SEEE1022 INTRODUCTION TO SCIENTIFIC PROGRAMMING

CH7 Graphic

Dr. Mohd Saiful Azimi Mahmud (azimi@utm.my) P19a-04-03-30, School of Electrical Engineering, UTM

(0)UTM OBJECTIVES

- 2-dimensional line plot function and the properties
- Sub-plot function
- Specialized 2-D plot functions

1. Discrete graph: stem
2. Log
3. Histogram
4. Polar
5. Bar graph and pie chart

- Figure editing using wizard

(6) UTM

INTRODUCTION

(ㅇ)UTM INTRODUCTION

WHY PLOTTING?

- Pictorial way of representing relationships between various quantities. It shows how one quantity changes if another quantity that is related to it also changes.
- Graph summarize huge information into one picture, thus easier to analyze the collected data.
- Easy way of comparing multiple measured data.

(0)UTM INTRODUCTION

SCIENTIFIC DATA

- In scientific data, each recorded value is called a sample. The collection of the samples form a data as a vector.
- Practically, each of this sample is recorded according to the change of another parameter such as time, angle, distance and etc. In math, this parameter is called function variable.
- For example, $\mathrm{V}(\mathrm{t})$ is a voltage reading over time, or voltage function relating to time.
- Thus, recording scientific data will at least save two types of vectors:

1. The measured variable itself.
2. The function variable.

(0)UTM INTRODUCTION scientific data

No	Data	Measured Variable	Function Variable	No. of samples
1	Temperature recorded every $0.5 s$ for 1 minute.	Temperature	Time. $0: 0.5: 60$	121
2	Voltage output of an RC circuit for 20 value of frequency range between 10 Hz and 100 Hz .	Output Voltage	Frequency linspace (10,1 00,20)	20
3	Angle of a servo motor when supplied with 10 different input voltage values between 0 V to 5 V	Angle	Input voltage linspace (0,5, 10)	10
4	Electrocardiography (volt) reading of a heart captured at 200 sample per second for 1 minute	Volt	$\begin{gathered} \text { Time } \\ 0: 1 / 200: 60 \end{gathered}$	12001
5	Number of chairs in Classroom 1 until Classroom 10.	Total chairs	classroom	10

(ㅇ)UTM INTRODUCTION

PLOTTING DATA

- Plotting the scientific data will be as follows:

1) y-axis - Measured variable
2) x-axis - Function variable

- Both main variable and function variable vectors must have the same length.

(3) UTM

2-D PLOT

(ㅇ)UTM 2-D PLOT

2-D LINE PLOT FUNCTION

- Function plot () can be used to perform 2-D line plot.
- Syntax:

```
plot(X, Y, LineSpec)
```

- Description:

1. Plot data in Y versus the corresponding values in X, which can be either scalar, vector or matrix. The size of variable Y and X must agreed.
2. X data is optional. If not specified, Y data sample-number will be used.
3. LineSpec is optional. This define the line style, marker symbol and colour of the plotted line.

(0)UTM 2-D PLOT
 2-D LINE PLOT EXAMPLE

EXAMPLE 1

Plot a function $\mathrm{y}=e^{x / 2}$ for $x=[1,2, \ldots, 10]$

```
x = 1:10;
y = exp(x/2);
plot(x,y);
```

TRY: plot (y)
What do you get and why?

(0) UTM 2-D PLOT

Linespec

Line Style	Description
' - '	Solid line (default)
'-'	Dashed line
$\because '$	Dotted line
$\ddots-$.	Dash-dot line

Colour	Description
r	Red
g	Green
b	Blue
c	Cyan
m	Magenta
y	Yellow
k	Black
w	White

Marker	Description
+	Plus sign
o	Circle
$\boldsymbol{*}$	Asterisk
$\mathbf{~}$	Point
\mathbf{x}	Cross
s	Square
d	Diamond
p	Pentagram
h	Hexagram
^	Upward-pointing triangle
v	Downward-pointing triangle
$\mathbf{>}$	Right-pointing triangle
$\boldsymbol{<}$	Left-pointing triangle

(0)UTM 2-D PLOT
 2-D LINE PLOT EXAMPLE

EXAMPLE 2

Plot a function $y=\sin (5 x)$ for $x=\{1,10, \ldots, 500\}$

```
x = 1:10:500;
y = sin(5*x);
plot(x, y, '- m o')
```

This time, plot (y) will not work. WHY?

' - m o' are LineSpec properties for solid line, magenta colour, and circle marker. Space between properties is optional.

PLOT FORMATTING

No	Properties	Function
$\mathbf{1}$	Title and Label	title
		xlabel, ylabel
		legend
$\mathbf{2}$	Axes limits and aspect ratio	text
$\mathbf{3}$	Grid lines and tick ylim	
		Axis
$\mathbf{4}$	Multiple plots	grid

(3)UTM 2-D PLOT

2-D PLOT WITH SEVERAL PLOT PROPERTIES

EXAMPLE 2

```
w = linspace(0,2*pi,1000);
y = sin(w);
plot(w/pi,y)
xlabel('\omega'), ylabel('sin(\omega)')
xtickformat('%.2f\x3C0')
title('Sin(\omega) Graph')
gridon
```


(ㅈ)UTM 2-D PLOT

MULTIPLE PLOT ON A SINGLE GRAPH

- Multiple plot drawn on the same graph is very useful when we want to compare the data with different settings.
- Syntax:

```
plot(X1, Y1, LineSpec1, X2, Y2, LineSpec2, ..., Xn,
Yn, LineSpecn)
```

- For multiple plot, legend is use as the identifier for each plot. It can be set by using the following function:

```
legend ('plot1 legend','plot2 legend'..., 'plotn
legend')
```


(0)UTM 2-D PLOT

MULTIPLE PLOT ON A SINGLE GRAPH

EXAMPLE 4

Visualize the intersection of the two polynomials below:

$$
\begin{aligned}
& f(x)=3 x^{4}+2 x^{3}+7 x^{2}+2 x+9 \\
& g(x)=5 x^{3}+9 x+2
\end{aligned}
$$

Plot the graph for $x=[-10,-9.5,-8.0, \ldots, 8.0,9.5,10]$

```
x = -10:0.5:10;
f = 3*x.^4 + 2*x.^3 + 7*x + 9;
g = 5*x.^3 + 9*x + 2;
plot(x,f,'- x m',x,g,'-- o k')
legend('f(x)','g(x)')
xlabel('x')
title('Intersection of Two Polynomials')
```

RECAP: LineSpec is
optional, if it is not defined for any line plot, the default will be used instead

MULTIPLE PLOT ON A SINGLE GRAPH

EXAMPLE 4

(ㅇ)UTM 2-D PLOT

SUBPLOT FUNCTION

- An array of plots can be created in the same figure, each of this plot is plotted as a subplot.
- Syntax:

```
subplot(m,n,p)
```

- Description:

1. m and n, specify the grid division size/slot on the current figure.
2. p define the position of the particular plot in the divided figure's grid. Column first then row (opposite to array linear indexing).

(ㅇ)UTM 2-D PLOT

SUBPLOT : UPPER \& LOWER PLOT

- Upper and lower subplot can be defied by 2-by-1 grid

EXAMPLE 5

Create a figure with two stacked subplots of $y=\cos (3 x)$ and $z=\sin (x)$ for $x=[1,2, \ldots, 10]$.

```
x = linspace(0,10,100);
y = cos(3*x);
z = sin(x);
subplot(2,1,1), plot(x,y)
title('y = cos(3x)');
subplot(2,1,2), plot(x,z)
tittle('z = sin(x)');
```


(0)UTM 2-D PLOT

SUBPLOT : UPPER \& LOWER PLOT

- Upper and lower subplot can be defied by 2-by-1 grid

EXAMPLE 5

(ㅈ)UTM 2-D PLOT

SUBPLOT : RC CIRCUIT

EXAMPLE 6

- In analysing an RC circuit with an AC input voltage, two responses need to be plotted. They are magnitude and phase responses. Below is the equation to obtain both responses where R is resistor value in ohm, C is the capacitor value in farad and f is the frequency of the $A C$ input voltage:

$$
\begin{gathered}
H=\frac{1}{1+j 2 \pi f R C} \\
\text { Magnitude }=\frac{1}{\sqrt{1+(2 \pi f R C)^{2}}}, \quad \text { Phase }=-\tan ^{-1}(2 \pi f R C)
\end{gathered}
$$

- In MATLAB, we can use function abs (H) and angle (H) to automatically compute Magnitude and Phase from H respectively.
- Magnitude is a ratio, thus no unit. On the other hand, the unit of Phase is radian.
- Write a MATLAB script to plot both of the Magnitude and Phase responses when $R=4.7 \mathrm{k} \Omega$ and $C=0.47 \mu F$ for the value of f between 0 Hz to 10 kHz .

© (OUTM 2-D PLOT
 SUBPLOT : RC CIRCUIT

EXAMPLE 6

```
C = 0.47e-6;
R = 4.7e3;
f = 0:10000;
H = 1./(1+1i*2*pi*f*R*C);
Magnitude = abs(H);
Phase = angle(H);
subplot(2,1,1), plot(f/1000,Magnitude)
xlabel('Frequency,f')
xtickformat('%.Of kHz')
ylabel('Magnitude')
subplot(2,1,2), plot(f/1000,Phase/pi)
xlabel('Frequency,f')
xtickformat('%.Of kHz')
ylabel('Phase')
ytickformat('%.1f\x3C0')
```


(3)UTM 2-D PLOT
 SUBPLOT : RC CIRCUIT

EXAMPLE 6

(3)UTM 2-D PLOT

SUBPLOT : QUADRANT

- Quadrant subplot can be defied by 2-by-2 grid.

EXAMPLE 7

Plot 4 sinusoidal signals of 4 different frequencies ($F=1 \mathrm{~Hz}, 2 \mathrm{~Hz}, 3 \mathrm{~Hz}, 4 \mathrm{~Hz}$) on a single figure. Plot the signals for $t=[0: 0.001: 1]$.

```
t = 0:0.001:1;
for F = 1:4
    y = sin(2*pi*F*t);
    subplot(2,2,F), plot(t,y)
    xlabel('Time,t (s)')
    ystring = sprintf('sin(2\x3C0(%d)t)',F);
    ylabel(ystring)
    titlestring = sprintf('%d Cycle',F);
    title(titlestring)
```

end

SUBPLOT : QUADRANT

- Quadrant subplot can be defied by 2-by-2 grid.

EXAMPLE 7

(6) UTM

SPECIAL PLOT

© $\mathbf{0}$ UTM SPECIAL PLOT

DISCRETE GRAPH : STEM

- stem () function is used to plot discrete sequence data
- Syntax:

```
stem(X, Y, LineSpec)
```


Description:

1) Plot the data in Y, at value specified by X.
2) X data is optional. If not specified, Y data sample-number will be used.
3) LineSpec is optional. This define the line style, marker symbol and colour of the plotted line.

(3)UTM SPECIAL PLOT

 STEM : DISCRETE SIGNAL

 STEM : DISCRETE SIGNAL}

EXAMPLE 8

Plot discrete signal of $\sin (\omega n)$ for $n=[1,2,3, \ldots, 100]$ by setting $\omega=0.04 \pi$.

```
n = 0:100;
w = 0.04*pi;
y = sin(w*n);
stem(n,y)
xlabel('sample, n')
ylabel('sin(\omegan)')
t_string = sprintf(['Discrete Sinusoidal Signal' ...
    ' for \x3C9 = %.2f\x3C0'],w/pi);
title(t_string)
```

Try change $\omega=0.01 \pi$ and observe the advantage of using function sprintf

(0)UTM SPECIAL PLOT

STEM : DISCRETE SIGNAL

EXAMPLE 8

(0) UTM SPECIAL PLOT

LOGARITHMIC PLOT

- A logarithmic scale is a nonlinear scale used when there is a large range of quantities.
- Common uses include:
- Earthquake strength (Richter Magnitude).
- Sound loudness (Decibel).
- pH for acidity.
- Frequency range (Bode plot).
- Syntax:

```
semilogx(X,Y,LineSpec) %x-axis log plot
semilogy(X,Y,LineSpec) %y-axis log plot
loglog(X,Y,LineSpec) %both axis log plot
```


(0)UTM SPECIAL PLOT

LOUDNESS

EXAMPLE 9

Environment loudness (strength of sound) was recorded on several occasion as below. Plot the data using normal plot and logarithmic plot. Then, compare the two plots.

Occasion	Loudness (watt)
Library	7.94×10^{2}
Cafeteria	1.26×10^{6}
Inside travelling car	3.16×10^{8}
Train station	1.58×10^{9}
Riding motorcycle	6.3×10^{9}
Rock concert	1.99×10^{11}

(3)UTM SPECIAL PLOT
 LOUDNESS

EXAMPLE 9

```
L = [7.94e2, 1.26e6, 3.16e8, 1.58e9, 6.3e9, 1.99e11];
Occasion = {'Library','Cafeteria','Car'
    'Train','Motorcycle','Concert'};
subplot(2,1,1), plot(L,'- b o')
xticks(1:6)
xticklabels(Occasion)
xlabel('Occasion')
ylabel('Loudness (Watt)')
title('Normal Plot')
subplot(2,1,2), semilogy(L,'- b O')
xticks(1:6)
xticklabels(Occasion)
xlabel('Occasion')
ylabel('Loudness (Watt)')
title('Log Plot')
```


(0)UTM SPECIAL PLOT

LOUDNESS

EXAMPLE 9

(0)UTM SPECIAL PLOT

BODE PLOT

EXAMPLE 10

Back to Example 6, Magnitude and Phase are actually better plotted using bode plot since there are important information in the lower frequency range. Below is how they are plotted with bode plot.

```
C = 0.47e-6; R = 4.7e3; f = 0:10000;
H = 1./(1+1i*2*pi*f*R*C);
Magnitude = 20*log(abs(H));
Phase = angle(H);
subplot(2,1,1), semilogx(f,Magnitude)
xlabel('Frequency,f (Hz)')
ylabel('Magnitude')
subplot(2,1,2), semilogx(f,Phase/pi)
xlabel('Frequency,f (Hz)')
ylabel('Phase')
ytickformat('%.1f\x3C0')
```


(0)UTM SPECIAL PLOT

BODE PLOT

EXAMPLE 10

(0)UTM SPECIAL PLOT

histogram

- Histogram plot could be performed by using histogram () function.
- The histogram function automatically chooses an appropriate number of bins with a uniform width to cover the range of values in the data list, and show the shape of the underlying distribution.
- Syntax:

```
histogram(X,nbins)
histogram(X,edges)
```


Description:

1) X is the data to be plotted on the histogram.
2) nbins a scalar defining the custom number of user defined bins.
3) edges is a vector defining the bin edges of the histogram.

(3)UTM SPECIAL PLOT
 HISTOGRAM : TEST SCORE

EXAMPLE 11

Below is a program code to visualize the test 1 scores of a class when uniformly group into 4 and 20 score ranges.

```
marks = xlsread(['MARKS-2017181-SKEE1022 - Sec01' ...
    ' SKEL.xlSx'],2,'E6:E34');
subplot(1,2,1), histogram(marks,0:2:40)
xlabel('Score');
ylabel('No of students')
title('Detail Histogram')
subplot(1,2,2), histogram(marks,0:10:40)
xlabel('Score');
ylabel('No of students')
title('Coarse Histogram')
```


(0)UTM SPECIAL PLOT

HISTOGRAM : TEST SCORE

EXAMPLE 11

(6) UTM

PLOT EDITING USING PLOT TOOLS

(3)UTM PLOT TOOLS

- Alternatively, MATLAB plot/figure could be customized using a GUI based interface called Plot Tools.
- Plot Tools icon \square is available in the figure window.

(0)UTM PLOT TOOLS

- To customize objects in your graph, you can set their properties using the Property Editor. For example, click the axes to display a subset of common axes properties in the Property Editor. Specify a title and an x-axis label by typing text in the empty fields.

Property Editor - Axes				
Title:Colors:Grid: $\square \mathrm{X} \square \mathrm{Y} \square \mathrm{Z}$Box \square Box	X Axis Y Axis Z Axis Font			More Properties...
	X Label: \quad Ticks... ${ }^{\text {a }}$			
	X Limits: $\quad-1$ to 1		\checkmark Auto	
	X Scale: linear		Reverse	
	X Axis Location: bottom		\checkmark	

univteknologimalaysia
©
utm_my
wWW.utm.my
innovative • entrepreneurial • global

