



# SEEE 1223 DIGITAL ELECTRONICS CHAPTER 7: LATCHES AND FLIP FLOPS

#### DR. MOHD SAIFUL AZIMI BIN MAHMUD

P19a-04-03-30 School of Electrical Engineering Faculty of Engineering Universiti Teknologi Malaysia 019-7112948 azimi@utm.my

innovative • entrepreneurial • global



## COMBINATIONAL VS SEQUENTIAL LOGIC





## COMBINATIONAL VS SEQUENTIAL LOGIC







innovative • entrepreneurial • global

## UNIVERSITI TEKNOLOGI MALAYSIA

### LATCHES INTRODUCTION

- Latch is a type of temporary storage device that has two stable states (bistable).
- It is a basic form of memory, i.e store value of 0 and 1 in a latch.
- Latches are similar to flip-flops because they are **bistable** devices that can reside in either of two states using a feedback arrangement. In which the outputs are connected back to the opposite inputs.
- Latches however, are considered unstable in modern circuits and rarely used.
- Flip-flops are the dominant sequential circuit element and are present in almost all digital system.



#### LATCHES SR LATCH



- The SR Latch (Set-Reset Latch) is the most basic type, which can be constructed using NOR or NAND gates.
- An Active-HIGH input SR Latch is formed with two crosscouple NOR gate.
- An Active-LOW input *SR* Latch is formed with two crosscouple NAND gate.



Active-HIGH Input S-R Latch



#### **LATCHES** ACTIVE-HIGH SR LATCH



 The Active-High SR Latch has two inputs S and R, which will let us control the outputs Q and Q.



- Here Q and  $\overline{Q}$  feed back into the circuit. They are not the only outputs, they also are the inputs.
- To figure out how Q and  $\overline{Q}$  change, we have to look at not only the inputs S and R, but also the current values of Q and  $\overline{Q}$  are:

$$Q_{next} = \overline{(R + \overline{Q_{current}})}$$

$$\overline{Q_{next}} = \overline{(S + Q_{current})}$$
nnovative • entrepreneurial • global



#### ACTIVE-HIGH SR LATCH: STORING A VALUE: SR = 00

- What if S = 0 and R = 0?
- The equations on the right reduce to:

$$Q_{next} = \overline{(R + \overline{Q}_{current})}$$
  
=  $\overline{(0 + \overline{Q}_{current})} = Q_{current}$   
 $\overline{Q_{next}} = \overline{(S + Q_{current})}$   
=  $\overline{(0 + Q_{current})} = \overline{Q}_{current}$ 

- So when SR = 00, then  $Q_{next} = Q_{current}$ . Whatever value of  $Q_{current}$  has,  $Q_{next}$ keeps.
- This is exactly what how the values are **stored** inside the latch.





- What if S = 1 and R = 0?
- Since S = 1,  $\overline{Q_{next}}$  is 0, regardless of  $Q_{current}$ :

$$\overline{Q_{next}} = \overline{(S + Q_{current})} = \overline{(1 + Q_{current})} = \overline{1} = 0$$

• Then, this new value of  $\overline{Q}$  goes into the top NOR gate, along with R = 0.

$$Q_{next} = \overline{(R + \overline{Q_{current}})} = \overline{(0 + 0)} = 1$$

- So when SR = 10, then  $\overline{Q_{next}} = 0$  and  $Q_{next} = 1$ .
- This is how you **set** the latch to 1. The *S* input stands for "**SET**".
- Notice that it can take up to two steps (two gate delays) from the time S becomes 1 to the time Q<sub>next</sub> becomes 1.
- But once  $Q_{next}$  becomes 1, the outputs will stop changing. This is a **stable state**.



#### ACTIVE-HIGH SR LATCH: RESETTING THE LATCH: SR = 01

- What if S = 0 and R = 1?
- Since R = 1,  $Q_{next}$  is 0, regardless of  $Q_{current}$ :

 $Q_{next} = \overline{(\mathbf{1} + \overline{Q_{current}})} = \overline{\mathbf{1}} = \mathbf{0}$ 

• Then, this new value of Q goes into the bottom NOR gate, along with S = 0.

$$\overline{Q_{next}} = \overline{(S + Q_{current})} = \overline{(0 + 0)} = 1$$

- So when SR = 01, then  $Q_{next} = 0$  and  $\overline{Q_{next}} = 1$ .
- This is how you **reset**, or **clear**, the latch to 0. The *R* input stands for **"reset"**.
- Again, it can take two gate delays before a change in *R* propagates to the output  $\overline{Q_{next}}$ .



#### ACTIVE-HIGH SR LATCH: WHAT ABOUT: SR = 11

- Both  $Q_{next}$  and  $\overline{Q_{next}}$  will become **0**.
- This contradicts the assumption that Q and  $\overline{Q}$  are always complements.
- Another problem is what happens if we then make S = 0 and R = 0 together.

$$\frac{Q_{next}}{Q_{next}} = \frac{(0+0)}{(0+0)} = 1$$

 But these new values go back into the NOR gates, and in the next step we get:

$$Q_{next} = \overline{(\mathbf{0}+\mathbf{1})} = \mathbf{0}$$

 $\overline{Q_{next}} = \overline{(\mathbf{0}+\mathbf{1})} = \mathbf{0}$ 

- The circuit enters an infinite loop, where Q and  $\overline{Q}$  cycle between 0 and 1 forever.
- This is actually the worst case, but the moral is don't ever set SR = 11!

#### **LATCHES** ACTIVE-HIGH SR LATCH



**Active-High SR Latch Logic Circuit** 



Active-High SR Latch Logic Symbol

#### Active-High SR Latch Truth Table

| Inp | uts | Out     | puts                 | Action    |
|-----|-----|---------|----------------------|-----------|
| S   | R   | Q(next) | $\overline{Q(next)}$ |           |
| 0   | 0   | Q       | $ar{Q}$              | NO CHANGE |
| 0   | 1   | 0       | 1                    | RESET     |
| 1   | 0   | 1       | 0                    | SET       |
| 1   | 1   | 0       | 0                    | FORBIDDEN |

- When S = 0 and R = 0, Q and  $\overline{Q}$  maintains the previous value.
  - When S = 0 and R = 1, the latch is RESET (Q = 0).
  - When S = 1 and R = 0, the latch is SET (Q = 1).
  - When S = 1 and R = 1, both Q and  $\overline{Q}$  are 0, which is invalid.









Timing Diagram for SR Latch (with propagation delay)

#### LATCHES **ACTIVE-LOW SR LATCH (SR LATCH)**

To get an Active-Low SR Latch (SR Latch), NAND gates are used.

#### SR Latch Logic Circuit



**SR** Latch Logic Symbol



#### $\overline{SR}$ Latch Truth Table

| Inp       | uts | Out     | puts                 | Action    |
|-----------|-----|---------|----------------------|-----------|
| $\bar{S}$ | R   | Q(next) | $\overline{Q(next)}$ |           |
| 0         | 0   | 1       | 1                    | FORBIDDEN |
| 0         | 1   | 1       | 0                    | SET       |
| 1         | 0   | 0       | 1                    | RESET     |
| 1         | 1   | Q       | $\bar{Q}$            | NO CHANGE |

- When S = 0 and R = 1, the latch is **SET** (Q = 1).
- When S = 1 and R = 0, the latch is **RESET**  $(\boldsymbol{Q} = \boldsymbol{0}).$
- When S = 1 and R = 1, Q and  $\overline{Q}$ maintains the previous value.
  - When S = 0 and R = 0, both Q and  $\overline{Q}$ are 1, which is invalid.

innovative • entrepreneurial • global



## The control input acts just like an enable.

The additional NAND gates are simply

used to generate the correct inputs for

## 6

- Gated SR Latch is a SR Latch with control input, C/EN to enable or disable S and R inputs.
- Gated SR Latch Truth Table **Gated SR Latch Logic Circuit** EN R S Ī  $\overline{R}$ **Q**<sub>next</sub>  $\overline{S}$ S **NO CHANGE** 0 Х Х Q 1 1 0 **NO CHANGE** 1 0 1 1 C/EN⊦ 0 (RESET) 0 1 1 0 R  $\overline{Q}$ R 1 0 1 (SET) 1 0 1 FORBIDDEN 0 0 1 1 **SR** Latch

#### LATCHES GATED SR LATCH

the  $\overline{SR}$  Latch.



#### Gated SR Latch Logic Symbol





#### LATCHES GATED SR LATCH

Example

Draw the output Q for the gated SR Latch with Q is initially LOW.



# UNIVERSITI TEKNOLOGI MALAYSIA

### LATCHES GATED D LATCH

- Gated D Latch is based on an SR Latch. The additional gates generate the S and R signals, based on inputs D ("data") and EN ("enable").
  - When EN = 0,  $\overline{S}$  and  $\overline{R}$  are both 1, so the state Q does not change.
  - When EN = 1, the latch output Q will equal the input D.
- No more messing with one input for set and another input for reset!



Also, this latch has no "bad" input combinations to avoid. Any
of the four possible assignments to C and D are valid.
innovative • entrepreneurial • global



#### LATCHES GATED D LATCH

Example

Draw the output Q for the Gated D Latch.



#### LATCHES GATED JK LATCH



- Gated JK Latch is another way to improve the gated SR Latch.
- The input of J and K performs exactly the same as S and R, with the exception of the condition of JK = 11.
- When J and K are both HIGH (JK = 11), the output toggles (switch from 0 to 1 or vice versa).



#### **Gated JK Latch Logic Circuit**

innovative • entrepreneurial • global

#### LATCHES **GATED JK LATCH**





#### **Gated JK Latch Truth Table**





# **FLIP-FLOPS**

innovative • entrepreneurial • global

### FLIP-FLOPS INTRODUCTION



- Flip-flops are synchronous bistable devices.
- The term synchronous means that the output changes state only at a specified point on the triggering input called the clock (CLK).
- This CLK is designated as a control input, C (in latches); that is, changes in the output occur in synchronization with the clock.



# 4

### **FLIP-FLOPS** EDGE TRIGGER

- An edge-triggered flip-flops change state either at the positive edge (rising edge) or negative edge (falling edge) of the clock pulse.
- It is sensitive to its inputs only at this transition of the clock.
- Clock inputs of flip-flops are symbolized by a triangle in logic symbols.
- Positive edge triggered no bubble at CLK input.
- Negative edge triggered has bubble at CLK input.

Positive edge triggered device









### FLIP-FLOPS D FLIP-FLOP

- D flip-flop is useful when a single data bit (1 or 0) is to be stored.
- It works almost the same as the D latch.
- When a clock pulse arrives, the input is transferred to the output.
- The D flip-flop can be either positive edge or negative edge triggered.
- The positive edge triggered D flip-flop, the input only valid or seen during the clock rising edge.





Characteristic Table of Positive edge triggered D flip-flop

| CLK | D | <b>Q</b> <sub>next</sub> | Action    |
|-----|---|--------------------------|-----------|
| 0   | Х | Q                        | NO CHANGE |
| 1   | Х | Q                        | NO CHANGE |
| Ť   | 0 | 0                        | 0 (RESET) |
| Ť   | 1 | 1                        | 1 (SET)   |

#### FLIP-FLOPS D FLIP-FLOP



#### Example

Draw the output waveform of the positive edge triggered and negative edge triggered of the D flip-flop.









innovative • entrepreneurial • global

### FLIP-FLOPS T FLIP-FLOP



- T (toggle) flip-flop has two inputs: a clock and a T input.
- When T is **0**, clock pulses have no effect on the output.
- When T is 1, when a clock pulse arrives, the output toggles.



Characteristic Table of Positive edge triggered T flip-flop

| CLK | T | <b>Q</b> <sub>next</sub> | Action    |
|-----|---|--------------------------|-----------|
| 0   | Х | Q                        | NO CHANGE |
| 1   | Х | Q                        | NO CHANGE |
| Ť   | 0 | Q                        | NO CHANGE |
| 1   | 1 | $\bar{Q}$                | TOGGLE    |

T flip-flop

## \*NC: Not Change, T: Toggle

9

### FLIP-FLOPS T FLIP-FLOP

### Example

Draw the output waveform of the positive edge triggered of the T flip-flop.





# FLIP-FLOPS



- JK flip-flop is versatile and is widely used type of flip-flop.
- It is identical to JK Latch where the output is toggled or inverted when JK = 11. But the input is changes during a clock edge.



Logic Symbol of Positive edge triggered JK flipflop

#### Characteristic Table of Positive edge triggered JK flip-flop

| J | K                | Qnext                                                           | Action                                                                                        |
|---|------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Х | Х                | Q                                                               | NO CHANGE                                                                                     |
| Х | Х                | Q                                                               | NO CHANGE                                                                                     |
| 0 | 0                | Q                                                               | NO CHANGE                                                                                     |
| 0 | 1                | 0                                                               | RESET                                                                                         |
| 1 | 0                | 1                                                               | SET                                                                                           |
| 1 | 1                | $\bar{Q}$                                                       | TOGGLE                                                                                        |
|   | X<br>0<br>0<br>1 | X     X       X     X       0     0       0     1       1     0 | X     X     Q       X     X     Q       O     O     Q       O     1     O       1     O     1 |

# FLIP-FLOPS



Example

Draw the output waveform of the positive edge triggered of the JK flip-flop.



#### innovative • entrepreneurial • global

To implement a **T** flip-flop, connect both inputs of J and K • together.

- We have seen three types of flip-flops. These flip-flops can ulletbe implemented using JK flip-flop.
- To implement a **D** flip-flop, an inverter is placed between J and K inputs.







## FLIP-FLOPS ASYNCHRONOUS FLIP-FLOP



- Previously, we had seen synchronous flip-flop such as D, T and JK flip flops.
- **Synchronous flip-flop**: Input transferred on the triggered edge of the clock (data transfer synchronously with the clock).
- Asynchronous flip-flop: Input effect flip-flop state (output) independent of the clock.
- The asynchronous flip-flops normally labeled by preset (PRE), direct SET and clear (CLR), direct RESET.



#### FLIP-FLOPS ASYNCHRONOUS FLIP-FLOP



Example of characteristic table for asynchronous JK flip-flop.



### FLIP-FLOPS ASYNCHRONOUS FLIP-FLOP



#### Example

Draw the output waveform for asynchronous JK flip-flop given an input timing diagram as below:

| CLK pulse | PRE | CLR | J | K | FF State | Comment               |
|-----------|-----|-----|---|---|----------|-----------------------|
| 1, 2, 3   | 0   | 1   | 1 | 1 | SET      | JK input - don't care |
| 4,5,6,7   | 1   | 1   | 1 | 1 | TOGGLE   | Synchronous mode      |
| 8,9       | 1   | 0   | 1 | 1 | RESET    | JK input - don't care |



#### **FLIP-FLOPS** FLIP FLOPS IC: 74x74 (DUAL D FLIP FLOP)



- 74x74 contains two identical D flip-flops that are independent of each other except sharing VCC and ground.
- The flip-flops are positive edge triggered and have activelow asynchronous preset and clear output.



#### 74x74 IC Connection Diagram

## **FLIP-FLOPS**



#### FLIP FLOPS IC: 74x76 (DUAL JK FLIP FLOP)

- 74x76 contains two identical JK flip-flops that are independent of each other except sharing VCC and ground.
- The flip-flops are **negative edge triggered** and have activelow asynchronous preset and clear output.

#### 74x76 IC Connection Diagram



## **FLIP-FLOPS** FLIP FLOPS IC: 74x76 (DUAL JK FLIP FLOP)



#### Example

Given input waveforms that are applied to one of the JK flip-flop in 74x76. Determine the 1Q output waveform.

