SEEE 1223 DIGITAL ELECTRONICS
 CHAPTER 7: LATCHES AND FLIP FLOPS

DR. MOHD SAIFUL AZIMI BIN MAHMUD
P19a-04-03-30
School of Electrical Engineering
Faculty of Engineering
Universiti Teknologi Malaysia 019-7112948
azimi@utm.my
innovative • entrepreneurial • global

COMBINATIONAL VS SEQUENTIAL LOGIC

COMBINATIONAL VS SEQUENTIAL LOGIC

Logic Circuit for Active-HIGH Input
S-R Latch

LATCHES

INTRODUCTION

- Latch is a type of temporary storage device that has two stable states (bistable).
- It is a basic form of memory, i.e store value of 0 and 1 in a latch.
- Latches are similar to flip-flops because they are bistable devices that can reside in either of two states using a feedback arrangement. In which the outputs are connected back to the opposite inputs.
- Latches however, are considered unstable in modern circuits and rarely used.
- Flip-flops are the dominant sequential circuit element and are present in almost all digital system.

LATCHES

SR LATCH

- The SR Latch (Set-Reset Latch) is the most basic type, which can be constructed using NOR or NAND gates.
- An Active-HIGH input $S R$ Latch is formed with two crosscouple NOR gate.
- An Active-LOW input $\bar{S} \bar{R}$ Latch is formed with two crosscouple NAND gate.

Active-HIGH Input S - R Latch

Active-LOW Input $\bar{S}-\bar{R}$ Latch

LATCHES

ACTIVE-HIGH SR LATCH

- The Active-High SR Latch has two inputs S and R, which will let us control the outputs Q and \bar{Q}.

- Here Q and \bar{Q} feed back into the circuit. They are not the only outputs, they also are the inputs.
- To figure out how Q and \bar{Q} change, we have to look at not only the inputs S and R, but also the current values of Q and \bar{Q} are:

$$
\begin{aligned}
& \boldsymbol{Q}_{\text {next }}=\overline{\left(\boldsymbol{R}+\overline{\boldsymbol{Q}_{\text {current }}}\right)} \\
& \overline{\boldsymbol{Q}_{\text {next }}}=\overline{\left(\boldsymbol{S}+\boldsymbol{Q}_{\text {current }}\right)} \\
& \text { innovative } \bullet \text { entrepreneurial } \bullet \text { } \text { lobal }
\end{aligned}
$$

LATCHES

ACTIVE-HIGH SR LATCH: STORING A VALUE: SR = 00

- What if $S=0$ and $R=0$?
- The equations on the right reduce to:
$\boldsymbol{Q}_{\text {next }}=\overline{\left(\boldsymbol{R}+\overline{\boldsymbol{Q}_{\text {current }}}\right)}$
$=\left(0+\overline{\boldsymbol{Q}_{\text {current }}}\right)=\boldsymbol{Q}_{\text {current }}$
$\overline{\boldsymbol{Q}_{\text {next }}}=\overline{\left(\boldsymbol{S}+\boldsymbol{Q}_{\text {current }}\right)}$
$=\overline{\left(0+\boldsymbol{Q}_{\text {current }}\right)}=\overline{\boldsymbol{Q}_{\text {current }}}$
- So when $S R=00$, then $Q_{\text {next }}=Q_{\text {current }}$. Whatever value of $Q_{\text {current }}$ has, $Q_{\text {next }}$ keeps.
- This is exactly what how the values are stored inside the latch.

LATCHES

ACTIVE-HIGH SR LATCH: SETTING THE LATCH: SR = 10

- What if $S=1$ and $R=0$?
- Since $S=1, \overline{Q_{\text {next }}}$ is 0 , regardless of $Q_{\text {current }}$:

$$
\overline{Q_{\text {next }}}=\overline{\left(S+Q_{\text {current }}\right)}=\overline{\left(1+Q_{\text {current }}\right)}=\overline{\mathbf{1}}=0
$$

- Then, this new value of \bar{Q} goes into the top NOR gate, along with $R=0$.

$$
Q_{\text {next }}=\overline{\left(R+\overline{Q_{\text {current }}}\right)}=\overline{(0+0)}=\mathbf{1}
$$

- So when $S R=10$, then $\overline{Q_{\text {next }}}=0$ and $Q_{\text {next }}=1$.
- This is how you set the latch to 1 . The S input stands for "SET".
- Notice that it can take up to two steps (two gate delays) from the time S becomes 1 to the time $Q_{\text {next }}$ becomes 1 .
- But once $Q_{\text {next }}$ becomes 1, the outputs will stop changing. This is a stable state.

LATCHES

ACTIVE-HIGH SR LATCH: RESETTING THE LATCH: SR = 01

- What if $S=0$ and $R=\mathbf{1}$?
- Since $R=1, Q_{\text {next }}$ is 0 , regardless of $Q_{\text {current }}$:

$$
Q_{\text {next }}=\overline{\left(1+\overline{Q_{\text {current }}}\right)}=\overline{\mathbf{1}}=0
$$

- Then, this new value of Q goes into the bottom NOR gate, along with $S=0$.

$$
\overline{Q_{\text {next }}}=\overline{\left(S+Q_{\text {current }}\right)}=\overline{(0+0)}=1
$$

- So when $S R=01$, then $Q_{\text {next }}=0$ and $\overline{Q_{\text {next }}}=1$.
- This is how you reset, or clear, the latch to 0 . The R input stands for "reset".
- Again, it can take two gate delays before a change in R propagates to the output $\overline{Q_{\text {next }}}$.

LATCHES

ACTIVE-HIGH SR LATCH: WHAT ABOUT: SR = 11

- Both $Q_{n e x t}$ and $\overline{Q_{n e x t}}$ will become 0.
- This contradicts the assumption that Q and \bar{Q} are always complements.
- Another problem is what happens if we then make $S=0$ and $R=0$ together.

$$
\begin{aligned}
& Q_{\text {next }}=(0+0)=\mathbf{1} \\
& Q_{\text {next }}=\frac{(0+0)}{(0+0)}=\mathbf{1}
\end{aligned}
$$

- But these new values go back into the NOR gates, and in the next step we get:

$$
\begin{aligned}
& Q_{\text {next }}=\overline{(0+1)}=0 \\
& \overline{Q_{\text {next }}}=\overline{(0+1)}=\mathbf{0}
\end{aligned}
$$

- The circuit enters an infinite loop, where Q and \bar{Q} cycle between 0 and 1 forever.
- This is actually the worst case, but the moral is don't ever set $S R=11$!

LATCHES

ACTIVE-HIGH SR LATCH

Active-High SR Latch Logic Circuit

- When $S=0$ and $R=0, Q$ and \bar{Q}

Active-High SR Latch Logic Symbol

Inputs		Outputs		Action
S	R	$Q($ next $)$	$\overline{Q(\text { next })}$	
0	0	Q	\bar{Q}	NO CHANGE
0	1	0	1	RESET
1	0	1	0	SET
1	1	0	0	FORBIDDEN

Active-High SR Latch Truth Table

- When $S=0$ and $R=1$, the latch is RESET $(Q=0)$.
- When $S=1$ and $R=0$, the latch is SET $(Q=1)$.
- When $S=1$ and $R=1$, both Q and \bar{Q} are 0 , which is invalid.

LATCHES
 ACTIVE-HIGH SR LATCH

Timing Diagram for SR Latch (with propagation delay)

LATCHES

ACTIVE-LOW SR LATCH ($\bar{S} \bar{R}$ LATCH)

- To get an Active-Low SR Latch ($\bar{S} \bar{R}$ Latch), NAND gates are used.
$\bar{S} \bar{R}$ Latch Logic Circuit

$\bar{S} \bar{R}$ Latch Logic Symbol

$\bar{S} \bar{R}$ Latch Truth Table

Inputs		Outputs		Action
\bar{S}	\bar{R}	Q (next)	$\overline{Q(\text { next })}$	
0	0	1	1	FORBIDDEN
0	1	1	0	SET
1	0	0	1	RESET
1	1	Q	\bar{Q}	NO CHANGE

- When $S=0$ and $R=1$, the latch is SET $(Q=1)$.
- When $S=1$ and $R=0$, the latch is RESET $(Q=0)$.
- When $S=1$ and $R=1, Q$ and \bar{Q} Output maintains the previous value.
- When $S=0$ and $R=0$, both Q and \bar{Q} are 1, which is invalid.
innovative • entrepreneurial • global

LATCHES

GATED SR LATCH

- Gated SR Latch is a SR Latch with control input, C/EN to enable or disable S and R inputs.

Gated SR Latch Logic Circuit

Gated SR Latch Truth Table

$E N$	S	R	\bar{S}	\bar{R}	$Q_{\text {next }}$
0	X	X	1	1	NO CHANGE
1	0	0	1	1	NO CHANGE
1	0	1	1	0	0 (RESET)
1	1	0	0	1	1 (SET)
1	1	1	0	0	FORBIDDEN

Gated SR Latch Logic Symbol

- The additional NAND gates are simply used to generate the correct inputs for the $\bar{S} \bar{R}$ Latch.
- The control input acts just like an enable.

LATCHES

GATED SR LATCH

Example

Draw the output Q for the gated SR Latch with Q is initially LOW.

LATCHES

GATED D LATCH

- Gated D Latch is based on an $\bar{S} \bar{R}$ Latch. The additional gates generate the \bar{S} and \bar{R} signals, based on inputs D ("data") and EN ("enable").
- When $E N=0, \bar{S}$ and \bar{R} are both 1, so the state Q does not change.
- When $E N=1$, the latch output Q will equal the input D.
- No more messing with one input for set and another input for reset!

- Also, this latch has no "bad" input combinations to avoid. Any of the four possible assignments to C and D are valid.

LATCHES

GATED D LATCH

Example

Draw the output Q for the Gated D Latch.

LATCHES

GATED JK LATCH

- Gated JK Latch is another way to improve the gated SR Latch.
- The input of J and K performs exactly the same as S and R , with the exception of the condition of $J K=11$.
- When J and K are both HIGH ($J K=11$), the output toggles (switch from 0 to 1 or vice versa).

Gated JK Latch Logic Circuit

innovative • entrepreneurial • global

LATCHES

GATED JK LATCH

Gated JK Latch Truth Table

$E N$	J	K	$Q_{\text {next }}$	Action
0	X	X	Q	NO CHANGE
1	0	0	Q	NO CHANGE
1	0	1	0	0 (RESET)
1	1	0	1	1 (SET)
1	1	1	\bar{Q}	TOGGLE

FLIP-FLOPS

INTRODUCTION

- Flip-flops are synchronous bistable devices.
- The term synchronous means that the output changes state only at a specified point on the triggering input called the clock (CLK).
- This CLK is designated as a control input, C (in latches); that is, changes in the output occur in synchronization with the clock.

EDGE TRIGGER

- An edge-triggered flip-flops change state either at the positive edge (rising edge) or negative edge (falling edge) of the clock pulse.
- It is sensitive to its inputs only at this transition of the clock.
- Clock inputs of flip-flops are symbolized by a triangle in logic symbols.
- Positive edge triggered no bubble at CLK input.
- Negative edge triggered has bubble at CLK input.

Positive edge triggered device

Negative edge triggered device

D FLIP-FLOP

- D flip-flop is useful when a single data bit (1 or 0) is to be stored.
- It works almost the same as the D latch.
- When a clock pulse arrives, the input is transferred to the output.
- The D flip-flop can be either positive edge or negative edge triggered.
- The positive edge triggered D flip-flop, the input only valid or seen during the clock rising edge.

FLIP-FLOPS
 D FLIP-FLOP

Example

Draw the output waveform of the positive edge triggered and negative edge triggered of the D flip-flop.

F니P-FLOPS
 D LATCH VS D FLIP-FLOP

FLIP-FLOPS

T FLIP-FLOP

- T (toggle) flip-flop has two inputs: a clock and a T input.
- When T is 0 , clock pulses have no effect on the output.
- When T is 1 , when a clock pulse arrives, the output toggles.
Characteristic Table of Positive

Logic Symbol of edge triggered T flip-flop

CLK	T	$Q_{\text {next }}$	Action
0	X	Q	NO CHANGE
1	X	Q	NO CHANGE
\uparrow	0	Q	NO CHANGE
\uparrow	1	\bar{Q}	TOGGLE

Positive edge triggered T flip-flop

FLIP-FLOPS

T FLIP-FLOP

Example

Draw the output waveform of the positive edge triggered of the T flip-flop.

*NC: Not Change, T: Toggle

FLIP-FLOPS

JK FLIP-FLOP

- JK flip-flop is versatile and is widely used type of flip-flop.
- It is identical to JK Latch where the output is toggled or inverted when $J K=11$. But the input is changes during a clock edge.

FLIP-FLOPS

JK FLIP-FLOP

Example

Draw the output waveform of the positive edge triggered of the JK flip-flop.

FLIP-FLOPS

JK FLIP-FLOP

- We have seen three types of flip-flops. These flip-flops can be implemented using JK flip-flop.
- To implement a D flip-flop, an inverter is placed between J and K inputs.

- To implement a T flip-flop, connect both inputs of J and K together.

FLIP-FLOPS

ASYNCHRONOUS FLIP-FLOP

- Previously, we had seen synchronous flip-flop such as D, T and JK flip flops.
- Synchronous flip-flop: Input transferred on the triggered edge of the clock (data transfer synchronously with the clock).
- Asynchronous flip-flop: Input effect flip-flop state (output) independent of the clock.
- The asynchronous flip-flops normally labeled by preset $(\overline{P R E})$, direct SET and clear $(\overline{C L R})$, direct RESET.

$\overline{\text { PRE }}$	$\overline{\text { CLR }}$	FF State	Mode
0	1	SET	Asynchronous
1	0	RESET	Asynchronous
1	1	$J K$	Synchronous

FLIP-FLOPS

ASYNCHRONOUS FLIP-FLOP

Example of characteristic table for asynchronous JK flip-flop.

RE	$\overline{C L R}$	J	K	Clock	$Q_{\text {next }}$
1	-1	0	0	\uparrow	Q
1	1	0	1	\uparrow	0
1	1	1	0	\uparrow	1
1	1	1	1	1	\bar{Q}
1	1	X	X	0	Q
0	1	X	X	X	1
1	0	X	X	X	0
0	0	X	X	X	NA

FLIP-FLOPS

ASYNCHRONOUS FLIP-FLOP

Example

Draw the output waveform for asynchronous JK flip-flop given an input timing diagram as below:

CLK pulse	$\overline{\boldsymbol{P R E}}$	$\overline{\boldsymbol{C L R}}$	\boldsymbol{J}	\boldsymbol{K}	FF State	Comment
$1,2,3$	0	1	1	1	SET	JK input - don't care
$4,5,6,7$	1	1	1	1	TOGGLE	Synchronous mode
8,9	1	0	1	1	RESET	JK input - don't care

- 74x74 contains two identical D flip-flops that are independent of each other except sharing VCC and ground.
- The flip-flops are positive edge triggered and have activelow asynchronous preset and clear output.

74x74 IC Connection Diagram

FLIP FLOPS IC: 74x76 (DUAL JK FLIP FLOP)

- 74×76 contains two identical JK flip-flops that are independent of each other except sharing VCC and ground.
- The flip-flops are negative edge triggered and have activelow asynchronous preset and clear output.

74x76 IC Connection Diagram

FLIP-FLOPS

FLIP FLOPS IC: 74x76 (DUAL JK FLIP FLOP)

Example

Given input waveforms that are applied to one of the JK flip-flop in $74 x 76$. Determine the $1 Q$ output waveform.

