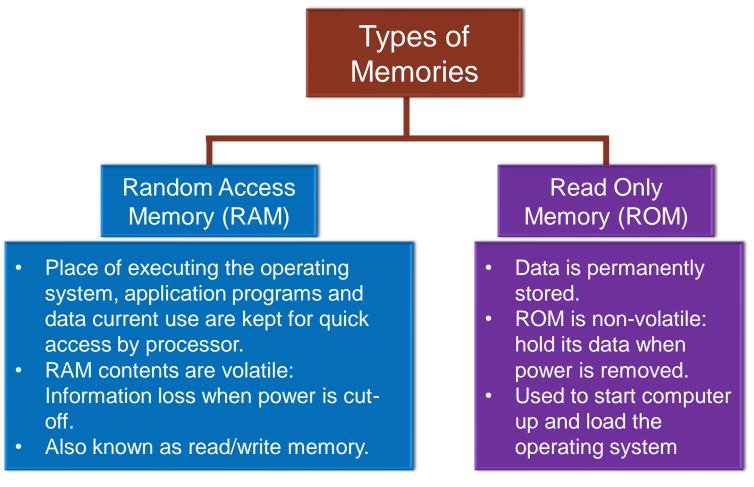


SEE 1223 DIGITAL ELECTRONICS CHAPTER 9: PROGRAMMABLE LOGIC

DR. MOHD SAIFUL AZIMI BIN MAHMUD

P19a-04-03-30 School of Electrical Engineering Faculty of Engineering Universiti Teknologi Malaysia 019-7112948 azimi@utm.my



MEMORY: RAM & ROM

MEMORY INTRODUCTION

 Memories are devices to which information is transferred for storage and from which information is available for processing.

UTTM UNIVERSITI TEKNOLOGI MALAYSIA

MEMORY RAM

- Integrated circuit RAM devices are available in two variations:
 - 1. Static RAM (SRAM)
 - Consist of internal latches that store the binary information.
 - Stored information remains valid as long as power is applied to the unit.
 - Faster.
 - High power consumption.
 - Expensive.

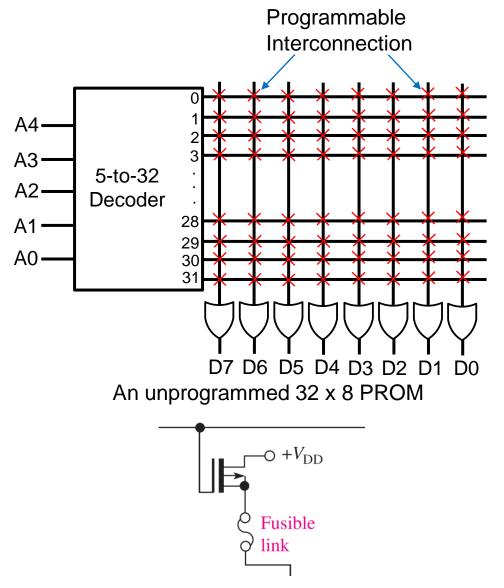
2. Dynamic RAM (DRAM)

- Stores binary information in the form of electric charges on capacitors provided by MOS transistors.
- The charge of capacitors tend to decay with time, thus need to periodically recharge by refreshing the dynamic memory every few milliseconds.
- Reduce power consumption.
- Large number of memory words per chip.

MEMORY ROM

• Various types of ROM:

1. Mask Programmed ROM (MROM)


- Programmed using a mask during fabrication by manufacturer.
- Advantages: high speed, high density, low unit costs.
- Disadvantage: contents are permanent.

2. Programmable ROM (PROM)

- Contents are in the form fuses which are blown during programming.
- Once blown, the fuses cannot be restored.
- PROM is one time programmable (OTP): cannot be updated and reused after initial programming.

MEMORY ROM

MEMORY ROM

• Various types of ROM (cont.):

3. Erasable Programmable ROM (EPROM)

- Can be erased and reprogrammed many times.
- The whole chip is erased by exposure to approximately 20 minutes of intense UV light.
- 4. Electrically-Erasable Programmable ROM (EEPROM)
 - Can be erased and reprogrammed without requiring special burning equipment.
 - High costs.
 - Allows only one memory word to be written or erased at any one time.

5. Flash Memory

- High speed and high density.
- Erases many locations simultaneously.
- Can only tolerate about 10000 erase operations before the device fails.

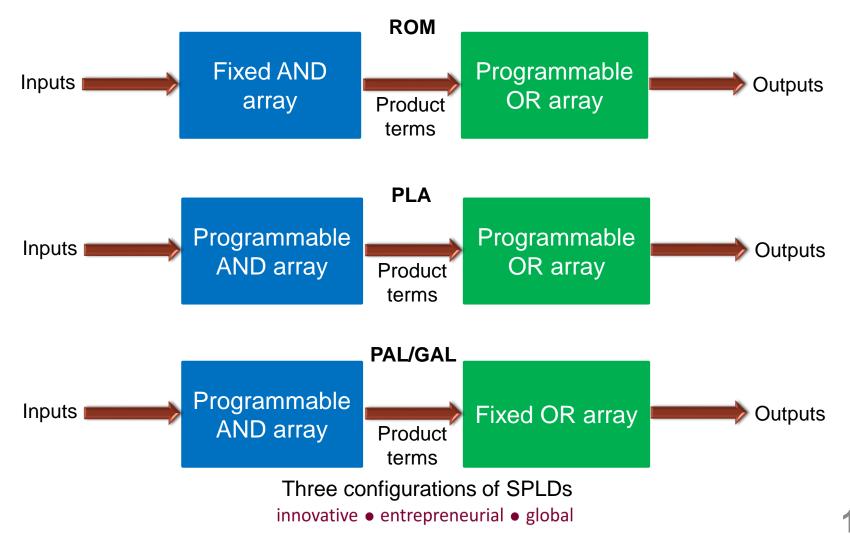
innovative • entrepreneurial • global

MEMORY ROM

Example

Given the truth table of 8 x 4 ROM as follows. Find the number of programmable interconnections & implements the ROM circuit.

							Number of programmable interconnection:
A2	A1	A0	D3	D2	D1	D0	$= 8 \times 4 = 32$
0	0	0	0	0	0	0	
0	0	1	0	0	0	0	
0	1	0	0	0	0	1	A2 1 2 41 3-to-83
0	1	1	0	0	1	0	A1 3-10-8 3 A0 Decoder 4
1	0	0	0	1	0	0	
1	0	1	0	1	1	0	
1	1	0	1	0	0	1	
1	1	1	1	1	0	0	$1 \qquad \qquad$
							D3 D2 D1 D0


PROGRAMMABLE LOGIC DEVICE: PLA & PAL

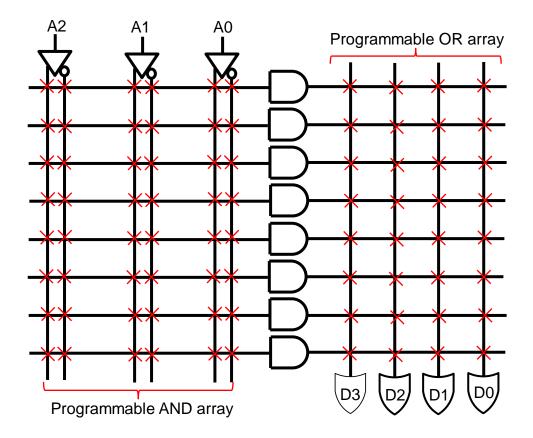
PROGRAMMABLE LOGIC DEVICE (PLD) INTRODUCTION

- PLD consists of general purpose logic resources that can be connected according to the engineer's design.
- It must be programmed first before be used in circuit.
- Advantages: Fewer parts needed, reduce inventory cost, number of interconnections are decreases as more logic integrated into each chip, higher reliability.
- **Disadvantages:** Longer propagation delay, high power consumption.
- Example of PLD are:
 - ROM
 - PLA
 - PAL
 - GAL

PROGRAMMABLE LOGIC DEVICE (PLD) INTRODUCTION

PROGRAMMABLE LOGIC DEVICE (PLD)

PLA


- Programmable Logic Array (PLA) consists of programmable AND and OR arrays.
 - Advantageous when
 - Relatively few unique minterm combinations.
 - Many minterms are shared among the output functions.

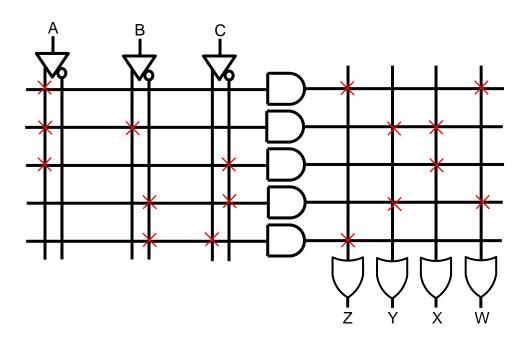
Drawbacks

- Expensive to manufacture.
- Poor speed performance: Thus PAL (Programmable Array Logic) and GAL (Generic Array Logic) were introduced.

PROGRAMMABLE LOGIC DEVICE (PLD) PLA

× Programmable Interconnection

PROGRAMMABLE LOGIC DEVICE (PLD)



PLA

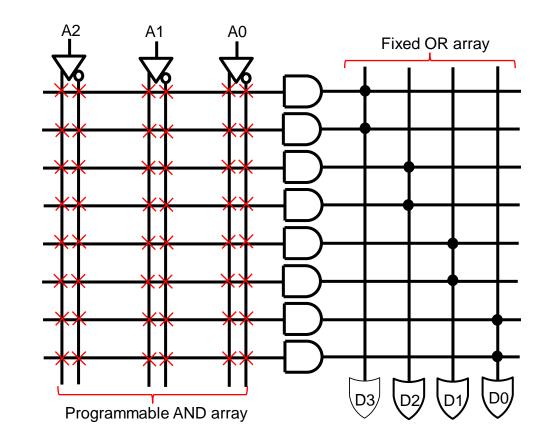
Example

Implement the following logic function using PLA.

 $W = A + \overline{B}\overline{C}$ $X = A\overline{C} + AB$ $Y = \overline{B}\overline{C} + AB$ $Z = \overline{B}\overline{C} + A$

PROGRAMMABLE LOGIC DEVICE (PLD)

PAL


- Programmable Array Logic (PAL) provides an array of programmable AND gates, but the OR connections are fixed.
- Unlike PLA, product term cannot be shared among gates.
 - Advantageous when
 - Cheaper and faster.

GAL

- Generic Array Logic (GAL) has the same basic structure as PAL (Programmable AND Gates, OR connections are fixed), but being EEPROM-based: Can be erased and reprogrammed.
 - **GAL** improves upon PAL in three aspects.
 - Can be erased.
 - Can be programmed while installed in circuit.
 - Has programmable output stage or marcocells that has feedback to enable product term to be expanded and complementary output.

PROGRAMMABLE LOGIC DEVICE (PLD) PAL/GAL

- × Programmable Interconnection
- Fixed Interconnection