
SEEE1022
INTRODUCTION TO
SCIENTIFIC
PROGRAMMING

CH8
Debugging

Dr. Mohd Saiful Azimi Mahmud (azimi@utm.my)
P19a-04-03-30, School of Electrical Engineering, UTM

OBJECTIVES

• Understand syntax error and run-time error.
• Know how to perform debugging.

1

2

TYPE OF ERROR

• A software bug (error) is a problem that exists in the code you have written. The
process of fixing the bugs is called debugging.

• Below are the types of errors:

1. Syntax Error – typing error

2. Run-time Error – Occurs when the program is running. Possible caused are:

i. Incompatible array size.

ii. Invalid operation – undefined variable, invalid array indexing, invalid
input/output arguments.

iii. Logic Error.

iv. Rounding Error.

• MATLAB includes a number of tools to help you debug your code.

SYNTAX ERROR

3

• Decision statement.
• Tells the computer to pick

and run one of several
sets of statement based
on certain condition.

SYNTAX ERROR
INTRODUCTION

• Syntax error is a typing error according to the given syntax.

• Easily detected by MATLAB and directly shown in the editor while you typing the
program with the followings:

1. Error bar

2. Error message

• The program will not be executed until the syntax error is cleared.

• If you run a program consists of syntax error, an error message will be returned at the
command window prompt without executing the program.

4

SYNTAX ERROR
ERROR BAR AND MESSAGE

• Whenever you use an M-file, notice that along the right-hand side of the figure window
a vertical bar appears.

• That marks locations where there are syntax errors or where MATLAB® has issued
warnings.

• The color turn green when the syntax error has been resolved.

RUN-TIME ERROR

RUN-TIME ERROR

5

INTRODUCTION

• Run-time error is harder to fix since the error will be detected by MATLAB
only when the program is run or it will not be detected at all by MATLAB.

• Error that can be detected by MATLAB:
• Incompatible array size

• Invalid operation

• Error not detected by MATLAB
• Logic error

• Rounding error

• To debug this type of errors, MATLAB has a graphical debugger toolbar to
work with breakpoints.

RUN-TIME ERROR

6

• When trying to find and fix run-time errors in a program code, it is often useful to run
sections of the program, then pause, evaluate what has happened, and continue.

• Breakpoints is used to pause the execution while you evaluate results.

• Breakpoint is set by clicking curser at the right side of the code-line number.

• Breakpoints can’t be enabled until all of the syntax errors have been resolved.

Breakpoint

Execution is
paused here

BREAKPOINT

RUN-TIME ERROR

7

Execute the current
line of the file

Resume execution of file
until completion or until

another breakpoint is
encountered

Execute the current line of
the file and, if the line is a
call to another function,
step into that function

After stepping in, run the
rest of the called function
or local function, leave the
called function, and pause

Exit debug
mode

BREAKPOINT

RUN-TIME ERROR

8

UNDEFINED VARIABLE

EXAMPLE 1

Undefined function or variable ‘dataa'.

Error in chp8ex8_1 (line 2)

data2 = dataa([3 2 2 3])

data = [3 5 7 5];

data2 = dataa([3 2 2 3])

This kind of typing error is
not syntax error.

9

RUN-TIME ERROR
INCOMPATIBLE ARRAY SIZE

EXAMPLE 2

>> a = [2 4 5];

>> b = [5 8];

>> c = a + b;

Matrix dimensions must agree.

• Vector a and b must have similar
length for plus operation.

• Refer to ‘Compatible Array Sizes for
Basic Operations’ topic in MATALAB
documentation for full list of
compatible array size.

10

RUN-TIME ERROR

LOGIC ERROR
• Program will execute completely, but the answer that they return is incorrect.

• No error message is returned by MATLAB.

• Below are the possible reason of the logic error:

i. Divide by zero.

ii. Array operation mistake.

iii. Array indexing mistake.

iv. Looping indexing mistake.

v. Wrong decision statement condition.

vi. Data type mistake.

vii. Wrong operation or equation.

𝐻 =
(𝑠 − 0.2)(𝑠 − 3)

(𝑠 − 0.2)

11

RUN-TIME ERROR
LOGIC ERROR

EXAMPLE 3

Code the equation below for 𝑠 = 0.1: 0.1: 0.2 and 𝑎 = 0.1: 0.1: 0.2.

𝐻 =
(𝑠 − 𝑎)(𝑠 − 3)

(𝑠 − 0.2)

for s = 0.1:0.1:0.2

for a = 0.1:0.1:0.2

H = (s-a)*(s-3)/(s-0.2);

fprintf(‘s = %.1f, a = %.1f, H = %.2f\n',s,a,H)

end

end

s = 0.1, a = 0.1, H = 0.00

s = 0.1, a = 0.2, H = -2.90

s = 0.2, a = 0.1, H = -Inf

s = 0.2, a = 0.2, H = NaN The last result should return
𝐻 = −2.8, but what is return
is NaN.

= 𝑆 − 3

12

RUN-TIME ERROR
LOGIC ERROR

EXAMPLE 3

for s = 0.1:0.1:0.2

for a = 0.1:0.1:0.2

if s==0.2 && s==a

H = s-3;

else

H = (s-a)*(s-3)/(s-0.2);

end

fprintf(‘s = %.1f, a = %.1f, H = %.2f\n',s,a,H)

end

end

s = 0.1, a = 0.1, H = 0.00

s = 0.1, a = 0.2, H = -2.90

s = 0.2, a = 0.1, H = -Inf

s = 0.2, a = 0.2, H = -2.80

Below is one way of how logic error in Example 3 can be resolved

13

RUN-TIME ERROR
LOGIC ERROR

EXAMPLE 4

Write MATLAB code for 𝑌 = 𝑋(1 + 𝐴) where 𝑋 = 3 3 and 𝐴 =
2 5
4 8

What do you think? Is there any error with the output? Lets rearrange the equation as
𝑌=𝑋+𝑋𝐴 and rewrite the code as below. The new code return different value compared
to the above code. Which code do you think has the logic error?

>> X = [3 3];

>> A = [2 5; 4 8];

>> Y = X*(1+A)

Y =

24 45

>> Y = X + X*A

Y =

21 42

14

RUN-TIME ERROR
ROUNDING ERROR

• Rounding error is an error which results from the finite precision available on the
computer, i.e., eight bytes per variable, instead of an infinite number.

EXAMPLE 5

x = 0.1; a = 0;

while x <= 0.2

x = x + 0.01;

if x == 0.15

disp('x is now 0.15')

else

a = 1;

end

end

if a==1

disp('x equals to 0.15 was not found')

end

x equals to 0.15 was not found

After fifth repetition of
x=x+0.01, MATLAB should
display ‘x is now 0.15’,
but this was not happening .

15

• Lets investigate what was actually happened.

RUN-TIME ERROR
ROUNDING ERROR

a = 0.11:0.01:0.2;

x = 0.1;

n = 0;

disp('Plus 0.1 Error')

while x <= 0.2

x = x + 0.01;

n = n + 1;

fprintf('%6.2f %g\n',x,x-a(n))

end

Plus 0.1 Error

0.11 0

0.12 0

0.13 0

0.14 0

0.15 2.77556e-17

0.16 2.77556e-17

0.17 2.77556e-17

0.18 2.77556e-17

0.19 5.55112e-17

0.20 5.55112e-17

We can see a very small
different when the operation
x=x+0.01 reach 0.15. This is
due to the rounding error.

16

EXAMPLE 6

RUN-TIME ERROR
FIXING ROUNDING ERROR

b = 1:100;

x = 0.1;

for x = 0.1:0.01:0.2

c = x + b(x*100);

end

Subscript indices must either be real positive integers or

logicals.

Error in chp8ex8_6 (line 4)

c = x + b(x*100);

This is also a situation where
rounding error normally occur.

• round() function can be used to resolve the rounding error.

b = 1:100;

x = 0.1;

for x = 0.1:0.01:0.2

c = x + b(round(x*100));

end

17

RUN-TIME ERROR
STUDY CASE : LOAD FACTOR

Example 7 to Example 10 will be based on the a program of load factor computation
below:

In a power system grid, load factor is use to evaluate the effectiveness of power plants in
generating electrical. Thus, an effective power distribution method to the end user can be
designed. Below is an example on how a daily load factor is calculated. The no colour
region of the table is recorded load usage for 24 hours period. The greyed region is how
the load factor calculation is done.

Start Hour End Hour Load, MW Interval, hr Interval total energy

00:00 06:00 5 6 5x6 = 30

06:00 10:00 8 4 8x4 = 32

10:00 14:00 7 4 7x4 = 28

14:00 20:00 6 6 6x6 = 36

20:00 24:00 6 4 6x4 = 24

Total 24 150

Average Load = Total energy/Total hour 150/24 = 6.25

Load Factor = (Average Load/Peak Load)*100 (6.25/8)*100 = 78.13

18

RUN-TIME ERROR
LOAD FACTOR : THE PROGRAM

Having the recorded load usage saved in spreadsheet file loadfactor.xlsx, below is the
program code computing the load factor. Run the code, identify the errors and fix them.

% This program compute Load Factor for a given data.

data = xlsread('loadfactor.xlsx',B4:D8);

P = data(:, 3); % Column array of load

Dt = data(:, 2) - data(:,1); % Column array of demand

interval

W = P*Dt; % Total energy

Pavg = W/(sum(Dt); % Average load

Peak = max(P); % Peak load

LF = Pavg/Peak*100; % Percent load factor

fprintf(['Average Load = %1.2fMW\n' ...

' Peak Load = %1.2fMW\n' ...

' Load Factor = %1.2f%%\n'],Pavg,Peak,LF);

19

RUN-TIME ERROR
LOAD FACTOR : SYNTAX ERROR

EXAMPLE 7

From the editor, it shows that there is one syntax error at line 7. It can be resolved by
removing the bracket before the sum function.

20

RUN-TIME ERROR
LOAD FACTOR : UNDEFINED VARIABLE

EXAMPLE 8

With no syntax error left, the code is now can be run. When running the code, MATLAB
return the following error:

By checking with the MATLAB documentation, the second input argument should be a
string. This is where the code is wrong where a variable from expression B4:D14 was
given instead of string. The error is resolved as below:

Undefined function or variable 'B4'.

Error in Try (line 2)

data = xlsread(‘loadfactor.xlsx',B4:D14);

data = xlsread(‘loadfactor.xlsx','B4:D14');

21

RUN-TIME ERROR
LOAD FACTOR : INVALID OPERATION

EXAMPLE 9

With previous error resolved, run again the program. This time, MATLAB return a new
error message as below:

Since the error message tell us that there is incompatible matrix size, then we need to
check both size of variable P and Dt. We can do this by setting a breakpoint at line 5 and
check the size while the program is paused by the breakpoint.

Error using *

Inner matrix dimensions must agree.

Error in Try (line 5)

W = P*Dt; % Total energy

22

RUN-TIME ERROR
EXAMINE VALUES WHILE DEBUGGING

• With the breakpoint set at line 5, run the program. The program will paused at line 5.
Now, hover the curser to variable P and Dt to check their values.

• From below figures, we now know that both are column vectors of the same size, which
is size incompatible for matrix multiplication process.

• One way to get rid of the error is to use array operation instead of the matrix operation.

23

RUN-TIME ERROR
LOAD FACTOR : LOGIC ERROR

When array operation (with period symbol ‘.’) is used to replace the matrix operation, below is
the result when running the program:

This time, no error message was returned by MATLAB. However the results are wrong since the
expected output supposed to be one value for each Average Load, Peak Load and Load Factor.
This is what we called logic error.

After some investigation, the multiplication on line 6 should use matrix operation to get the
single output. Thus, to resolved the previous error on the incompatible array size, variable P need
to be first transpose before the multiplication.

EXAMPLE 10

Average Load = 1.25MW

Peak Load = 1.33MW

Load Factor = 1.17%

Average Load = 1.50MW

Peak Load = 1.00MW

Load Factor = 8.00%

Average Load = 15.63MW

Peak Load = 16.67MW

Load Factor = 14.58%

Average Load = 18.75MW

Peak Load = 12.50MW

Load Factor = >>

24

RUN-TIME ERROR
LOAD FACTOR : RESOLVED CODE

Below is the final code free of error.

EXAMPLE 10

% This program compute Load Factor for a given data.

data = xlsread('loadfactor.xlsx','B4:D8');

P = data(:, 3); % Column array of load

Dt = data(:, 2) - data(:,1); % Column array of demand interval

W = P'*Dt; % Total energy

Pavg = W/sum(Dt); % Average load

Peak = max(P); % Peak load

LF = Pavg/Peak*100; % Percent load factor

fprintf(['Average Load = %1.2fMW\n' ...

' Peak Load = %1.2fMW\n' ...

' Load Factor = %1.2f%%\n'],Pavg,Peak,LF);

Average Load = 6.25MW

Peak Load = 8.00MW

Load Factor = 78.13%

