
SEEE1022
INTRODUCTION TO
SCIENTIFIC
PROGRAMMING

CH6
Controlled Input

and Output
Dr. Mohd Saiful Azimi Mahmud (azimi@utm.my)
P19a-04-03-30, School of Electrical Engineering, UTM

OBJECTIVES

1. Prompt the user for input to an M-file program.
2. Display output using the disp function.
3. Create formatted output using fprintf and sprintf.
4. Import and export ASCII and binary files using load and save functions.
5. Import and export spreadsheet files using xlsread and xlswrite functions.
6. Know how to perform debugging .

1

IMPORT & EXPORT DATA

18

INTRODUCTION

• At some point, you will often need to store data on a disk.

• The process of moving data between MATLAB and disk are as follows:
• IMPORT – from disk to MATLAB workspace.

• EXPORT – from MATLAB workspace to disk.

• Data stored on the disk can be in two formats:
1. Text format– data values are ASCII codes.

2. Binary format – not ASCII, just binary number. Cannot be viewed in text editor.

• MATLAB use function load and save to import and export the data respectively.

19

save FUNCTION

EXAMPLE 8

IMPORT & EXPORT DATA

• save function save (export) data to disk at MATLAB current folder.

>> a = [1 2 3 4];

>> b = [2 4 6 8];

>> save data1.mat

>> save data2.dat –ascii’)

>> save data3.dat –mat

>> save data4.dat a -ascii

• data1.mat is a binary file (default). The file contain all variable
available from the workspace. In this example both a and b.

• data2.dat is an ASCII file contain both a and b

• data3.dat is a binary file

• data4.dat is an ASCII file contain only values from variable a.

• save function accept any extension filename.

20

IMPORT & EXPORT DATA
Load FUNCTION: BINARY FILE

EXAMPLE 9

>> a = [1 2 3 4];

>> b = [2 4 6 8];

>> save data1.mat

>> save data2.dat –mat

>> clear

>> load data1.mat

>> whos

Name Size Bytes Class Attributes

a 1x4 32 double

b 1x4 32 double

• Binary file save both the variable
name and its values.

• Thus, loading the binary data into
MATLAB will import the variables as
it was saved.

• Loading data2.dat will results the
same.

21

Load FUNCTION: ASCII FILE

EXAMPLE 10

IMPORT & EXPORT DATA

>> a = [1 2 3 4];

>> b = [2 4 6 8];

>> save data1.dat –ascii

>> clear

>> load data1.dat

>> whos

Name Size Bytes Class Attributes

data1 2x4 64 double

>> data1

data1 =

1 2 3 4

2 4 6 8

• ASCII file only save the variables
values as text.

• Thus, loading the ASCII data into
MATLAB will import only the values.

• Imported variable name is the file
name itself.

IMPORT & EXPORT DATA

22

EXAMPLE : GREEK LETTER CONVERSION TABLE

• In this example, we are going to create a function that convert a string of Greek letter
name (e.g. ‘alpha’, ‘beta’) to its hex value. This hex value will be very useful when we
want to display the Greek letter using fprintf or sprintf function.

• To do this, we will:
1. Create a .mat file containing the conversion table. The idea of creating the table in a file is

so that it can be easily updated later. Thus, updating the table does not require us to
update the program file since program file is normally available to the programmer only,
not to the user.

2. Create the conversion function according to the conversion table file.

• In this example, cell array data type will be used (not previously covered). Basically, cell
array is just like a normal array but it can have a mix data type inside the array. Other
than that, it use a curly bracket {} for accessing its array elements.

EXAMPLE 11

23

IMPORT & EXPORT DATA
EXAMPLE : GREEK LETTER CONVERSION TABLE

1. Create the table as a cell array data and save it into a binary .mat file. To make the
process easy, we can write below script file for this purpose.

EXAMPLE 11

GLtable = {'alpha' 'beta' 'gamma' 'delta' 'epsilon' ...

'zeta' 'eta' 'theta'};

N = length(GLtable);

startDecVal = hex2dec('3B1');

for n = 1:N

dec = startDecVal + n-1;

hex = dec2hex(dec);

GLtable{2,n} = hex;

end

save 'GreekLetterHexTable.mat' GLtable

• Try to write the pseudo code for the above program
to understand how it is done.

24

IMPORT & EXPORT DATA
EXAMPLE : GREEK LETTER CONVERSION TABLE

2. Create the conversion function.

EXAMPLE 11

function GLhex = GL2hex(GLname)

load GreekLetterHexTable %import the conversion table

N = length(GLtable);

for n = 1:N

currentGL = GLtable{1,n};

compareMAT = char(GLname,currentGL);

if compareMAT(1,:) == compareMAT(2,:)

GLhex = GLtable{2,n};

break

end

end

>> beta = GL2hex('beta’)

beta =

'3B2'

25

OTHER FILE FORMAT

IMPORT & EXPORT DATA

• Other than the binary and ASCII file format, there are many other file formats that can
be imported and exported between the MATLAB workspace and disk.

• Spreadsheet, audio, image, video, scientific data and XML document are among those
other file formats.

• Instead of load and save, MATLAB use read and write notation to import and
export data from these files respectively.

• In this chapter, we will only discuss on how to read and write a spreadsheet file (See
MATLAB documentation for other type of files).

26

READ AND WRITE SPREADSHEET

IMPORT & EXPORT DATA

• Syntax:

• Description
1. filename is the name of the spreadsheet file.

2. sheet is the worksheet number.

3. xlRange is a string describing rectangular region on the worksheet. For example ‘A1:C3’.

4. A is the matrix to be written on the worksheet.

5. The only compulsory input to the functions is filename. In this case, default value for
sheet is 1 and xlRange starts at cell A1.

6. See MATLAB documentation for full list of syntax and its detail description.

xlsread(filename,sheet,xlRange) %import data

xlswrite(filename,A,sheet,xlRange) %export data

27

TEMPERATURE DATA

IMPORT & EXPORT DATA

EXAMPLE 11

A temperature reading in ℃ at a room was recorded and saved in a tempData.xlsx file.
Convert all the temperature reading into Kelvin (℉) and save the values on same file after
the degree column.

28

TEMPERATURE DATA

IMPORT & EXPORT DATA

EXAMPLE 11

tempC = xlsread('tempData.xlsx','B2:Z2');

tempK = tempC + 273.15;

fprintf('%d\x2103 %10.2f\x2109\n',[tempC;tempK])

xlswrite('tempData.xlsx',tempK,'B3:Z3');

23℃ 296.15℉
24℃ 297.15℉
23℃ 296.15℉
24℃ 297.15℉
24℃ 297.15℉
. .

. .

34℃ 307.15℉

• Open the file tempData.xlsx to see
the result.

DEBUGGING

33

DEBUGGING
DEBUGGING YOUR CODE

• A software bug is a problem that exists in the code you have written.

• Three different types of errors are:
1. Syntax errors: you simply have typed an illegal expression, independent of the values of

the variables in the expression.

2. Run-time errors: logic errors that result in an illegal expression for specific values of the
data (harder to fix)

3. Logic errors that result in the program executing completely, but the answer that they
return is incorrect (hardest to fix).

• MATLAB® includes a number of tools to help you debug your code, including the error
bar and more comprehensive tools that allow you to step through the code

34

DEBUGGING
ERROR BAR

• Whenever you use an M-file, notice that along the right-hand side of the figure
window a vertical bar appears

• That marks locations where there are actual errors or where MATLAB® has issued
warnings

35

DEBUGGING
ERROR BAR

• If the errors shown on the error bar are marked in red, they will cause the M-file to
stop executing

36

DEBUGGING
BREAKPOINTS

• When trying to find logic errors in a piece of code, it is often useful to run sections of
the program, then to stop, evaluate what has happened, and continue.

• Debugging toolbar allows you to set breakpoints (places in the code where the
execution stops while you evaluate results) and to step through the code one line at a
time. Breakpoints can’t be enabled until all of the syntax errors have been resolved.

36

DEBUGGING

Set/clear
breakpoint icon

Continue to next
breakpoint

Step icon

Breakpoint

The execution is
paused here

