSOP

MULTIPLEXER

MULTIPLEXER IC: 74×151 (8:1 MUX)

Connection Diagram

Truth Table

Inputs				Outputs		
Select			Strobe			
C	B	A	S			
X	X	X	H	L	H	
L	L	L	L	D0	$\overline{D 0}$	
L	L	H	L	D1	$\overline{D 1}$	
L	H	L	L	D2	$\overline{D 2}$	
L	H	H	L	D3	$\overline{D 3}$	
H	L	L	L	D4	$\overline{D 4}$	
H	L	H	L	D5	$\overline{D 5}$	
H	H	L	L	D6	$\overline{D 6}$	
H	H	H	L	D7	$\overline{D 7}$	

MULTIPLEXER

REVIEWS

- How to design a 3:1 Mux or a 7:1 Mux?
- 3:1 Mux is structured as $4: 1$ Mux
- 7:1 Mux is structured as 8:1 Mux
- How many select bits is needed for 16:1 Mux?
- 4 select inputs (S3, S2, S1, S0)
- How many inputs does a 32:1 Mux have?
- 5 select bits and 32 input data lines (37 inputs)

DEMULTIPLEXER

DEMULTIPLEXER

INTRODUCTION

- Demultiplexer (Demux) perform in the inverse of the mux function.
- It takes data from one line and distribute to given number and of output lines.
- Basic Demultiplexer has one input, n data-selector inputs and 2^{n} output.
- Demultiplexer usually written as $1 \mathrm{x}(\mathrm{Y})$ or $1:(\mathrm{Y})$, where Y is the number of output data lines.

Example

A 4 output data line demultiplexer is written as 1:4 demux.

DEMULTIPLEXER

1:2 DEMUX

- 1:2 Demux consists of 1 input, 1 selector and 2 outputs.
Function:

Symbol for 1:2 Demux

$$
\begin{aligned}
& D 0=D, D 1=0 \text { when } S=0 \longrightarrow D 0=D \cdot \bar{S} \\
& D 0=0, D 1=D \text { when } S=1 \longrightarrow D 1=\mathrm{D} \cdot S
\end{aligned}
$$

Function Table

S	$D 1$	$D 0$
0	0	D
1	D	0

Logic circuit

DEMULTIPLEXER

1:4 DEMUX

- 1:4 Demux consists of 1 input, 2 selectors and 4 outputs.

Symbol for 1:4 Demux

Function:
$D 0=D$ when $S 1=0$ and $S 0=0 \longrightarrow D 0=D \cdot \overline{S 1} \cdot \overline{S 0}$ $D 1=D$ when $S 1=0$ and $S 0=1 \longrightarrow D 1=D \cdot \overline{S 1} \cdot S 0$
$D 2=D$ when $S 1=1$ and $S 0=0 \longrightarrow D 2=D \cdot S 1 \cdot \overline{S 0}$ $D 3=D$ when $S 1=1$ and $S 0=1 \longrightarrow D 3=D \cdot S 1 \cdot S 0$

Function Table

$S 1$	$S 0$	$D 3$	$D 2$	$D 1$	$D 0$
0	0	0	0	0	D
0	1	0	0	D	0
1	0	0	D	0	0
1	1	D	0	0	0

DECODER

INTRODUCTION

- Decoder used to detect the presence of specified combination of bits (code) on its inputs and indicates the presence of that code by a specific output level.
- It has n inputs and 2^{n} outputs (n-to- 2^{n}).
- Decoder can be designed as 1-to-2, 2-to-4, 3-to-8, 4-to-16 and etc.
- If enable inputs is presents, it must be asserted to enable decoder function.

DECODER

2-to-4 DECODER

- 2-to-4 Decoder consists of 2 inputs and 4 outputs.

Symbol for Active High 2-to-4 Decoder

Function Table

Inputs		Outputs			
$A 1$	$A 0$	O_{3}	O_{2}	O_{1}	O_{0}
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

DECODER

2-to-4 DECODER

- Typically, decoders are designed as Active Low.

Bubble at output denotes active low output

Function:

$$
\begin{aligned}
& O_{3} O_{2} O_{1} O_{0}=1110 \text { when } A_{1} A_{0}=00 \longrightarrow O_{0}=\overline{\overline{A 1} \cdot \overline{A 0}} \\
& O_{3} O_{2} O_{1} O_{0}=1101 \text { when } A_{1} A_{0}=01 \longrightarrow O_{1}=\overline{\overline{A 1} \cdot A 0} \\
& O_{3} O_{2} O_{1} O_{0}=1011 \text { when } A_{1} A_{0}=10 \longrightarrow O_{2}=\overline{A 1 \cdot \overline{A 0}} \\
& O_{3} O_{2} O_{1} O_{0}=0111 \text { when } A_{1} A_{0}=11 \longrightarrow O_{3}=\overline{A 1 \cdot A 0}
\end{aligned}
$$

Function Table

Symbol for Active Low
2-to-4 Decoder

Inputs		Outputs			
$A 1$	$A 0$	O_{3}	O_{2}	O_{1}	O_{0}
0	0	1	1	1	0
0	1	1	1	0	1
1	0	1	0	1	1
1	1	0	1	1	1

DECODER

2-to-4 DECODER

- 2-to-4 Decoder with Active Low Enable.

Function:

$$
\begin{aligned}
& \text { If }(\boldsymbol{E}=\mathbf{1}) \\
& O_{3} O_{2} O_{1} O_{0}=1111, A_{1} A_{0}=\mathrm{xx}
\end{aligned}
$$

$$
\text { If }(E=0) \text {, }
$$

$$
O_{3} O_{2} O_{1} O_{0}=1110 \text { when } A_{1} A_{0}=00 \longrightarrow O_{0}=\overline{\bar{E} \cdot \overline{A 1} \cdot \overline{A 0}}
$$

$$
O_{3} O_{2} O_{1} O_{0}=1101 \text { when } A_{1} A_{0}=01 \longrightarrow O_{1}=\overline{\bar{E} \cdot \overline{A 1} \cdot A 0}
$$

$$
O_{3} O_{2} O_{1} O_{0}=1011 \text { when } A_{1} A_{0}=10 \longrightarrow O_{2}=\overline{\bar{E} \cdot A 1 \cdot \overline{A 0}}
$$

$$
O_{3} O_{2} O_{1} O_{0}=0111 \text { when } A_{1} A_{0}=11 \longrightarrow O_{3}=\overline{\bar{E} \cdot A 1 \cdot A 0}
$$

Symbol for Active Low
2-to-4 Decoder with
Active Low Enable

$\frac{0}{0}$	E	Inputs		Outputs			
		A1	$A 0$	O_{3}	O_{2}	O_{1}	O_{0}
	1	x	x	1	1	1	1
\bigcirc	0	0	0	1	1	1	0
+	0	0	1	1	1	0	1
)	0	1	0	1	0	1	1
	0	1	1	0	1	1	1
- glo							32

DECODER

DECODER IC: 74x139 (2-to-4 DECODER)

- 74x139 contains two 2-to-4 Decoders.
- To use either decoder, it must be enabled by inputting low signal at the enable input.
- When enable = High, all output = High.

Function Table

Inputs			Outputs			
$n \bar{E}$	$n A_{0}$	$n A_{1}$	$n \bar{Y}_{0}$	$n \bar{Y}_{1}$	$n \bar{Y}_{2}$	$n \bar{Y}_{3}$
H	X	X	H	H	H	H
L	L	L	L	H	H	H
L	H	L	H	L	H	H
L	L	H	H	H	L	H
L	H	H	H	H	H	L
$\mathrm{H}=\mathrm{HIGH}$ Voltage Level						
L= LOW Voltage Level						
X = Don't care						

Outputs depends on inputs A with $E=0$

DECODER

3-to-8 DECODER

- 3-to-8 Decoder consists of 3 inputs and 8 outputs.

Function:
$O_{7} O_{6} O_{5} O_{4} O_{3} O_{2} O_{1} O_{0}=11111110$ when $A_{2} A_{1} A_{0}=000$
$O_{7} O_{6} O_{5} O_{4} O_{3} O_{2} O_{1} O_{0}=11111101$ when $A_{2} A_{1} A_{0}=001$ $O_{7} O_{6} O_{5} O_{4} O_{3} O_{2} O_{1} O_{0}=11111011$ when $A_{2} A_{1} A_{0}=010$ $O_{7} O_{6} O_{5} O_{4} O_{3} O_{2} O_{1} O_{0}=11110111$ when $A_{2} A_{1} A_{0}=011$ $O_{7} O_{6} O_{5} O_{4} O_{3} O_{2} O_{1} O_{0}=11101111$ when $A_{2} A_{1} A_{0}=100$ $O_{7} O_{6} O_{5} O_{4} O_{3} O_{2} O_{1} O_{0}=11011111$ when $A_{2} A_{1} A_{0}=101$ $O_{7} O_{6} O_{5} O_{4} O_{3} O_{2} O_{1} O_{0}=10111111$ when $A_{2} A_{1} A_{0}=110$ $O_{7} O_{6} O_{5} O_{4} O_{3} O_{2} O_{1} O_{0}=01111111$ when $A_{2} A_{1} A_{0}=111$

Symbol for Active Low 3-to-8 Decoder

DECODER

3-to-8 DECODER

- 3-to-8 Decoder consists of 3 inputs and 8 outputs.

Symbol for Active Low 3-to-8 Decoder

Function Table

Inputs			Outputs							
A2	A1	A0	O7	O6	O5	O4	O3	O2	O1	O0
0	0	0	1	1	1	1	1	1	1	0
0	0	1	1	1	1	1	1	1	0	1
0	1	0	1	1	1	1	1	0	1	1
0	1	1	1	1	1	1	0	1	1	1
1	0	0	1	1	1	0	1	1	1	1
1	0	1	1	1	0	1	1	1	1	1
1	1	0	1	0	1	1	1	1	1	1
1	1	1	0	1	1	1	1	1	1	1

DECODER

DECODER IC: 74x138 (3-to-8 DECODER)

- 74x138 contains one 3-to-8 Decoder. (a popular device)
- It has 3 inputs, 3 enables and 8 outputs.

DECODER

DECODER IC: 74x138 (3-to-8 DECODER)

Function Table

Inputs					Outputs							
Enable		Select										
G1	$\overline{G 2}$	C	B	A	Yo	Y1	Y2	Y3	Y4	Y5	Y6	Y7
X	H	X	X	X	H	H	H	H	H	H	H	H
L	X	X	X	x	H	H	H	H	H	H	H	H
H	L	L	L	L	L	H	H	H	H	H	H	H
H	L	L	L	H	H	L	H	H	H	H	H	H
H	L	L	H	L	H	H	L	H	H	H	H	H
H	L	L	H	H	H	H	H	L	H	H	H	H
H	L	H	L	L	H	H	H	H	L	H	H	H
H	L	H	L	H	H	H	H	H	H	L	H	H
H	L	H	H	L	H	H	H	H	H	H	L	H
H	L	H	H	H	H	H	H	H	H	H	H	L

$\mathrm{H}=$ HIGH Voltage Level, L= LOW Voltage Level, $\mathrm{X}=$ Don't care $\overline{G 2}=\overline{G 2 A}+\overline{G 2 B}$

DECODER
 DECODER APPLICATIONS

Example

Show how the 3-to-8 Decoder and basic gate can implement the logic function $F(X, Y, Z)=\sum m(1,3,7)$ and $\mathrm{G}(X, Y, Z)=\sum m(0,4,5,6)$

Truth Table

Inputs			Output	
X	Y	Z	F	G
0	0	0	0	1
0	0	1	1	0
0	1	0	0	0
0	1	1	1	0
1	0	0	0	1
1	0	1	0	1
1	1	0	0	1
1	1	1	1	0

BOOLEAN FUNCTION USING MULTIPLEXER \& DECODER

BOOLEAN FUNCTION USING MULTIPLEXER \& DECODER

Example

Given $F(A, B, C)=\sum m(1,2,4,5)$. Implement using;
a) 8:1 Mux
b) $4: 1$ Mux
c) 2:1 Mux
d) 3-to-8 Active Low Decoder

BOOLEAN FUNCTION USING MULTIPLEXER \& DECODER

Solution

Using 8:1 Max

$$
F(A, B, C)=\sum m(1,2,4,5)
$$

Truth Table

Inputs			
Output			
A	B	C	F
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Selectors

BOOLEAN FUNCTION USING MULTIPLEXER \& DECODER

Solution

Using 8:1 Mux

$$
F(A, B, C)=\sum m(1,2,4,5)
$$

Truth Table			
Inputs			Output
A	B	C	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

innovative • entrepreneurial • global

BOOLEAN FUNCTION USING MULTIPLEXER \& DECODER

Solution

Using 4:1 Mux

$$
F(A, B, C)=\sum m(1,2,4,5)
$$

Truth Table

Inputs			Output	
A	B	C	F	
0	0	0	0	$F=C$
0	0	1	1	
0	1	0	1	$F=\bar{C}$
0	1	1	0	
1	0	0	1	
1	0	1	1	$F=1$
1	1	0	0	$F=0$
1	1	1	0	

BOOLEAN FUNCTION USING MULTIPLEXER \& DECODER

Solution

Using 4:1 Mux

$F(A, B, C)=\sum m(1,2,4,5)$
Truth Table

Inputs			Output	
A	B	C	F	
0	0	0	0	$F=C$
0	0	1	1	
0	1	0	1	$F=\bar{C}$
0	1	1	0	
1	0	0	1	
1	0	1	1	
1	1	0	0	$F=0$
1	1	1	0	

innovative • entrepreneurial • global

BOOLEAN FUNCTION USING MULTIPLEXER \& DECODER

Solution

Using 2:1 Mux

$$
F(A, B, C)=\sum m(1,2,4,5)
$$

Truth Table

Inputs			Output	
A	B	C	F	
0	0	0	0	
0	0	1	1	$F=\bar{B} C+B \bar{C}$
0	1	0	1	
0	1	1	0	
1	0	0	1	$F=\bar{B}$
1	0	1	1	
1	1	0	0	
1	1	1	0	

BOOLEAN FUNCTION USING MULTIPLEXER \& DECODER

Solution

Using 2:1 Max

$$
F(A, B, C)=\sum m(1,2,4,5)
$$

Truth Table

Inputs			Output	
A	B	C	F	
0	0	0	0	
0	0	1	1	$F=\bar{B} C+B \bar{C}$
0	1	0	1	
0	1	1	0	
1	0	0	1	$F=\bar{B}$
1	0	1	1	
1	1	0	0	
1	1	1	0	

BOOLEAN FUNCTION USING MULTIPLEXER \& DECODER

Solution

Using 3-to-8 Decoder

$$
F(A, B, C)=\sum m(1,2,4,5)
$$

BOOLEAN FUNCTION USING MULTIPLEXER \& DECODER

Solution

Using 3-to-8 Decoder

$$
F(A, B, C)=\sum m(1,2,4,5)
$$

innovative • entrepreneurial • global

BOOLEAN FUNCTION USING MULTIPLEXER \& DECODER

 ASSESSMENT 1Given Boolean expression $A \cdot \bar{C}+\bar{A} \cdot \bar{B} \cdot \bar{C}+\bar{A} \cdot \bar{B} \cdot \bar{C}+\bar{A} \cdot(B \oplus C)$, implement using;
a) $8: 1 \mathrm{Mux}$
b) $4: 1 \mathrm{Mux}$
c) $2: 1 \mathrm{Mux}$
d) 3-to-8 Active Low Decoder

BOOLEAN FUNCTION USING MULTIPLEXER \& DECODER

 ASSESSMENT 2Given Boolean expression $f(X, Y, Z)=\Pi\left(M_{0}, M_{1}, M_{2}, M_{4}\right)$, implement using;
a) $4: 1 \mathrm{Mux}$
b) 2:1 Mux
c) 3-to-8 Active Low Decoder
d) 2-to-4 Active Low Decoder

ENCODER

ENCODER

INTRODUCTION

- Encoder performs reverse function of decoder.
- Encoder used to compress the input into a code that contains the same information in fewer bits.
- It has 2^{n} inputs and n output. (2^{n} - to $-n$).
- Only one input is allowed to be active at any one time.

Encoder function for Compass (https://www.electronics-tutorials.ws/combination/comb 4.html)

ENCODER

4-to-2 ENCODER

- 4-to-2 Encoder consists of 4 inputs and 2 outputs.

4-to-2 Active Low
Encoder
**What happens if more than 1 input is ' 0 ' $\left(D_{1}=0\right.$ and $\left.D_{2}=0\right)$?

$$
A_{1} A_{0}=11 \text { ERROR }
$$

We need a Priority Encoder

ENCODER

PRIORITY ENCODER

- Priority Encoder: Outputs depends on largest active input.

Function:
$A_{1} A_{0}=00$ when $D_{3} D_{2} D_{1} D_{0}=1110$
$A_{1} A_{0}=01$ when $D_{3} D_{2} D_{1} D_{0}=110 X$
$A_{1} A_{0}=10$ when $D_{3} D_{2} D_{1} D_{0}=10 X X$
$A_{1} A_{0}=11$ when $D_{3} D_{2} D_{1} D_{0}=0 X X X$
Which implies:

$$
\begin{aligned}
& A_{1}=D_{3} \overline{D_{2}} D_{1} D_{0}+\overline{D_{3}} D_{2} D_{1} D_{0} \\
& A_{0}=D_{3} D_{2} \overline{D_{1}} D_{0}+\overline{D_{3}} D_{2} D_{1} D_{0}
\end{aligned}
$$

4-to-2 Active Low Priority Encoder
**What happens if more than 1 input is ' 0 ' $(D 0=0$ and $D 1=0)$?

Output $A_{1} A_{0}=01$

(1)	Inputs				Outputs	
ত	D_{3}	D_{2}	D_{1}	D_{0}	A_{1}	A_{0}
ᄃ	1	1	1	0	0	0
윽	1	1	0	X	0	1
$\stackrel{5}{5}$	1	0	X	X	1	0
ㄴ	0	X	X	X	1	1

BCD TO 7 SEGMENT DISPLAY DECODER

BCD TO 7 SEGMENT DECODER (0)UTM INTRODUCTION

- BCD to 7 segment decoder accept BCD codes on it inputs, and provides outputs to drive 7-segment display to produce decimal read out.

Logic symbol for BCD to 7segment decoder with Active-Low output

BCD TO 7 SEGMENT DECODER (0)UTM INTRODUCTION

- Two type of 7-segment display;

1. Common Anode.
2. Common Cathode.

BCD TO 7 SEGMENT DECODER
 UTM

INTRODUCTION: 74x47 IC

- The 74×47 is example of IC device that decodes a BCD input and drives the 7 -segment display.
- The 74×47 is a common anode displays.

BCD TO 7 SEGMENT DECODER (0)UTM

 INTRODUCTION: 74x47 IC- The 74×47 is example of IC device that decodes a BCD input and drives the 7 -segment display.
- The 74×47 is a common anode displays.

Connection Diagram

Logic Symbol

- Function: Converts 4-bit BCD (A3, A2, A1, A0) to 7-segment LED (a, b, c, d, e, f, g)

BCD TO 7 SEGMENT DECODER
 UTM INTRODUCTION: 74x47 IC

Segments turn on and off to 56789 display different numbers

EXAMPLE

A 7-segment decoder drives the display as figure below. If waveforms are applied as indicated, determine the sequence of digits that appears on display.

BCD TO 7 SEGMENT DECODER
 UTM
 UNIVERSITI TEKNOLOGI MALAYSIA
 EXAMPLE

Decimal Value	BCD Code	7- Segment Display Code						
		a	b	c	d	e	f	g
0	0000	0	0	0	0	0	0	1
1	0001	1	0	0	1	1	1	1
2	0010	0	0	1	0	0	1	0
3	0011	0	0	0	0	1	1	0
4	0100	1	0	0	1	1	0	0
5	0101	0	1	0	0	1	0	0
6	0110	0	1	0	0	0	0	0
7	0111	0	0	0	1	1	1	1
8	1000	0	0	0	0	0	0	0
9	1001	0	0	0	1	1	0	0

Answer: $1 \Rightarrow 6 \Rightarrow 9 \Rightarrow 4 \Rightarrow 4 \Rightarrow 4$ $\Rightarrow 8 \Rightarrow 0$

innovative • entrepreneurial • global

ADDERS

ADDERS \& COMPARATOR

ADDERS: INTRODUCTION

- Adders combine two operand arithmetically using binary addition rules.

ADDERS \& COMPARATOR

ADDERS: HALF ADDER

- Half Adder accepts two binary digits on its inputs and produce two binary digits on its outputs, sum bit and carry bit.

Truth Table for Half Adder

Inputs		Outputs	
A	B	$C_{\text {out }}$	Sum
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

- From the operation of half adder, we can derived that:

$$
\begin{aligned}
& C_{\text {out }}=A B \\
& \text { Sum }=A \bar{B}+\bar{A} B=A \oplus B
\end{aligned}
$$

ADDERS \& COMPARATOR

ADDERS: FULL ADDER

- Full Adder accepts two inputs bits \& input carry and generate sum output \& output carry.

Truth Table for Full Adder

Inputs			Outputs	
A	B	$C_{\text {in }}$	$C_{\text {out }}$	Sum
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Logic Symbol of Full Adder

ADDERS \& COMPARATOR

ADDERS: FULL ADDER

- From the operation of Full Adder, we can derives Boolean equation of $C_{\text {out }}$ and Sum using K-map.

$$
C_{\text {out }}=C_{\text {in }} B+C_{\text {in }} A+A B
$$

$$
\begin{aligned}
\Sigma & =C_{i n} \bar{A} \bar{B}+C_{\text {in }} A B+\overline{C_{i n}} \bar{A} B+\overline{C_{i n}} A \bar{B} \\
& =C_{i n}(\bar{A} \bar{B}+A B)+\overline{C_{i n}}(\bar{A} B+A \bar{B}) \\
& =C_{i n}(\bar{A} B+A \bar{B})+\overline{C_{i n}}(\bar{A} B+A \bar{B}) \\
& =C_{i n} \oplus A \oplus B
\end{aligned}
$$

ADDERS \& COMPARATOR ADDERS: FULL ADDER

- Logic circuit of Full Adder:

ADDERS \& COMPARATOR

ADDERS: FULL ADDER

- How to design Full Adder using Half Adder?

ADDERS \& COMPARATOR

ADDERS: RIPPLE CARRY ADDER

- Ripple Carry Adder is used to add multiple bit binary numbers.
- The carry-out output from a state is connected to the carry-in input of the next state.
- To design 4-bit ripple carry adder, we need 4 full adders.
- \quad Input $=A_{3} A_{2} A_{1} A_{0}, B_{3} B_{2} B_{1} B_{0}$ and C_{0} (C_{0} initially set to 0).
- Output $=S_{3} S_{2} S_{1} S_{0}$ and C_{4}.

ADDERS \& COMPARATOR

 ADDERS: RIPPLE CARRY ADDER
Example 1

$1001+0101$

ADDERS \& COMPARATOR

ADDERS: RIPPLE CARRY ADDER

- The 74×83 is an example of IC device for faster 4-bit ripple carry adder.

ADDERS \& COMPARATOR

Example 2

Figure below shows the block diagram of a two bits adder A2A1 and B2B1 addition. The result should be in three bits binary number C2S2S1. Obtain the truth table for output $\mathrm{C} 2, \mathrm{~S} 2$ and S1.

ADDERS \& COMPARATOR

Example 2

Figure below shows the block diagram of a two bits adder A2A1 and B2B1 addition. The result should be in three bits binary number C2S2S1. Obtain the truth table for output $\mathrm{C} 2, \mathrm{~S} 2$ and S1.

Truth Table for 2 bits Binary Addition

| Input | | | | Output | | | Input | | | | Output | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A2 | A1 | B2 | B 1 | C2 | S2 | S1 | A2 | A1 | B2 | B1 | C2 | S2 | S1 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 |
| 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
| 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 |
| 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |

ADDERS \& COMPARATOR

Example 2(cont.)

Design the adder using three half adder and logic gate by completing figure as follows:
$\begin{array}{llll}A_{1} & B_{1} & A_{2} & B_{2}\end{array}$

ADDERS \& COMPARATOR

Example 2(cont.)

Design the adder using three half adder and logic gate by completing figure as follows:

	C_{1}
	$A_{2} A_{1}$
$+\quad$	$B_{2} B_{1}$
C_{2}	$S_{2} S_{1}$

ADDERS \& COMPARATOR

Example 2(cont.)

Design the adder using three half adder and logic gate by completing figure as follows:

ADDERS

ADDERS \& COMPARATOR

ADDERS: INTRODUCTION

- Adders combine two operand arithmetically using binary addition rules.

ADDERS \& COMPARATOR

ADDERS: HALF ADDER

- Half Adder accepts two binary digits on its inputs and produce two binary digits on its outputs, sum bit and carry bit.

Truth Table for Half Adder

Inputs		Outputs	
A	B	$C_{\text {out }}$	Sum
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

- From the operation of half adder, we can derived that:

$$
\begin{aligned}
& C_{\text {out }}=A B \\
& \text { Sum }=A \bar{B}+\bar{A} B=A \oplus B
\end{aligned}
$$

ADDERS \& COMPARATOR

ADDERS: FULL ADDER

- Full Adder accepts two inputs bits \& input carry and generate sum output \& output carry.

Truth Table for Full Adder

Inputs			Outputs	
A	B	$C_{\text {in }}$	$C_{\text {out }}$	Sum
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Logic Symbol of Full Adder

ADDERS \& COMPARATOR

ADDERS: FULL ADDER

- From the operation of Full Adder, we can derives Boolean equation of $C_{\text {out }}$ and Sum using K-map.

$$
C_{\text {out }}=C_{\text {in }} B+C_{\text {in }} A+A B
$$

$$
\begin{aligned}
\Sigma & =C_{i n} \bar{A} \bar{B}+C_{\text {in }} A B+\overline{C_{i n}} \bar{A} B+\overline{C_{i n}} A \bar{B} \\
& =C_{i n}(\bar{A} \bar{B}+A B)+\overline{C_{i n}}(\bar{A} B+A \bar{B}) \\
& =C_{i n}(\bar{A} B+A \bar{B})+\overline{C_{i n}}(\bar{A} B+A \bar{B}) \\
& =C_{i n} \oplus A \oplus B
\end{aligned}
$$

ADDERS \& COMPARATOR ADDERS: FULL ADDER

- Logic circuit of Full Adder:

ADDERS \& COMPARATOR

ADDERS: FULL ADDER

- How to design Full Adder using Half Adder?

ADDERS \& COMPARATOR

ADDERS: RIPPLE CARRY ADDER

- Ripple Carry Adder is used to add multiple bit binary numbers.
- The carry-out output from a state is connected to the carry-in input of the next state.
- To design 4-bit ripple carry adder, we need 4 full adders.
- \quad Input $=A_{3} A_{2} A_{1} A_{0}, B_{3} B_{2} B_{1} B_{0}$ and C_{0} (C_{0} initially set to 0).
- Output $=S_{3} S_{2} S_{1} S_{0}$ and C_{4}.

ADDERS \& COMPARATOR

 ADDERS: RIPPLE CARRY ADDER
Example 1

$1001+0101$

ADDERS \& COMPARATOR

ADDERS: RIPPLE CARRY ADDER

- The 74×83 is an example of IC device for faster 4-bit ripple carry adder.

ADDERS \& COMPARATOR

Example 2

Figure below shows the block diagram of a two bits adder A2A1 and B2B1 addition. The result should be in three bits binary number C2S2S1. Obtain the truth table for output $\mathrm{C} 2, \mathrm{~S} 2$ and S1.

ADDERS \& COMPARATOR

Example 2

Figure below shows the block diagram of a two bits adder A2A1 and B2B1 addition. The result should be in three bits binary number C2S2S1. Obtain the truth table for output $\mathrm{C} 2, \mathrm{~S} 2$ and S1.

Truth Table for 2 bits Binary Addition

| Input | | | | Output | | | Input | | | | Output | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A2 | A1 | B2 | B 1 | C2 | S2 | S1 | A2 | A1 | B2 | B1 | C2 | S2 | S1 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 |
| 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
| 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 |
| 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |

ADDERS \& COMPARATOR

Example 2(cont.)

Design the adder using three half adder and logic gate by completing figure as follows:
$\begin{array}{llll}A_{1} & B_{1} & A_{2} & B_{2}\end{array}$

ADDERS \& COMPARATOR

Example 2(cont.)

Design the adder using three half adder and logic gate by completing figure as follows:

	C_{1}
	$A_{2} A_{1}$
$+\quad$	$B_{2} B_{1}$
C_{2}	$S_{2} S_{1}$

ADDERS \& COMPARATOR

Example 2(cont.)

Design the adder using three half adder and logic gate by completing figure as follows:

COMPARATOR

ADDERS \& COMPARATOR

COMPARATOR: EQUALITY

- Comparator is used to compare the magnitude of two binary quantities to determine the relationship of those quantities.
- As learned in Chapter 3, the exclusive-NOR gate can be used as a basic comparator.

The input bits are equal.

$$
S=\overline{\bar{A} \cdot B+A \cdot \bar{B}}=\overline{\overline{0} \cdot 0+0 \cdot \overline{0}}=\overline{1 \cdot 0+0 \cdot 1}=\overline{0}=1
$$

ADDERS \& COMPARATOR

COMPARATOR: EQUALITY

- Comparator is used to compare the magnitude of two binary quantities to determine the relationship of those quantities.
- As learned in Chapter 3, the exclusive-NOR gate can be used as a basic comparator.

$$
S=\overline{\bar{A} \cdot B+A \cdot \bar{B}}=\overline{\overline{0} \cdot 1+1 \cdot \overline{0}}=\overline{1 \cdot 1+1 \cdot 1}=\overline{1}=0
$$

ADDERS \& COMPARATOR

COMPARATOR: EQUALITY

- Comparator is used to compare the magnitude of two binary quantities to determine the relationship of those quantities.
- As learned in Chapter 3, the exclusive-NOR gate can be used as a basic comparator.

The input bits are equal.

The input bits are not equal.

The input bits are not equal.
 The input bits are equal.

- In order to compare binary number containing two each bits, an additional excusive-NOR, NOT and AND gate are necessary.

ADDERS \& COMPARATOR

COMPARATOR: EQUALITY

- The output indicate (1) is equality while (0) is inequality.

ADDERS \& COMPARATOR

COMPARATOR: INEQUALITY

- In addition to equality output, many IC comparators (74×85) provide additional outputs that indicate which of the two binary numbers being compared is the larger.
- That is, $(\boldsymbol{A}>\boldsymbol{B}) \&(\boldsymbol{A}<\boldsymbol{B})$.

- To determine inequality of numbers A and B, first examine the highest order bit in each number:
- If $A_{3}=1$ and $B_{3}=0 ; \boldsymbol{A}>\boldsymbol{B}$
- If $A_{3}=0$ and $B_{3}=1 ; \boldsymbol{A}<\boldsymbol{B}$
- If $A_{3}=B_{3}$; then examine the next lower bit position for an inequality.

ADDERS \& COMPARATOR

COMPARATOR: INEQUALITY

- The truth table for 74×85 comparator.

A_{1}	A_{0}	B_{1}	B_{0}	$A=B$ $\left(F_{1}\right)$	$A>B$ $\left(F_{2}\right)$	$A<B$ $\left(F_{3}\right)$
0	0	0	0	1	0	0
0	0	0	1	0	0	1
0	0	1	0	0	0	1
0	0	1	1	0	0	1
0	1	0	0	0	1	0
0	1	0	1	1	0	0
0	1	1	0	0	0	1
0	1	1	1	0	0	1

A_{1}	A_{0}	B_{1}	B_{0}	$A=B$ $\left(F_{1}\right)$	$A>B$ $\left(F_{2}\right)$	$A<B$ $\left(F_{3}\right)$
1	0	0	0	0	1	0
1	0	0	1	0	1	0
1	0	1	0	1	0	0
1	0	1	1	0	0	1
1	1	0	0	0	1	0
1	1	0	1	0	1	0
1	1	1	0	0	1	0
1	1	1	1	1	0	0

ADDERS \& COMPARATOR

COMPARATOR: INEQUALITY

- By using K-map, expression of F1, F2 and F3 are obtained as follows
For $A=B$:
$F_{1}=\overline{A_{1}} \cdot \overline{A_{0}} \cdot \overline{B_{1}} \cdot \overline{B_{0}}+\overline{A_{1}} \cdot A_{0} \cdot \overline{B_{1}} \cdot B_{0}+A_{1} \cdot \overline{A_{0}} \cdot B_{1} \cdot \overline{B_{0}}+A_{1} \cdot A_{0} \cdot B_{1} \cdot B_{0}$
For $A>B$:
$F_{1}=A_{1} \cdot \overline{B_{1}}+A_{0} \cdot \overline{B_{1}} \cdot \overline{B_{0}}+A_{1} \cdot A_{0} \cdot \overline{B_{0}}$
For $A<B$:
$F_{1}=\overline{A_{1}} \cdot B_{1}+\overline{A_{0}} \cdot B_{1} \cdot B_{0}+\overline{A_{1}} \cdot \overline{A_{0}} \cdot B_{0}$

ADDERS \& COMPARATOR

Example 4

The waveform are applied to comparator as shown. Determine the output $(A=B)$ waveform.

