SEEE1022 INTRODUCTION TO SCIENTIFIC PROGRAMMING

CH9
 Matrix Algebra

Dr. Mohd Saiful Azimi Mahmud (azimi@utm.my) P19a-04-03-30, School of Electrical Engineering, UTM

(0)UTM OBJECTIVES

- To introduce several matrix algebra functions to solve engineering problems.
- To understand on how to use matrix algebra function such:
i. Dot product
ii. Cross product
iii. Inverse
iv. Determinant
- To introduce other matrix function that can be useful in solving engineering problems.

(8) UTM

MATRIX ALGEBRA

(3)UTM MATRIX ALGEBRA

Introduction

- MATLAB was originally written to provide an easy-to-use interface to professionally developed numerical linear algebra subroutines.
- It offers a wide range of valuable matrix algebra functions
- Note that while MATLAB supports n-dimensional arrays, matrix algebra is defined only for 2-D arrays - that is, vectors and matrices.
- Matrix algebra is used extensively in engineering applications
- The difference between an array and a matrix:
i. Most engineers use the two terms interchangeably.
ii. The only time you need to be concerned about the difference is when you perform matrix algebra calculations.

(0) UTM MATRIX ALGEBRA

SOLUTION

1) Dot product (math symbol ' \cdot ')
2) Cross product (math symbol ' x ')
3) Inverse
4) Determinants
5) Linear equation

(0)UTM MATRIX ALGEBRA

DOT PRODUCTS

- The dot product is the sum of the results when you multiply two vectors of the same length together, element by element.

EXAMPLE 1

$$
\begin{aligned}
& \boldsymbol{u}=\left[\begin{array}{llll}
3 & 2 & 6 & 4
\end{array}\right], \quad \boldsymbol{v}=\left[\begin{array}{lll}
4 & 2 & 3
\end{array}\right] \\
& \boldsymbol{u} \cdot \boldsymbol{v}=\left[\begin{array}{llll}
3 & 2 & 6 & 4
\end{array}\right] \cdot\left[\begin{array}{l}
4 \\
3 \\
2 \\
1
\end{array}\right]=(3 \times 4)+(2 \times 3)+(6 \times 2)+(4 \times 1)=34
\end{aligned}
$$

- In Matlab, either matrix multiplication operator * or function dot () can be used to perform the dot product.

() UTM MATRIX ALGEBRA

USING *OPERATOR AS DOT PRODUCT

- When performing matrix multiplication, the number of columns in the first matrix must equals to the number of rows in second matrix.
- To apply the matrix multiplication operator * as a dot product of two vectors, set the vectors as below

- Note that the first vector is a row vector and the second vector is a column vector.

(3)UTM MATRIX ALGEBRA

ANGLE OF TWO VECTORS

EXAMPLE 2

Formula to compute angle between two vectors \vec{u} and \vec{v} is as below where the numerator of the inverse cosine is a dot product between the two vectors while $\|\vec{u}\|$ and $\|\vec{v}\|$ are the magnitude of the vectors:

$$
\begin{gathered}
\theta=\cos ^{-1} \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \cdot\|\vec{v}\|} \\
\|\vec{u}\|=\sqrt[2]{u_{1}^{2}+u_{2}^{2}+\cdots+u_{N}^{2}}=\left(\vec{u} \cdot \vec{u}^{\prime}\right)^{\frac{1}{2}}
\end{gathered}
$$

Write a MATLAB function to compute angle between the following two vectors:

$$
\begin{aligned}
& u=\left[\begin{array}{lll}
3 & 4 & 1
\end{array}\right] \\
& v=\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]
\end{aligned}
$$

(ㅇ)UTM MATRIX ALGEBRA ANGLE OF TWO VECTORS

EXAMPLE 2

MATLAB code for Example 2

```
function theta = vecAngle(u,v)
uMag = sqrt(u*u'); %1st dot product
vMag = sqrt(v*v'); %2nd dot product
udotv = u*v'; %3rd dot product
theta = acos(udotv/(uMag*vMag));
thetadeg = theta*180/pi;
fprintf('\x3B8 = %.2f\x3C0 or %.2f\xB0\n',theta/pi,thetadeg)
fprinti ( \(4 x 3 B 8-0.21 \backslash x 3 c 0\) or \(0.21 \backslash x B 0 \backslash n\),theta/pi,thetadeg)
```

>> u = [3 4 1];

```
>> u = [3 4 1];
```

>> u = [3 4 1];
>> v = [llll
>> v = [llll
>> v = [llll
>>
>>
>>
>> theta = vecAngle(u,v);
>> theta = vecAngle(u,v);
>> theta = vecAngle(u,v);
0=0.14п or 25.07*

```
```

0=0.14п or 25.07*

```
```

0=0.14п or 25.07*

```
```

The $1^{\text {st }}$ and $2^{\text {nd }}$ dot product applied a transposed to its second term to fulfil the size compatibility of $1 \mathrm{xn} \cdot n \times 1$

(3)UTM MATRIX ALGEBRA

* IS NOT ALWAYS A DOT PRODUCT

- Other than the $(1 \times n) *(n \times 1)$ vector size format, the * operator will not return a dot matrix.

EXAMPLE 3

```
>> u = [3 4 1];
>>v = [llll
>> y = u'*v
y =
```

Dot product should return a scalar, not a matrix

- When the first vector is a column vector as the above example, it can be used as one of the solution to the vectorizing method covered in Chapter 4. Note that in Chapter 4, array operator is used for the vectorizing method.

(0) UTM MATRIX ALGEBRA
 * IS NOT ALWAYS A DOT PRODUCT

EXAMPLE 4

Lets recap Example 16 from Chapter 4 where a formula of compound interest B is evaluated for 3 values of a ($\$ 100, \$ 500, \$ 800$) on 5 different total year of n $(2,4,6,8,10)$ and $r=0.09$. Instead of the array operation, the array multiplication can be replaced with matrix multiplication as below.

```
a=[100 500 800];
n=[2 4 6 8 10];
r=0.09;
% Using array multiplication
[N,A] = meshgrid(n,a)
B = A.* (1+r). ^N
% Using matrix multiplication
B = a'* (1+r). ^n
```

- For the matrix multiplication method, it is done on $(3 \times 1) *(1 \times 5)$ size format, thus resulting a 3×5 matrix, similar to the array multiplication method.
- Since it only works for multiplication, the power operation is maintained with the array operation.
- In this case meshgrid is not needed.

(3)UTM MATRIX ALGEBRA

USING dot() FUNCTION

- Since * operator is not always a dot product, dot() function is a less confusing method to perform the dot product.

EXAMPLE 5

```
>> u = [l3 4 1];
>> v = [11 1 1];
>> y = dot(u,v)
y =
    8
```


(0) UTM MATRIX ALGEBRA
 CENTER OF MASS

EXAMPLE 6

Table below shows the position of several components in $x-y-z$ coordinate together with the component's mass.

\boldsymbol{i}	Item	x (meter)	y (meter)	z (meter)	Mass, m (gram)
1	Bolt	0.1	2	3	3.50
2	screw	1	1	1	1.50
3	nut	1.5	0.2	0.5	0.79
4	bracket	2	2	4	1.75

Below is the formula on how to compute the center of mass position on the above components.

$$
\bar{x}=\frac{\sum x_{i} m_{i}}{\sum m_{i}}=\frac{\boldsymbol{x} \cdot \boldsymbol{m}}{\sum m_{i}}, \quad \bar{y}=\frac{\boldsymbol{y} \cdot \boldsymbol{m}}{\sum m_{i}}, \quad \bar{z}=\frac{\mathbf{z} \cdot \boldsymbol{m}}{\sum m_{i}}
$$

(0)UTM MATRIX ALGEBRA

CENTER OF MASS

EXAMPLE 6

- From the equation, the $\boldsymbol{x} \cdot \boldsymbol{m}, \boldsymbol{y} \cdot \boldsymbol{m}$ and $\boldsymbol{z} \cdot \boldsymbol{m}$ is a dot product operation.
- Lets rewrite the three dot product equations in matrix form by setting vector $\boldsymbol{x}, \boldsymbol{y}$ and \boldsymbol{z} into a single matrix P :

$$
D=P . \boldsymbol{m}=\left[\begin{array}{l}
\boldsymbol{x}_{\boldsymbol{y}} \\
\boldsymbol{y} \\
\boldsymbol{z}
\end{array}\right] \cdot\left[\begin{array}{l}
m_{1} \\
m_{2} \\
m_{3} \\
m_{4}
\end{array}\right]=\left[\begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4} \\
y_{1} & y_{2} & y_{3} & y_{4} \\
z_{1} & z_{2} & z_{3} & z_{4}
\end{array}\right] \cdot\left[\begin{array}{l}
m_{1} \\
m_{2} \\
m_{3} \\
m_{4}
\end{array}\right]=\left[\begin{array}{cccc}
0.1 & 1 & 1.5 & 2 \\
2 & 1 & 0.2 & 2 \\
3 & 1 & 0.5 & 4
\end{array}\right] \cdot\left[\begin{array}{c}
3.5 \\
1.5 \\
0.79 \\
1.75
\end{array}\right]=\left[\begin{array}{c}
6.53 \\
12.16 \\
19.40
\end{array}\right]
$$

- To get the center of mass, D is divided by the sum of the mass.

$$
\bar{P}=\frac{D}{\sum m_{i}}=\frac{\left[\begin{array}{lll}
6.53 & 12.16 & 19.40
\end{array}\right]}{3.50+1.50+0.79+1.75}=\frac{\left[\begin{array}{lll}
6.53 & 12.16 & 19.40
\end{array}\right]}{7.54}=\left[\begin{array}{lll}
0.87 & 1.61 & 2.57
\end{array}\right]
$$

(0) UTM MATRIX ALGEBRA CENTER OF MASS

EXAMPLE 6

To implement the center of mass computation, we can either compute the \bar{x}, \bar{y} and \bar{z} separately or as a single matrix.

Below is the MATLAB code when \bar{x}, \bar{y} and \bar{z} are computed separately:

```
m = [3.5, 1.5, 0.79, 1.75];
x = [0.1, 1, 1.5, 2];
y = [ 2, 1, 0.2, 2];
z = [ 3, 1, 0.5, 4];
xbar = dot(x,m)/sum(m);
ybar = dot (y,m)/sum(m);
zbar = dot(z,m)/sum(m);
```

fprintf(['Center of mass: $\backslash n x=\% .2 f \backslash n ' .$.
$\left.\left.' y=\% .2 f \backslash n z=\% .2 f \backslash n^{\prime}\right], x b a r, y b a r, z b a r\right)$

```
Center of mass:
x = 0.87
y = 1.61
z = 2.57
```


(ㅇ)UTM MATRIX ALGEBRA CENTER OF MASS

EXAMPLE 6

Below is the MATLAB code when \bar{x}, \bar{y} and \bar{z} are combined into single matrix.

```
m = [3.5, 1.5, 0.79, 1.75];
P = [0.1, 1, 1.5, 2
    2, 1, 0.2, 2
    3, 1, 0.5, 4];
Pbar = P*m'/sum(m);
fprintf(['Center of mass:\nx = %.2f\n'...
    'y = %.2f\nz = %.2f\n'],Pbar)
```

```
Center of mass:
x = 0.87
y = 1.61
z = 2.57
```

- Combining vector \bar{x}, \bar{y} and \bar{z} into single matrix means the three dot product are performed at one single code.
- * operator is a better option since dot () function require both inputs to have similar size.

© C UTM MATRIX ALGEBRA

 CENTER OF MASS

This plot was enhanced using the interactive plotting tools

(3)UTM MATRIX ALGEBRA

CROSS PRODUCT

- Given any two vector of \vec{A} and \vec{B}, and θ as the angle between them, the cross product of the two vectors is:

$$
\begin{aligned}
\vec{C} & =\vec{A} \times \vec{B} \\
|C| & =|A| \cdot|B| \sin (\theta)
\end{aligned}
$$

- \vec{C} is perpendicular to \vec{A} and \vec{B}.
- The direction of \vec{C} is given by the right hand rule.
- In MATLAB, the cross product can be computed using function cross ().

(0) UTM MATRIX ALGEBRA

MAGNETIC FORCE

EXAMPLE 7

When a wire of length L carries a current i through a magnetic field B, the magnetic force $|F|$ by the field on the wire is:

$$
\begin{align*}
& \vec{F}=i(\vec{L} \times \vec{B}) \tag{Eq.1}\\
& |F|=i|\vec{L} \times \vec{B}| \tag{Eq.2}\\
& |F|=i|L| \cdot|B| \sin (\theta)
\end{align*}
$$

(ㅇ)UTM MATRIX ALGEBRA
 MAGNETIC FORCE

EXAMPLE 7

To compute the magnetic force $|F|$, we can either use cross product (Eq. 2) or dot product (Eq. 3). Below is the MATLAB code for both method where using cross product gives a simpler code:

```
L = [1 0 0}]
B = [0.25 0.25 0.20];
i = 20e-3;
% Cross product method
LB = cross(L,B)
F = i*norm(LB)
% Dot product method
theta = acos(dot(L,B)/(norm(L)*norm(B)));
F = i*norm(L)*norm(B)*sin(theta);
```

```
norm() is a function
to compute magnitude
of a vector.
```


(3)UTM MATRIX ALGEBRA

MATRIX INVERSE

- Matrix inverse properties:

1) Inverse of a matrix A, though written mathematically as A^{-1} is not equals to $1 / A$.
2) If an inverse of a scalar multiply with the scalar is equals to one $\left(a^{-1} a=1\right)$, multiplication of an inverse matrix to the original matrix is an identity matrix.
3) Only square matrix (of size $m \times m$) has an inverse matrix.
4) Singular matrix does not has an inverse.

- MATLAB offers three approaches:

1) The matrix inverse function, inv ().
2) Raising a matrix to the -1 power, $A^{\wedge}-1$.
3) Using left division operator ' \backslash ' when multiply with a column vector. For example, $A^{-1} B$ where B is a column vector can be written in MATLAB code as $A \backslash B$.

(ㅈ)UTM MATRIX ALGEBRA MATRIX INVERSE

EXAMPLE 8

```
>> A = [2 4; 6 3]
A =
    2 4
    6 3
>> inv(A)
ans =
    -0.1667 0.2222
    0.3333 -0.1111
>> A^-1
ans =
    -0.1667 0.2222
    0.3333 -0.1111
>> A\[llll
ans =
    0.0556
    0.2222
```


(0) UTM MATRIX ALGEBRA

DETERMINANT

- Determinant is a useful value that can be computed from the elements of a square matrix.
- The determinant of a matrix A is $\operatorname{denoted} \operatorname{det}(A), \operatorname{det} A$, or $|A|$.
- For a 2×2 matrix, the formula for the determinant is:

$$
|A|=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

EXAMPLE 9

$\left|\begin{array}{ll}4 & 2 \\ 2 & 8\end{array}\right|=(4)(8)-(2)(2)=28$

(ㅇ)UTM MATRIX ALGEBRA

CHECKING SINGULAR MATRIX

- Singular matrix is a matrix that does not has an inverse. A matrix is said to be a singular matrix if its determinant is equals to 0 .

```
EXAMPLE 10
```

```
>> A = [ll 2 3; 4 5 6; 1 2 3]
A =
\begin{tabular}{lll}
1 & 2 & \\
4 & 5 & 6 \\
1 & 2 & 3
\end{tabular}
>> det(A)
ans =
    0
>> inv(A)
Warning: Matrix is singular to working precision.
ans=
    Inf Inf Inf
    Inf Inf Inf
    Inf Inf Inf
```


(0) UTM MATRIX ALGEBRA
 \section*{AREA OF A TRIANGLE}

Area of a triangle can be formulated using matrix determinant as below:

$$
A=\left|\frac{1}{2} \operatorname{det}(T)\right|
$$

Where T is the matrix of cartesian coordinate of the three corners of the triangle. Thus matrix T is set as below. The $1^{\text {st }}$ column is the x-coordinate, $2^{\text {nd }}$ column is the y-coordinate and the $3^{\text {rd }}$ column is set equals to 1 to form a square matrix.

$$
T=\left[\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right]
$$

(0) UTM MATRIX ALGEBRA

AREA OF TRIANGLE

EXAMPLE 11


```
>> T = [2 1 1; 3 7 1; 8 2 1]
T=
\begin{tabular}{lll}
2 & 1 & 1 \\
3 & 7 & 1 \\
8 & 2 & 1
\end{tabular}
>> A = abs(0.5*det(T))
A =
    17.5000
```


(3)UTM MATRIX ALGEBRA

SETS OF LINEAR EQUATIONS

- One of the most common linear algebra problems is finding the solution of a linear set of equations. For example, consider the set of equations.

$$
\begin{gather*}
4 x_{1}+5 x_{2}+6 x_{3}=232 \tag{1}\\
23 x_{1}+2 x_{2}+84 x_{3}=401 \tag{2}\\
-3 x_{1}-5 x_{2}+1 x_{3}=198 \tag{3}
\end{gather*}
$$

- These linear equations can be written in matrix form as below

$$
\left[\begin{array}{ccc}
4 & 5 & 6 \\
23 & 2 & 84 \\
-3 & -5 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
y \\
232 \\
401 \\
198
\end{array}\right]
$$

- Then x can be solved by multiplying inverse of matrix A with y as follow:

$$
x=A^{-1} y
$$

In MATLAB, the preferable solution is found by using the matrix left-division operator, $\mathrm{x}=\mathrm{A} \backslash \mathrm{y}$.

(0)UTM MATRIX ALGEBRA LINEAR EQUATION

EXAMPLE 12

MATLAB code for previous slide

```
>> A = [4 5 6; 23 2 84; -3 -5 1]
A =
\begin{tabular}{rrr}
4 & 5 & 6 \\
23 & 2 & 84 \\
-3 & -5 & 1
\end{tabular}
>> y = [232;401;198]
y =
    232
    4 0 1
    198
>> x = A\y
x =
    -482.8534
    276.1935
    130.4076
```


()UTM MATRIX ALGEBRA
 CIRCUIT ANALYSIS

In analysing the above circuit, current on loop 1 and loop 2 can be computed based on two equation:

$$
\begin{aligned}
(10+40) I_{1}-40 I_{2} & =10 \\
-40 I_{1}+(20+40) I_{2} & =-20
\end{aligned}
$$

Using matrix algebra, I_{1} and I_{2} can be simply solved as below:

$$
\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{cc}
50 & -40 \\
-40 & 60
\end{array}\right]^{-1}\left[\begin{array}{c}
10 \\
-20
\end{array}\right]
$$

(0)UTM MATRIX ALGEBRA
 CIRCUIT ANALYSIS

EXAMPLE 13

MATLAB code for Example 13

```
>> R = [50 -40; -40 60]
R =
    50-40
    -40 60
>> V = [10;-20]
V =
    10
    -20
>> I = R\V
I =
    -0.1429
    -0.4286
>> I = inv(R)*V
I =
    -0.1429
    -0.4286
Example of using function inv () to solve I.
However this is not preferable in MATLAB.
Left division is the most optimized method.
```


(6) UTM

USEFUL MATRIX FUNCTION

(3)UTM USEFUL MATRIX FUNCTION

Function	Description
Create and Combine Array	
cat	Concatenate arrays along specified dimension
horzcat	Concatenate arrays horizontally
vertcat	Concatenate arrays vertically
repmat	Repeat copies of array
Reshape and Rearrange	
sort	Sort array element
sortrow	Sort rows of matrix
flip	Flip order of element
trace	Compute the sum of the elements on the main diagonal.
Special Matrices	
ones	Create array of all ones.
zeros	Create array of all zeros.
eye	Identity matrix
magic	Magic matrix

(0) UTM USEFUL MATRIX FUNCTION

TRACE

EXAMPLE 14

```
>> A = [1 2 3; 4 5 6; 7 8 9]
A =
    1 2 3
        5 6
        8
>> B = trace(A)
B =
    1 5
```


(0)UTM USEFUL MATRIX FUNCTION

EYE

- Lets consider
$F(\boldsymbol{x})=\boldsymbol{x}+A \boldsymbol{x}+B \boldsymbol{x}$
where A and B are 2×2 matrices, and \boldsymbol{x} is a 2×1 vector.
- Instead of having two multiplication, the equation can be rearranged to have single multiplication as below where I is a 2×2 identity matrix. Having less multiplication will make the operation faster.

$$
F(\boldsymbol{x})=(I+A+B) \boldsymbol{x}
$$

- Above equation will return wrong result if scalar value 1 is used instead of the identity matrix.
- eye () is a MATLAB function to create the identity matrix.

(0)UTM USEFUL MATRIX FUNCTION

EYE

EXAMPLE 15

```
>> A = [1 2;3 4];
>> B = [2 3;5 6];
>> X = [2 3];
>>F = X + X*A + X*B
F =
    32 43
>> I = eye(2)
I =
    1 0
>> F X* (I + A + B)
F}
    32 43
>>F= X*(1+A + B)
F =
    3 5
    4 5
```

The answer is wrong when scalar value 1 is used instead of the identity matrix.
univteknologimalaysia
©
utm_my
wWW.utm.my
innovative • entrepreneurial • global

