SEEM1113 ENGINEERING MECHANICS

CH3 Equilibrium of Particle

Dr. Mohd Saiful Azimi Mahmud (azimi@utm.my) P19a-04-03-30, School of Electrical Engineering, UTM

(0)UTM OBJECTIVES

At the end of this lesson, you should be able to:

1. Describe the concept of free body diagram for particle.
2. Identify two types of connections often encountered in particle equilibrium problems.
3. Solve particle equilibrium problems using the equation of equilibrium.

(6) UTM

Equilibrium in Coplanar Vector

(ㅇ)UTM EQUILIBRIUM
 APPLICATION

For a given force exerted on the boat's towing pendant, what are the forces in the bridle cables? What size of cable must you use?

() UTM EQUILIBRIUM IN COPLANAR VECTOR

 GENERAL PRINCIPLE : CONDITION FOR PARTICLE EQUILIBRIUMA particle is at equilibrium if at rest or moving at a constant speed.

To maintain equilibrium, Newton's first law of motion must be satisfied

(3)UTM EQUILIBRIUM IN COPLANAR VECTOR

FREE BODY DIAGRAM (FBD)

FBD
are one of the
most
important things for you to know how to draw and use

It is key to being able to write the equations of equilibrium-which are used to solve for the unknowns (usually forces or

Why?

(0) UTM EQUILIBRIUM IN COPLANAR VECTOR

FREE BODY DIAGRAM (FBD) : HOW?

1. Imagine the particle to be isolated or cut free from its surroundings.

(0)UTM EQUILIBRIUM IN COPLANAR VECTOR

FREE BODY DIAGRAM (FBD) : HOW?

2. Show all the forces that act on the particle.

Active forces: They want to move the particle. Reactive forces: They tend to resist the motion.

(0)UTM EQUILIBRIUM IN COPLANAR VECTOR

FREE BODY DIAGRAM (FBD) : HOW?

3. Identify each force and show all known ssagnitucles and
dijrections. Show all unknown magnitudes and / or directions as variables.

(0)UTM EQUILIBRIUM IN COPLANAR VECTOR

 TYPE OF CONNECTIONS : SPRINGS, PULLEY \& CABLES

Elongation

Shortening

$$
F=k s
$$

$$
k=\text { stiffness or spring constant }
$$

$$
\text { where } \mathrm{s}=l-l_{o}
$$

(0) UTM EQUILIBRIUM IN COPLANAR VECTOR

TYPE OF CONNECTIONS : SPRINGS, PULLEY \& CABLES

Cable is in tension

With a frictionless pulley,

$$
T_{1}=T_{2}
$$

(0)UTM EQUILIBRIUM IN COPLANAR VECTOR

 COPLANAR FORCE SYSTEM
This is an example of a 2-D or
coplanar force system.
If the whole assembly is in
equilibrium, then particle A is
also in equilibrium.

To determine the tensions in the cables for a given weight of the cylinder, we need to learn how to draw a free body diagram and apply equations of equilibrium.

(0)UTM EQUILIBRIUM IN COPLANAR VECTOR

COPLANAR FORCE SYSTEM : EQUATION OF 2-D EQUILIBRIUM

Since particle A is in equilibrium, the net force at A is zero.

$$
\sum F=0
$$

So

$$
\sum F_{x} \boldsymbol{i}+\sum F_{y} \boldsymbol{j}=0
$$

Or

$$
\sum F_{x}=0 \text { and } \sum F_{y}=0
$$

(0) UTM EQUILIBRIUM IN COPLANAR VECTOR

Example 1

Determine the tensions in cables BA and BC necessary to support the 60 kg cylinder.

(6) UTM

Equilibrium in 3-D Vector

(0) UTM EQUILIBRIUM IN 3-D VECTOR

THE EQUATION OF 3D EQUILIBRIUM

For particle equilibrium

$$
\sum \boldsymbol{F}=0
$$

Resolving in i, j, k components:

$$
\sum F_{x} i+\sum F_{y} j+\sum F_{z} \boldsymbol{k}=0
$$

Therefore

$$
\sum F_{x}=0, \sum F_{y}=0 \text { and } \sum F_{z}=0
$$

(0) UTM EQUILIBRIUM IN 3-D VECTOR

Example 2

Determine the tension in each cord used to support the 100 kg crate shown in the Figure

(a)
univteknologimalaysia
©
utm_my
wWW.utm.my
innovative • entrepreneurial • global

