CHAPTER FIVE

TOPIC:

SECONDARY DISTRIBUTION SYSTEM

Introduction

$>$ The part of the electric utility system that is between the primary system and the consumer's property is called the secondary system.
$>$ Secondary distribution systems include:
$>$ step-down distribution transformers,
$>$ secondary circuits (secondary mains),
$>$ consumer services (or SDs), and
> meters.
$>$ Generally, the secondary distribution systems are designed in single phase for areas of residential customers and in three phase for areas of industrial or commercial customers with high-load densities.

Types of the secondary distribution systems

> The types of the secondary distribution systems include the following:

1. The separate-service system for each consumer with separate distribution transformer and secondary connection :
>1 transformer for 1 consumer
$>$ It is rarely used.
2. The radial system with a common secondary main, which is supplied by one distribution transformer and feeding a group of consumers:
>1 transformer for a group of consumers:
$>$ It is commonly used.
3. The secondary-bank system with a common secondary main that is supplied by several distribution transformers, which are all fed by the same primary feeder :
$>$ many transformer for a group of consumers:
$>$ fed by the same primary feeder
4.The secondary-network system with a common grid-type main:
$>$ supplied by a large number of the distribution transformers,
$>$ fed by the many primary feeder

Types of the secondary distribution systems

> One-line diagram of a simple radial secondary system

Note:

Most of the secondary systems for serving residential, rural, and light-commercial areas are radial designed.

Types of the secondary distribution systems

> One-line diagram of a secondary-bank system with a common secondary main

Note:
This system have Improved voltage regulation, Reduced voltage dip, Improved reliability.

```
This system has difficulty in fuse
coordination, and circulating current may
exist.
```


Types of the secondary distribution systems

$>$ One-line diagram of a secondary-network system with a common grid-type main

Note:
This system is used in the areas of high-load density. Underground system is preferred to avoid overhead congestion

Economic Design of Secondaries

Patterns and Some of the Variables

$>$ Economic design of a secondary distribution refers to minimizing the total annual cost (TAC) of owning and operating the secondary portion of a three-wire single phase distribution network.
$>$ Can be applied either to OH or URD construction.
> The design must satisfy voltage-drop and voltage-dip performance
$>$ It is hoped that a design for satisfactory VD performance will agree at least reasonably well with the design for minimum TAC
> Consider the following residential area, where secondary circuit is to be designed

Residential area(one block) lot layout and utility easement arrangement.

Economic Design of Secondaries

Patterns and Some of the Variables

$>$ Possible pattern of secondary circuit for such residential area, having 1 span of SL each way from the distribution transformer are shown below. The system is assumed to be built in a straight line along an alley or along rear lot lines. The lots are assumed to be of uniform width d so that each span of SL is of length 2d. If SLs are not used, then there is a distribution transformer on every pole and OH construction, and every transformer supplies four SDs.

Number of consumers $12=$ SD, length of $S D=70 \mathrm{ft}$ Number of secondary lines 2, length of $S L=2 d$ Number of transformer $=1$

Assumptions:

- lots have uniform width d
- $S L=2 d$ (each span of $S L$)
- Transformer on every pole
- 1 Transformer serve 4 SD
- 2 wires/SD

Residential area lot layout and service arrangement.

Economic Design of Secondaries

Patterns and Some of the Variables

$>$ The number of spans of SLs each way from a transformer is an important variable.
$>$ No SL is used in high-load density areas. In light-load density areas, three or more spans of SL each way from the transformer may be used.
$>\mathrm{OH}$ system, the transformer with its arrester and fuse cutout is pole mounted.
$>$ SL and SD may be of either open-wire or triplex cable construction.
$>$ URD, the transformer is grade mounted on a concrete slab and completely enclosed in a grounded metal housing or it is submersibly installed in a hole lined with concrete.
$>$ SL and SDs are triplex or twin concentric neutral narrow trenches

direct-burial cable laid in

Economic Design of Secondaries

Patterns and Some of the Variables

$>$ The distribution transformers have the parameters defined in the following:
$>\mathrm{S}_{\mathrm{T}}$ is the transformer capacity, continuously rated kVA.
$>$ lexc is the per unit exciting current (based on ST).
$>\mathrm{P}_{\mathrm{T}, \mathrm{Fe}}$ is the transformer core loss at rated voltage and rated frequency, kW .
$\Rightarrow \mathrm{P}_{\mathrm{T}, \mathrm{Cu}}$ is the transformer copper loss at rated kVA load, kW.

Equivalent Circuit of Transformer referred to Primary

Economic Design of Secondaries

Patterns and Some of the Variables

$>$ The SL has the parameters defined in the following:
$>$ Ast is the conductor area, kcmil.
$>\rho$ is the conductor resistivity, $(\Omega \cdot \mathrm{cmil}) / \mathrm{ft} .=20.5$ at $65^{\circ} \mathrm{C}$ for aluminum cable.
The SD has the parameters defined in the following:
$>$ Asd is the conductor area, kcmil.
$>\rho$ is the conductor resistivity, $(\Omega \cdot \mathrm{cmil}) / \mathrm{ft} .=20.5$ at $65^{\circ} \mathrm{C}$ for aluminum cable.

		$r_{\text {r }}$ Resistance ($\Omega /$ Conductor/mi)						$X_{\text {a }}$ Inductive Reactance ($\Omega /$ Conductor/mi) at 1 ft Spacing			X_{Δ} : Shunt Capacitive Reactance (M $\mathbf{M} \cdot \mathrm{mi} /$ Conductor) at 1 ft Spacing)		
$25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$				$50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$									
DC	25 Cycles	$\begin{gathered} 50 \\ \text { Cycles } \end{gathered}$	60 Cycles	DC	25 Cycles	50 Cycles	60 Cycles	25 Cycles	50 Cycles	60 Cycles	25 Cycles	50 Cycles	60 Cycles
0.0585	0.0594	0.0620	0.0634	0.0640	0.0648	0.0672	0.0685	0.1666	0.333	0.400	0.216	0.1081	0.0901
0.0650	0.0658	0.0682	0.0695	0.0711	0.0718	0.0740	0.0752	0.1693	0.339	0.406	0.220	0.1100	0.0916
0.0731	0.0739	0760	077	. 080	. 080	0.0826	. 08	. 17	0.344	0.413	0.224	0.1121	0.0934

Economic Design of Secondaries

Patterns and Some of the Variables: Further Assumptions

>1. All secondaries and services are single phase three wire and nominally 120/240 V.
>2. Perfectly balanced loading obtains in all three-wire circuits.
3. The system is energized 100% of the time, that is, $8760 \mathrm{~h} /$ year.
$>$ 4. The annual loss factor is estimated by using $F_{L S}=0.3 F_{L D}+0.7 F .^{2}{ }_{L D}$
>5. The annual peak-load kilovolt-ampere loading in any element of the pattern, that is, SD, section of SL, or transformer is estimated by using the maximum diversified demand.
>6. Current flows are estimated in kilovolt-amperes and nominal operating voltage, usually 240 V .
7. All loads have the same (and constant) power factor.

Economic Design of Secondaries

Total Annual Cost

$>$ The TAC of owning and operating one pattern of the secondary system is a summation of investment (fixed) costs (ICs) and operating (variable) costs (OCs).
> transformer related terms $\left.\mid \mathrm{C}_{\mathrm{F}} \mathrm{O} \mathrm{C}_{\mathrm{exco}} 0 \mathrm{O}_{\mathrm{T}, \mathrm{re}} \mathrm{O} \mathrm{C}_{\mathrm{T}, \mathrm{Cu}}\right)$

> service drop related terms $\left(\mid I_{s_{0}}, O C_{50, c u}\right)$
> poles relatedil($\left.C_{\text {pu }}\right)$

$$
\boldsymbol{T A C}=\sum \boldsymbol{I} C_{T}+\sum I C_{S L}+\sum I C_{S D}+\sum I C_{P H}+
$$

$$
\sum O C_{e x c}+\sum O C_{T, F e}+\sum \overline{O C}_{T, C u}+\sum O C_{S L, C u}+\sum O C_{S D, C u}
$$

$>$ The summations are to be taken for the one standard pattern being considered, like fig. below, but modified appropriately for the number of spans of SL being considered.
$>$ The TAC may be divided by the number of customers per pattern so that the TAC can be allocated on a per customer basis.

Economic Design of Secondaries

Assembly of Cost Data

$>$ The following cost data are sufficient for illustrative purposes but not necessarily of the accuracy required for engineering design in commercial practice.
$>$ The cost data given may be quite inaccurate because of recent, severe inflation.
$>$ The data are intended to represent an OH system using three-conductor triplex aluminum cable for both SLs and SDs.
$>$ The important aspect of the following procedures is the finding of equations for all costs so that analytical methods can be employed to minimize the TAC:

Economic Design of Secondaries

Assembly of Cost Data

$>\mathrm{ICT}$ is the annual installed cost of the distribution transformer + associated protective equipment.

$$
I C_{T}=\left(250+7.26 \times S_{T}\right) \times i
$$

\$/transformer
Where
ST is the transformer-rated kVA
i is the pu fixed charge rate on investment
$>$ ICsL is the annual installed cost of triplex aluminum SL cable

$$
I C_{S L}=\left(60+4.5 \times A_{S L}\right) \times i \quad \$ / 1000 \mathrm{ft}
$$

Where
AsL is the conductor area, kcmil
i is the pu fixed charge rate on investment
\Rightarrow transformer related terms $\left(\mathrm{IC}_{\mathrm{T}}, \mathrm{OC}_{\text {exc }}, \mathrm{OC}_{\mathrm{T}, \mathrm{Fe}}, \mathrm{OC}_{\mathrm{T}, \mathrm{Cu}}\right)$
$>$ secondary line related terms $\left(\mathrm{IC}_{\mathrm{SL}}, \mathrm{OC}_{\mathrm{SL}, \mathrm{Cu}}\right)$
$>$ service drop related terms $\left(\mathrm{IC}_{\mathrm{SD}}, \mathrm{OC}_{\mathrm{SD}, \mathrm{Cu}}\right)$
\Rightarrow poles related $\left(\mathrm{IC}_{\mathrm{PH}}\right)$

Note:

that this cost is 1000 ft of cable, that is, 3000 ft of conductor.
\Rightarrow ICSD is the annual installed cost of triplex aluminum SD cable

$$
I C_{S D}=\left(60+4.5 \times A_{S D}\right) \times i
$$

$\$ / 1000 \mathrm{ft}$
Note:
Both equations are alike because the same triplex aluminum cable, is assumed to be used for both SL and SD construction
$>$ transformer related terms $\left(\mathrm{IC}_{\mathrm{T}}, \mathrm{OC}_{\text {exc }}, \mathrm{OC}_{\mathrm{T}, \mathrm{Fe}}, \mathrm{OC}_{\mathrm{T}, \mathrm{Cu}}\right)$

Economic Design of Secondaries

Assembly of Cost Data

$>$ ICPH is the annual installed cost of pole and hardware on it but excluding transformer and transformer protective equipment

$$
I C_{P H}=(\$ 160) \times i \quad \$ / \text { pole }
$$

Note:
In case of URD design, the cost item ICPH would designate the annual installed cost of a secondary pedestal or manhole.
$>$ OCexc is the annual operating cost of transformer exciting current

$$
O C_{e x c}=\left(I_{e x c} \times S_{T} \times I C_{c a p}\right) \times i \quad \$ / \text { transformer }
$$

Where
$\mathrm{IC}_{\text {cap }}$ is the total installed cost of primary-voltage shunt capacitors = \$5.00/kvar
$I_{\text {exc }}$ is the an average value of transformer exciting current based on $S_{T} k V A$ rating $=0.015 \mathrm{pu}$
$>\mathrm{OC}_{\mathrm{T}, \mathrm{Fe}}$ is the annual operating cost of transformer due to core (iron) losses

$$
O C_{T, F e}=\left(I C_{s y s} \times i+8760 \times E C_{o f f}\right) \times P_{T, F e} \quad \$ / \text { transformer }
$$

Where
$\mathrm{IC}_{\text {sys }}$ is the average investment cost of power system upstream, that is, toward generator, from distribution transformers $=\$ 350 / \mathrm{kVA}$
$\mathrm{EC}_{\text {off }}$ is the incremental cost of electric energy (off-peak) $=\$ 0.008 / \mathrm{kWh}$
$\mathrm{P}_{\mathrm{T}, \mathrm{Fe}}$ is the annual transformer core loss, $\mathrm{kW}=0.004 \times \mathrm{S}_{\mathrm{T}} 15 \mathrm{kVA} \leq \mathrm{S}_{\mathrm{T}} \leq 100 \mathrm{kVA}$

Economic Design of Secondaries

Assembly of Cost Data

$>$ transformer related terms $\left(\mathrm{C}_{\mathrm{T}}, \mathrm{OC}_{\text {exc }} \mathrm{OC}_{\mathrm{T}, \mathrm{Fe}}, \mathrm{OC}_{\mathrm{T}, \mathrm{Cu}}\right)$
$>$ secondary line related terms $\left(\mathrm{C}_{\mathrm{sl}}, \mathrm{OC}_{\mathrm{st}, \mathrm{cu}}\right)$
> service drop related terms $\left(\mathrm{I}_{\mathrm{sp}}, \mathrm{OC}_{\mathrm{so}, \mathrm{cu}}\right)$
$>$ poles related $\left(I I_{\text {PH }}\right)$
$>\mathrm{OCT}, \mathrm{Cu}$ is the annual operating cost of transformer due to copper losses

$$
O C_{T, C u}=\left(I C_{s y s} \times i+8760 \times E C_{o n} \times F_{L S}\right) \times\left(\frac{S_{\max }}{S_{T}}\right)^{2} \times P_{T, C u} \quad \$ / \text { transformer }
$$

Where
$\mathrm{EC}_{\mathrm{o}_{\text {o }}}$ is the incremental cost of electric energy (on-peak) $=\$ 0.010 / \mathrm{kWh}$
$\mathrm{S}_{\text {max }}$ is the annual maximum kVA demand on transformer (from table $=($ no. of consumers $/ \mathrm{tx}) \times(\mathrm{kVA} /$ consumer $)$)
$\mathrm{P}_{\mathrm{T}, \mathrm{cu}}$ is the transformer copper loss, kW at rated kVA load $=0.073+0.00905 \times \mathrm{ST}$
$\mathrm{F}_{\text {Ls }}$ is the annual loss factor,(from eq.) $\quad F_{L S}=0.3 F_{L D}+0.7 F_{L D}^{2}$
$>$ OCsL,Cu is the annual operating cost of copper loss in a unit length of SL

$$
O C_{S L, C u}=\left(I C_{s y s} \times i+8760 \times E C_{o n} \times F_{L S}\right) \times P_{S L, C u}
$$

Where
$P_{\text {st,cu }}$ is the power loss in a unit of SL at time of annual peak load due to copper losses, kW
$P_{s, c, c}$ is an $I^{2} R$ loss, and it must be related to conductor area $A_{s l}$ with $R=\rho L / A_{s L}$
Note:
different sections of SLs may have different values
of current and, therefore, different PsL,Cu.

Economic Design of Secondaries

Assembly of Cost Data

$>$ transformer related terms $\left(\mathrm{IC}_{\mathrm{T}}, \mathrm{OC}_{\mathrm{exc}}, \mathrm{OC}_{\mathrm{T}, \mathrm{Fe}}, \mathrm{OC}_{\mathrm{T}, \mathrm{Cu}}\right)$
\Rightarrow secondary line related terms $\left(\mathrm{IC}_{S L}, O C_{S L, C u}\right)$
$>$ service drop related terms $\left(\mathrm{IC}_{S D}, O C_{S D, C u}\right)$
$>$ poles related $\left(\mathrm{IC}_{\mathrm{PH}}\right)$

OCSD,Cu is the annual operating cost of copper loss in a unit length of SD

$$
O C_{S D, C u}=\left(I C_{s y s} \times i+8760 \times E C_{o n} \times F_{L S}\right) \times P_{S D, C u} \quad \text { \$/SD }
$$

Where

$P_{S D, C u}$ is the power loss in a unit of SD at time of annual peak load due to copper losses, kW
$P_{\text {SDCu }}$ is an $I^{2} R$ loss, and it must be related to conductor area ASD with $R=\rho L / A S D$

Economic Design of Secondaries

Example

$>$ This example deal with cost of a single-phase OH secondary distribution system in a residential area.
$>$ For the layouts and the service arrangement shown in the figure below calculate the TAC as a function of St, AsD and AsL
$>$ Equal lot width and uniform load spacing are assumed. (All SDs $=70 \mathrm{ft}$ long)

Residential area lot layout and service arrangement.

The calculations for one block of the residential area for the case of 12 services per transformer (2 transformer per block)
a. One consumer per SD
b. Four consumers per section of SL
c. Twelve consumers per transformer

No. of customers being diversified	30-Min. Annual Max. Demands, kVA/Customer		
	Class 1	Class 2	Class 3
1	18	10	2.5
2	14.4	7.6	1.8
4	12	6	1.5
12	10	4.4	1.2
100	8.4	3.6	1.1

Economic Design of Secondaries

Example

$>$ For the layouts and the service arrangement shown in the figure below calculate the TAC eq. applicable to one block of these residential areas for the case of 12 services per transformer(2 transformer per block). Use the following data and assumptions:
>1. All secondaries and services are single phase three wire, nominally 120/240 V.
>2. Assume perfectly balanced loading in all single-phase three-wire circuits.
>3. Assume that the system is energized 100% of the time, that is, $8760 \mathrm{~h} /$ year.
>4. Assume the annual load factor to be $\mathrm{F}_{\mathrm{LD}}=0.35$.
>5. Assume the annual loss factor to be $F_{L S}=0.3 F_{L D}+0.7 F_{L D}^{2}$
>6. Assume that there are 12 services per transformers.
>7. Assume nominal operating voltage of 240 V when computing currents.
>8. Assume a 90% power factor for all loads.
9. Assume a fixed charge (capitalization) rate of 0.15 .
\Rightarrow Assume ρ is $20.5(\Omega \cdot \mathrm{cmil}) / \mathrm{ft}$ at $65^{\circ} \mathrm{C}$ for aluminum cable
>10. Use 30 min annual maximum demands for customer class 2

Economic Design of Secondaries

Solution

$>$ TAC is given by

$$
\begin{aligned}
& T A C=\sum I C_{T}+\sum I C_{S L}+\sum I I C_{S D}+\sum \cap I C_{P H}+ \\
& \sum O C_{e x c}+\sum O C_{T, F e}+\sum O C_{T, C u}+\sum O C_{S L, C u}+\sum O C_{S D, C u}
\end{aligned}
$$

\Rightarrow Calculate each cost independently

All investment (fixed) costs (ICs)

$>$ Given : fixed charge (capitalization) rate of 0.15
\rightarrow Known:
>12 services per transformer
>2 transformers per block

$>$ The annual installed cost of the two distribution transformer and associated protective equipment:

$$
\begin{aligned}
& I C_{\boldsymbol{T}}=\left(250+7.26 \times \boldsymbol{S}_{\boldsymbol{T}}\right) \times \boldsymbol{i} \quad \$ / \text { transformer } \\
& I C_{T}=2\left(250+7.26 \times S_{T}\right) \times 0.15 \\
& =75+2.175 S_{T} \$ / \text { block }
\end{aligned}
$$

Economic Design of Secondaries

Solution

$T A C=\sum \backslash I C_{T}+\sum I C_{S L}+\sum I C_{S D}+\sum \backslash I C_{P H}+$
$\sum O C_{e x c}+\sum O C_{T, F e}+\sum O C_{T, C u}+\sum O C_{S L, C u}+\sum O C_{S D, C u}$
$>$ The annual installed cost of the triplex aluminum SL cable used for $300 \mathrm{ft} /$ transformer (since there is 150 ft SL at each side of each transformer) in the SLs is:

$$
\begin{aligned}
I C_{S L} & =\left(60+4.5 \times A_{S L}\right) \times i \quad \$ / 1000 \mathrm{ft} \\
I C_{S L} & =2\left(60+4.5 \times A_{S L}\right) \times 0.15 \times \frac{300 \mathrm{ft} / \text { transformer }}{1009} \\
I C_{S L} & =5.4+0.405 A_{S L} \quad \$ / \text { block }
\end{aligned}
$$

1 span of SL each way from the transformer

$T A C=\sum I C_{T}+\sum I C_{S L}+\sum I C_{S D}+\sum I C_{P H}+$
$\sum O C_{e x c}+\sum O C_{T, F e}+\sum O C_{T, C u}+\sum O C_{S L, C u}+\sum O C_{S D, C u}$
$>$ The annual installed cost of triplex aluminum 24 SDs per block (each SD is 70 ft long)

$$
\begin{aligned}
& I C_{S D}=\left(60+4.5 \times A_{S D}\right) \times i \quad \$ / 1000 \mathrm{ft} \\
& I C_{S D}=2\left(60+4.5 \times A_{S D}\right) \times 0.15 \times \frac{12 \times 70 \mathrm{ft} / \mathrm{SD}}{1000 \mathrm{ft}} \\
& I C_{S D}=15.12+1.134 A_{S D} \$ / \text { block }
\end{aligned}
$$

$>$ The annual installed cost of poles per block (six poles per block)

$$
\begin{gathered}
I C_{P H}=(\$ 160) \times i \quad \$ / \text { pole } \\
I C_{P H}=(\$ 160) \times 6 \times 0.15=144 / \text { block }
\end{gathered}
$$

$$
\begin{aligned}
& T A C=\sum I C_{T}+\sum I C_{S L}+\sum I C_{S D}+\sum I C_{P H}+ \\
& \sum O C_{e x c}+\sum O C_{T, F e}+\sum O C_{T, C u}+\sum O C_{S L, C u}+\sum O C_{S D, C u}
\end{aligned}
$$

All operating (variable) costs (OCs)

$>$ OCexc is the annual operating cost of transformer exciting current per block

$$
O C_{e x c}=\left(I_{e x c} \times S_{T} \times I C_{c a p}\right) \times i
$$

\$/transformer

Where
$\mathrm{IC}_{\text {cap }}$ is the total installed cost of primary-voltage shunt capacitors = \$5.00/kvar
$\mathrm{I}_{\text {exc }}$ is the an average value of transformer exciting current based on $\mathrm{S}_{\mathrm{T}} \mathrm{kVA}$ rating $=0.015 \mathrm{pu}$

$$
O C_{e x c}=2\left(0.015 \times S_{T} \times 5\right) \times 0.15=0.0225 S_{T} \$ / \text { block }
$$

The annual operating cost of transformer due to core (iron) losses

$$
\begin{aligned}
O C_{T, F e} & =\left(I C_{s y s} \times i+8760 \times E C_{o f f}\right) \times P_{T, F e} \quad \$ / \text { transformer } \\
O C_{T, F e} & =2(350 \times 0.15+8760 \times 0.008) \times 0.004 \times S_{T}
\end{aligned}
$$

Where $\quad=0.98 S_{T} \$ /$ block
$\mathrm{IC}_{\text {sys }}$ is the average investment cost of power system upstream, that is, toward generator, from distribution transformers = $\$ 350 /$ kVA
$\mathrm{EC}_{\text {off }}$ is the incremental cost of electric energy (off-peak) $=\$ 0.008 / \mathrm{kWh}$
$P_{T, ~ \mathrm{ee}}$ is the annual transformer core loss, $\mathrm{kW}=0.004 \times \mathrm{S}_{\mathrm{T}} 15 \mathrm{kVA} \leq \mathrm{S}_{\mathrm{T}} \leq 100 \mathrm{kVA}$

$T A C=\sum^{`} I C_{T}+\sum^{\wedge} I C_{S L}+\sum^{\prime} I C_{S D}+\sum^{`} I C_{P H}+$
$\sum O C_{e x c}+\sum O C_{T, F e}+\sum O C_{T, C u}+\sum O C_{S L, C u}+\sum O C_{S D, C u}$

The annual operating cost of transformer due to copper losses

Where

$$
O C_{T, C u}=\left(I C_{s y s} \times i+8760 \times E C_{o n} \times F_{L S}\right) \times\left(\frac{S_{\max }}{S_{T}}\right)^{2} \times P_{T, C u}
$$

$\mathrm{IC}_{\text {sys }}$ is the average investment cost of power system upstream, that is, toward generator, from distribution transformers = \$350/kVA
ECon is the incremental cost of electric energy (on-peak) $=\$ 0.010 / \mathrm{kWh}$
Smax is the annual maximum kVA demand on transformer
PT, Cu is the transformer copper loss, kW at rated kVA load $=0.073+0.00905 \times \mathrm{ST}$
FLs is the annual loss factor
FLD is the annual load factor=0.35

12 customers/ transformer; from the table maximum diversified demand $=4.4 \mathrm{kVA}$

No. of customers being diversified	30-Min. Annual Max. Demands, kVA/Customer		
	Class 1	Class 2	Class 3
2	18	10	2.5
4	14.4	7.6	1.8
12	12	6	1.5
100	10	4.4	1.2

$$
\begin{aligned}
O C_{T, C u} & =2(350 \times 0.15+8760 \times 0.010 \times 0.1904) \times\left(\frac{12 \times 4.4}{S_{T}}\right)^{2} \times\left(0.073+0.00905 \times S_{T}\right) \\
O C_{T, C u} & =\frac{28170}{S_{T}^{2}}+\frac{3492}{S_{T}} \text { \$/block }
\end{aligned}
$$

$T A C=\sum^{\prime} I C_{T}+\sum^{\prime} I C_{S L}+\sum^{\prime} I C_{S D}+\sum^{\prime} I C_{P H}+$
$\sum O C_{e x c}+\sum O C_{T, F e}+\sum O C_{T, C u}+\sum O C_{S L, C u}+\sum O C_{S D, C u}$

Solution

the annual operating cost of copper loss in a unit length of SL (4 SLs)

$$
O C_{S L, C u}=\left(I C_{s y s} \times i+8760 \times E C_{o n} \times F_{L S}\right) \times P_{S L, C u} \quad \$ / \text { transformer }
$$

Where
ECon is the incremental cost of electric energy (on-peak) $=\$ 0.010 / \mathrm{kWh}$
$\mathrm{IC}_{\text {sys }}$ is the average investment cost of power system upstream, that is, toward generator, from distribution transformers = $\$ 350 / \mathrm{kVA}$
FLS is the annual loss factor

$$
F_{L S}=0.3 \times 0.35+0.7 \times 0.35^{2}=0.1904
$$

No. of customers being diversified	30-Min. Annual Max. Demands, kVA/Customer		
	Class 1	Class 2	
1	18	10	
2	14.4	7.6	
4	12	6	
12	10	4.4	
100	8.4	3.6	

$\mathrm{P}_{\mathrm{SL}, \mathrm{Cu}}$ is the copper losses in two SLs at time of annual peak load, $\mathrm{kW} /$ transformer which is given by

$$
P_{S L, C u}=I^{2} R
$$

$R=\frac{\rho l}{A_{S L}}=\frac{20.5(\Omega \mathrm{cmil}) / \mathrm{ft} \times 300 \mathrm{ft} \text { wire } \times 2}{1000 \times A_{S L}}$
$=\frac{12.3}{A_{S L}} \Omega . \mathrm{kcmil} /$ transformer

each span of SL is of length 300 ft

Economic Design of Secondaries

Therefore

$$
\begin{aligned}
& P_{S L, C u}=\left(\frac{24 k V A}{240 V}\right)^{2} \times \frac{12.3}{A_{S L}} \times \frac{1}{1000} \\
& =\frac{123}{A_{S L}} k W \quad \mathrm{~kW} / \text { transformer }
\end{aligned}
$$

Now
$>$ the annual operating cost of copper loss in a unit length of SL
$O C_{S L, C u}=\left(I C_{s y s} \times i+8760 \times E C_{o n} \times F_{L S}\right) \times P_{S L, C u}$ \$/transformer
$O C_{S L, C u}=2(350 \times 0.15+8760 \times 0.01 \times 0.1904) \times \frac{123}{A_{S L}}=\frac{17018}{A_{S L}} \quad \$ / \mathrm{block}$
4 customers/ SL ; from the table maximum diversified demand $=6 \mathrm{kVA}$

No. of customers being diversified	30-Min. Annual Max. Demands, kVA/Customer	
	Class 1	Class 2
1	18	10
Class 3		
2	14.4	7.6
4	12	6.5
12	10	4.4
100	8.4	3.6

$$
\begin{aligned}
& T A C=\sum I C_{T}+\sum I C_{S L}+\sum I C_{S D}+\sum I C_{P H}+ \\
& \sum O C_{e x c}+\sum O C_{T, F e}+\sum O C_{T, C u}+\sum O C_{S L, C u}+\sum O C_{S D, C u} \quad \text { Solution }
\end{aligned}
$$

the annual operating cost of copper loss in a unit length of SD (24 SDs)

$$
O C_{S D, C u}=\left(I C_{s y s} \times i+8760 \times E C_{o n} \times F_{L S}\right) \times P_{S D, C u} \quad \$ / \text { transformer }
$$

Where
ECon is the incremental cost of electric energy (on-peak) $=\$ 0.010 / \mathrm{kWh}$
ICsys is the average investment cost of power system upstream, that is, toward generator, from distribution transformers = \$350/kVA
FLD is the annual load factor $=0.35$

$$
F_{L S}=0.3 \times 0.35+0.7 \times 0.35^{2}=0.1904
$$

$\mathrm{P}_{\mathrm{SD}, \mathrm{Cu}}$ is the copper losses in the 24 SDs at the time of annual peak load, kW given by

$$
P_{S D, C u}=I^{2} R
$$

$R=\frac{\rho l}{A_{S D}}=\frac{20.5(\Omega \mathrm{cmil} / \mathrm{ft}) \times 70 \mathrm{ft} \times 24 S D / \text { block } \times 2 \text { wires } / S D}{1000 \times A_{S D}}$
$=\frac{68.88}{A_{S D}} \Omega . \mathrm{kcmil} / \mathrm{block}$

Economic Design of Secondaries

Solution
Therefore

$$
\begin{aligned}
& P_{S D, C u}=\left(\frac{10 k V A}{240 V}\right)^{2} \times \frac{68.88}{A_{S D}} \times \frac{1}{1000} \\
& =\frac{119.58}{A_{S D}} k W / b l o c k
\end{aligned}
$$

No. of customers being diversified	30-Min. Annual Max. Demands, kVA/Customer		
	Class 1	Class 2	Class 3
1	18	10	2.5
2	14.4	7.6	1.8
12	12	6	1.5
100	10	4.4	1.2
	8.4	3.6	1.1

one SD per one Class 2 customer, from the table maximum diversified demand $=10 \mathrm{kVA}$

Now

$$
O C_{S D, C u}=(350 \times 0.15+8760 \times 0.01 \times 0.1904) \times \frac{119.58}{A_{S D}}=\frac{8273}{A_{S D}} \quad \$ / \text { block }
$$

Finally substituting all the equation in to TAC formula, we have

$$
\begin{aligned}
& T A C=\left(75+2.178 S_{T}\right)+\left(5.4+0.405 A_{S L}\right)+\left(15.12+1.134 A_{S D}\right)+ \\
& \left(144+0.0225 S_{T}\right)+\left(0.98 S_{T}\right)+\left(\frac{28170}{S_{T}^{2}}+\frac{3492}{S_{T}}\right)+\frac{17108}{A_{S L}}+\frac{8273}{A_{S D}}
\end{aligned}
$$

Economic Design of Secondaries

Solution

Simplifying TAC becomes
$T A C=239.52+3.1805 S_{T}+\frac{3492}{S_{T}}+\frac{28170}{S_{T}^{2}}+0.405 A_{S L}+\frac{17108}{A_{S L}}+1.134 A_{S D}+\frac{8273}{A_{S D}}$
$>$ Note that TAC have the general form as

$$
T A C=A+B S_{T}+\frac{C}{S_{T}}+\frac{D}{S_{T}^{2}}+E A_{S L}+\frac{F}{A_{S L}}+G A_{S D}+\frac{H}{A_{S D}}
$$

Minimization of the TAC

Example

TAC general equation shown below can be used to find the minimum TAC by taking three partial derivatives, and setting each derivative to zero:

$$
T A C=A+B S_{T}+\frac{C}{S_{T}}+\frac{D}{S_{T}^{2}}+E A_{S L}+\frac{F}{A_{S L}}+G A_{S D}+\frac{H}{A_{S D}}
$$

That is

$$
\begin{aligned}
& \frac{\delta(T A C)}{\delta S_{T}}=\mathrm{O} \\
& =B-\frac{C}{S_{T}^{2}}-\frac{2 D}{S_{T}^{3}}=0
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\delta(T A C)}{\delta A_{S L}}=\mathrm{O} \\
& =E-\frac{F}{A_{S L}^{2}}=\mathrm{O}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\delta(T A C)}{\delta A_{S D}}=\mathrm{O} \\
& =G-\frac{H}{A_{S D}^{2}}=\mathrm{O}
\end{aligned}
$$

Note:

The solution obtained for $\mathrm{S}_{\mathrm{T}}, \mathrm{A}_{\mathrm{SL}}$ and A_{SD} are continuous variable.
TAC for the standard commercial sizes of equipment nearest to the results should be obtained.

Minimization of the TAC

Example

$>$ If the TAC found as a function of $S_{t}, A s l, A s d$ is

$$
\begin{aligned}
& T A C=239.52+3.1805 S_{T}+\frac{3492}{S_{T}}+\frac{28170}{S_{T}^{2}}+0.405 A_{S L}+\frac{17108}{A_{S L}}+1.134 A_{S D}+\frac{8273}{A_{S D}} \\
& \text { Find }
\end{aligned}
$$

$>$ a. The most economical SD size (AsD) and the nearest larger standard AWG wire size
$>$ b. The most economical SL size (AsL) and the nearest larger standard AWG wire size
$>$ c. The most economical distribution transformer size (ST) and the nearest larger standard transformer size
$>$ d. The TAC per block for the theoretically most economical sizes of equipment
$>$ e. The TAC per block for the nearest larger standard commercial sizes of equipment

Minimization of the TAC

Example

If the TAC found as a function of $S_{T}, A s L, A s d$ is

$$
\begin{aligned}
& T A C=239.52+3.1805 S_{T}+\frac{3492}{S_{T}}+\frac{28170}{S_{T}^{2}}+0.405 A_{S L}+\frac{17108}{A_{S L}}+1.134 A_{S D}+\frac{8273}{A_{S D}} \\
& \text { Solution }
\end{aligned}
$$

a. The most economical SD size (AsD) and the nearest larger standard AWG wire size

$$
\begin{aligned}
& \frac{\delta(T A C)}{\delta A_{S D}}=0 \\
& =G-\frac{H}{A_{S D}^{2}}=0
\end{aligned}
$$

Size of Conductor Circular Mils	$\begin{aligned} & \text { AWG } \\ & \text { or } \\ & \text { B \& } \mathrm{S} \end{aligned}$	Number of Strands	Diameter of Individual Strands (in.)	Outside Diameter (in.)	Breaking Strength (1b)	Weight (lib/mi)	Approx. Current Carrying Capacity ${ }^{2}$ (amps)	Geometric Mean Radius at 60 Cycles (ft)
1,000,000	-	37	0.1644	1.151	43,830	16,300	1300	0.0368
900,000	-	37	0.1560	1.092	39,610	14,670	1220	0.0349
800,000	-	37	0.1470	1.029	35.120	13,040	1130	0.0329
750,000	-	37	0.1424	0.997	33,400	12,230	1090	0.0319
700,000	-	37	0.1375	0.963	31.170	11.410	1040	0.0306
500,000	-	37	0.1273	0.891	27.020	9.781	940	0.0285
500,000	-	37	0.1162	0.814	22,610	8.161	840	0.0260
500,000	-	19	0.1622	0.811	21.590	8,161	840	0.0256
450,000	-	19	0.1539	0.770	19.750	7,336	780	0.0243
400,000	-	19	0.1451	0.726	17.560	6.521	730	0.0229
350.000	-	19	0.1357	0.679	16.890	5.706	670	0.0214
350,000	-	12.	0.1708	0.710	16,140	5,706	670	0.0225
$300,000$	-	19	0.1257	0.629	$13,510$	4,891	610	0.01987
$300,000$	-	12	0.1581	0.657	13,170	4,891	610	0.0208
250,000	-	19	0.1147	0.574	11,360	4,076	540	0.01813
250.000	-	12	0.1443	0.600	11.130	4,076	540	0.01902
211.600	4/0	19	0.1055	0.528	9,617	3,450	480	0.01668
211,600	410	12	0.1328	0.552	9,483	3,450	490	0.01750
211,600	4/0	7	0.1739	0.522	9,154	3,450	480	0.01579
167.800	3/0	12	0.1183	0.492	7.556	2,736	420	0.01569
167,800	$3 / 0$	7	0.1548	0.464	7.366	2.736	420	0.01404
133,100	$2 / 0$	7	0.1379	0.414	5,926	2,170	360	0.01252
106,600	1/0	7	0.1228	0.368	4,752	1,720	310	0.01113
83,690	1	7	0.1093	0.328	3,804	1.364	270	0.00992

Minimization of the TAC

Example

If the TAC found as a function of $S_{T}, A s L, A s d$ is

$$
\begin{aligned}
& T A C=239.52+3.1805 S_{T}+\frac{3492}{S_{T}}+\frac{28170}{S_{T}^{2}}+0.405 A_{S L}+\frac{17108}{A_{S L}}+1.134 A_{S D}+\frac{8273}{A_{S D}} \\
& \text { Solution }
\end{aligned}
$$

$>\mathrm{b}$. The most economical SL size (AsL) and the nearest larger standard AWG wire size

```
\delta(\boldsymbol{TAC})
=\boldsymbol{E}-\frac{\boldsymbol{F}}{\mp@subsup{\boldsymbol{A}}{\boldsymbol{SL}}{2}}=0
```

$$
0.405-\frac{17018}{A_{S L}^{2}}=0
$$

$$
A_{S L}=204.99 \mathrm{kcmil}
$$

Nearest larger size $=211.6$ kcmil AWG (4/0)

Size of Conductor Circular Mils	AWG or B\&S	Number of Strands	Diameter of Individual Strands (in.)	Outside Diameter (in.)	Breaking Strength (1b)	Weight (lib/mi)	Approx. Current Carrying Capacity ${ }^{2}$ (amps)	Geometric Mean Radius at 60 Cycles (ft)
1,000,000	-	37	0.1644	1.151	43,830	16,300	1300	0.0368
900,000	-	37	0.1560	1.092	39,610	14.670	1220	0.0349
800,000	-	37	0.1470	1.029	35.120	13,040	1130	0.0329
750,000	-	37	0.1424	0.997	33,400	12,230	1090	0.0319
700,000	-	37	0.1375	0.963	31.170	11.410	1040	0.0306
500,000	-	37	0.1273	0.891	27.020	9,781	940	0.0285
500,000	-	37	0.1162	0.814	22,610	8,161	840	0.0260
500,000	-	19	0.1622	0.811	21.590	8,161	840	0.0256
450,000	-	19	0.1539	0.770	19.750	7,336	780	0.0243
400,000	-	19	0.1451	0.726	17.560	6.521	730	0.0229
350.000	-	19	0.1357	0.679	16.890	5.706	670	0.0214
350,000	-	12	0.1708	0.710	16,140	5,706	670	0.0225
300,000	-	19	0.1257	0.629	13,510	4,891	610	0.01987
300,000	-	12	0.1581	0.657	13,170	4,891	610	0.0208
250,000	-	19	0.1147	0.574	11,360	4,076	540	0.01813
250.000	-	12	0.1443	0.600	11.130	4,076	540	0.01902
211.600	$4 / 0$	19	0.1055	0.528	9,617	3,450	480	0.01668
211600	410	12	0.1328	0.552	9483	3.450	490	0.01750
211,600	4/0	7	0.1739	0.522	9,154	3,450	480	0.01579
167.800	3/0	12	0.1183	0.492	7.556	2,736	420	0.01569
$133,100$	$2 / 0$	7	0.1379	0.414	5.926	2,170	360	0.01252
106,600	$1 / 0$	7	0.1228	0.368	4,752	1,720	310	0.01113
83,690	1	7	0.1093	0.328	3,804	1,364	270	0.00992

Minimization of the TAC

Example

If the TAC found as a function of $S_{t}, A s L$, Asd is
$T A C=239.52+3.1805 S_{T}+\frac{3492}{S_{T}}+\frac{28170}{S_{T}^{2}}+0.405 A_{S L}+\frac{17108}{A_{S L}}+1.134 A_{S D}+\frac{8273}{A_{S D}}$
Solution
b. The most economical Transformer size (ST) and the nearest larger standard size

Nearest larger size $=50$ kVA

TABLE 3.1					
Kilovoltamperes		High Voltages		Low Voltages	
Single Phase	Three Phase	Single Phase	Three Phase	Single Phase	Three Phase
5	30	2,400/4,160 Y	2.400	120/240	208 Y/120
10	45	4,80008,320 Y	$4.160 \mathrm{Y} / 2,400$	240/480	240
15	75	$4,800 \mathrm{Y} / 8.320 \mathrm{YX}$	4.160 Y	2400	480
25	1121/2	7,200/12.470 Y	4.800	2520	$480 \mathrm{Y} / 277$
371/2	150	12.470 Gnd Y 7.200	$8.320 \mathrm{Y} / 4.800$	4800	240×480
50	225	7.620113.200Y	8.320 Y	5040	2,400
75	300	13.200 Gnd Y 7.620	7.200	6900	4,160 Y/2,400
100	500	12.000	12.000	7200	4,800
167		13.200/22.860 Gnd Y	$12.470 \mathrm{Y} / 7.200$	7560	12,470 Y \%, 200
250		13.200	12.470 Y	7980	13,200 Y/7,620
333		13.800 Gnd Y 7.970	13,200 Y/7,620		
500		13.800023 .900 Gnd Y	$13,200 \mathrm{Y}$		
		13.800	13,200		
		14.400/24.940 Gnd Y	13,800		
		16.340	22,900		
		19.920/34.500 Gnd Y	34,400		
		22,900	43,800		
		34.400	67,000		
		43,800			
		67,000			

Minimization of the TAC

Example

$>$ If the TAC found as a function of $S_{t}, A s l, A s d$ is

$$
\begin{aligned}
& T A C=239.52+3.1805 S_{T}+\frac{3492}{S_{T}}+\frac{28170}{S_{T}^{2}}+0.405 A_{S L}+\frac{17108}{A_{S L}}+1.134 A_{S D}+\frac{8273}{A_{S D}} \\
& \text { Solution }
\end{aligned}
$$

$>$ d. The TAC per block for the theoretically most economical sizes of equipment
$T A C=239.52+3.1805 \times 39+\frac{3492}{39}+\frac{28170}{39^{2}}+0.405 \times 209.99+\frac{17108}{204.99}+1.134 \times 85.41+\frac{8273}{85.41}$ $=\$ 838$
$>$ e. The TAC per block for the nearest larger standard commercial sizes of equipment

$$
T A C=239.52+3.1805 \times 50+\frac{3492}{50}+\frac{28170}{50^{2}}+0.405 \times 211.6+\frac{17108}{211.6}+1.134 \times 106.5+\frac{8273}{106.5}
$$

Secondary System Upgrading Costs

$>$ In general, it costs more to upgrade given equipment to a higher capacity than to build to that capacity in the first place.
$>$ Upgrading an existing SL entails removing the old conductor and installing new. Usually, new hardware is required, and sometimes poles and cross arms must be replaced.
$>$ Therefore, usually, the cost of this conversion greatly exceeds the cost of building to the higher-capacity design in the first place.
$>$ Because of this, T\&D engineers have an incentive to look at long-term needs carefully and to install extra capacity for future growth.

Secondary System Upgrading Costs

$>$ It has been estimated that a 12.47 kV OH, three-phase feeder with 336 kcmil costs $\$ 120,000 / \mathrm{mile}$. It has been also estimated that to build the feeder with 600 kcmil conductor instead and a 15 MVA capacity would cost about $\$ 150,000 /$ mile. Upgrading the existing 9 MVA capacity line later to 15 MVA capacity entails removing the old conductor and installing new. The cost of upgrade is $\$ 200,000 /$ mile. Determine the following:
a. The cost of building the 9 MVA capacity line in dollars per kVA-mile
b. The cost of building the 15 MVA capacity line in dollars per kVA-mile
$>\mathrm{c}$. The cost of the upgrade in dollars per kVA-mile

Upgraded system

- New cross arm and equipment
- Thick SL

Secondary System Upgrading Costs

Given: 336 kcmil costs $\$ 120,000 /$ mile : System KVA Rating = 9MVA 600 kcmil costs $\$ 150,000 / \mathrm{mile}$: System KVA Rating = 15MVA cost of upgrade from 9 MVA to 15 MVA is $\$ 200,000 /$ mile
$>$ a. The cost of building the 9 MVA capacity line in dollars per kVA-mile

$$
\text { Cost }_{9 \mathrm{MVAline}}=\frac{\$ 120000}{9000 \mathrm{kVA}}=13.33 \$ / \mathrm{kVA} \text { mile }
$$

> b. The cost of building the 15 MVA capacity line in dollars per kVA-mile

$$
\operatorname{Cost}_{15 \text { MVA line }}=\frac{\$ 150000}{15000 \mathrm{kVA}}=10 \$ / \mathrm{kVAmile}
$$

$>\mathrm{c}$. The cost of the upgrade in dollars per kVA-mile

$$
\text { Cost }_{9 \text { to } 15 \text { mVA line }}=\frac{\$ 200000}{(15000-9000) \mathrm{kVA}}=33.33 \$ / \mathrm{kVA} \text { mile }
$$

Economic Design of Secondaries

Example

For the layouts and the service arrangement shown in the figure below calculate the TAC as a function of St, AsD and ASL

Residential area lot layout and service arrangement.

Economic Design of Secondaries

Example

System data

System parameter	Value or description
System phase	single
System voltage	$120 / 240$
Reliability	$100 \%(8760 \mathrm{~h} / \mathrm{y})$
Annual $\mathrm{FLD}_{\text {LD }}$	0.35
Annual $\mathrm{F}_{\text {LS }}$	$\boldsymbol{F}_{\boldsymbol{L S}}=\mathbf{0 . 3 \boldsymbol { F } _ { \boldsymbol { L D } }}+\mathbf{O . 7 \boldsymbol { F } _ { \boldsymbol { L D } } ^ { 2 }}$
Consumer/transformer	4
Power factor	0.9
Fixed charge rate	0.15
p for alluminium @ 65	$20.5 \Omega . \mathrm{cmil} / \mathrm{ft}$
Consumer class	2
Consumer/SD	1

No. of customers being diversified	30-Min. Annual Max. Demands, kVA/Customer		
	Class 1	Class 2	Class 3
2	18	10	2.5
4	14.4	7.6	1.8
12	12	6	1.5
100	10	4.4	1.2
	8.4	3.6	1.1

Economic Design of Secondaries

Solution

TAC is given by

$$
\begin{aligned}
& \boldsymbol{T A C}=\sum \boldsymbol{I} \boldsymbol{C}_{\boldsymbol{T}}+\sum \boldsymbol{I} \boldsymbol{C}_{\boldsymbol{S L}}+\sum \boldsymbol{I} \boldsymbol{C}_{\boldsymbol{S D}}+\sum \boldsymbol{I} \boldsymbol{C}_{\boldsymbol{P H}}+ \\
& \sum O C_{\boldsymbol{e x c}}+\sum O C_{T, F e}+\sum O C_{T, C u}+\sum O C_{S L, C u}+\sum O C_{S D, C u}
\end{aligned}
$$

All investment (fixed) costs (ICs)

Annual installed cost of the six distribution transformer and associated protective equipment

$$
\begin{aligned}
& I C_{T}=\left(250+7.26 \times S_{T}\right) \times i \$ / \text { transformer } \\
& =6\left(250+7.26 \times S_{T}\right) \times 0.15 \\
& =\$\left(225+6.534 S_{T}\right) \$ / \text { block }
\end{aligned}
$$

Annual installed cost of triplex aluminum 24 SDs per block (each SD is 70 ft long)

$$
\begin{aligned}
& I C_{S D}=\left(60+4.5 \times \boldsymbol{A}_{S D}\right) \times i \$ / 1000 \mathrm{ft} \\
& =6\left(60+4.5 \times \boldsymbol{A}_{S D}\right) \times 0.15 \times \frac{4 \times 7 \mathrm{Ot} / \mathrm{SD}}{1000 \mathrm{ft}} \\
& =\$\left(15.12+1.134 \boldsymbol{A}_{S D}\right) \$ / \mathrm{block}
\end{aligned}
$$

Annual cost of pole and hardware for the six poles per block

$$
\begin{aligned}
& I C_{P H}=(\$ 160) \times i \$ / \text { pole } \\
& (\$ 160) \times 6 \times 0.15=\$(144) / \text { block }
\end{aligned}
$$

Economic Design of Secondaries

$>$ TAC is given by

$$
\begin{aligned}
& \boldsymbol{T A C}=\sum \boldsymbol{I} \boldsymbol{C}_{\boldsymbol{T}}+\sum \boldsymbol{I} \boldsymbol{C}_{\boldsymbol{S L}}+\sum \boldsymbol{I} \boldsymbol{C}_{\boldsymbol{S D}}+\sum \boldsymbol{I} \boldsymbol{C}_{\boldsymbol{P H}}+ \\
& \sum O C_{\text {exc }}+\sum O C_{T, F e}+\sum O C_{T, C u}+\sum O C_{S L, C u}+\sum O C_{S D, C u}
\end{aligned}
$$

$>$ All operating (variable) costs (OCs)
Annual OC of transformer exciting current per block

$$
\begin{aligned}
& O C_{e x c}=\left(I_{e x c} \times S_{T} \times I C_{c a p}\right) \times i \text { s/transformer } \\
& =6\left(0.015 \times S_{T} \times 5\right) \times 0.15 \\
& =0.0675 S_{T} \text { \$/block }
\end{aligned}
$$

Annual OC of core (iron)losses of the six transformer exciting current per block

$$
\begin{aligned}
& \boldsymbol{O C} \boldsymbol{C}_{\boldsymbol{T}, \boldsymbol{F e}}=\left(\boldsymbol{I} C_{\text {sys }} \times \boldsymbol{i}+8760 \times \boldsymbol{E} \boldsymbol{C}_{\boldsymbol{o f f}}\right) \times \boldsymbol{P}_{\boldsymbol{T}, \boldsymbol{F e}} \$ / \text { transformer } \\
& =6(350 \times 0.15+8760 \times 0.008) \times 0.004 \times \boldsymbol{S}_{\boldsymbol{T}} \\
& =2.94 \boldsymbol{S}_{\boldsymbol{T}} \$ / \text { block }
\end{aligned}
$$

Economic Design of Secondaries

Solution

$>$ TAC is given by

$$
\begin{aligned}
& T A C=\sum I C_{T}+\sum I C_{S L}+\sum I C_{S D}+\sum I C_{P H}+ \\
& \sum O C_{e x c}+\sum O C_{T, F e}+\sum O C_{T, C u}+\sum O C_{S L, C u}+\sum O C_{S D, C u}
\end{aligned}
$$

> All operating (variable) costs (OCs)

$$
\boldsymbol{F}_{\boldsymbol{L S}}=0.3 \times 0.35+0.7 \times 0.35^{2}=0.1904 \quad \begin{aligned}
& 4 \text { customers/ transformer; from the table maximum } \\
& \text { diversified demand }=6 \mathrm{kVA}
\end{aligned}
$$

$$
S_{\max }=4 \text { customers / transformer } \times 6 \mathrm{kVA} / \text { customer }=24 \mathrm{kVA} / \text { transformer }
$$

Annual OC of transformer due to copper losses

$$
\begin{aligned}
& O C_{T, C u}=\left(I C_{s y s} \times i+8760 \times E C_{o n} \times F_{L S}\right) \times\left(\frac{S_{\max }}{S_{T}}\right)^{2} \times P_{T, C u} \quad \text { \$/transformer } \\
& =6(350 \times 0.15+8760 \times 0.010 \times 0.1904) \times\left(\frac{24}{S_{T}}\right)^{2} \times\left(0.073+0.00905 \times S_{T}\right) \\
& =\frac{84510}{S_{T}^{2}}+\frac{10476}{S_{T}} \$ / \text { block }
\end{aligned}
$$

Economic Design of Secondaries

Solution

$>$ TAC is given by

$$
\begin{aligned}
& \boldsymbol{T A C}=\sum I C_{T}+\sum I C_{S L}+\sum I C_{S D}+\sum I C_{P H}+ \\
& \sum O C_{e x c}+\sum O C_{T, F e}+\sum O C_{T, C u}+\sum O C_{S L, C u}+\sum O C_{S D, C u}
\end{aligned}
$$

> All operating (variable) costs (OCs)
one SD per one Class 2 customer, from the table maximum diversified demand $=10 \mathrm{kVA}$
$R=\frac{\rho l}{A_{S D}}=\frac{20.5(\Omega \mathrm{cmil} / \mathrm{ft}) \times 70 \mathrm{ft} \times 24 S D / \text { block } \times 2 \text { wires } / S D}{1000 \times A_{S D}}$
$=\frac{68.88}{A_{S D}}$

$$
\boldsymbol{P}_{S D, C u}=\left(\frac{10 \mathrm{kVA}}{240 \boldsymbol{V}}\right)^{2} \times \frac{68.88}{A_{S D}} \times \frac{1}{1000}==\frac{119.58}{A_{S D}} k V_{\text {Wblock }}
$$

Annual OC of copper losses in the 24 SDs

$$
\begin{aligned}
& O C_{S D, C u}=\left(\boldsymbol{I} C_{\text {sys }} \times \boldsymbol{i}+8760 \times \boldsymbol{E C} C_{o n} \times \boldsymbol{F}_{\boldsymbol{L S}}\right) \times \boldsymbol{P}_{\boldsymbol{S D}, \boldsymbol{C u}} \\
& =(350 \times 0.15+8760 \times 0.01 \times 0.1904) \times \frac{119.58}{A_{S D}}=\frac{8273}{A_{S D}} \$ / \mathrm{block}
\end{aligned}
$$

Economic Design of Secondaries

Solution

TAC is given by
TAC $=\sum \boldsymbol{I} C_{T}+\sum I C_{S L}+\sum I C_{S D}+\sum I C_{P H}+$
$\sum O C_{\text {exc }}+\sum O C_{T, F e}+\sum O C_{T, C u}+\sum O C_{S L}+\boldsymbol{C u}+\sum O C_{S D, C u}$
$\boldsymbol{T A C}=384.12+9.54 \boldsymbol{S}_{T}+\frac{10476}{S_{T}}+\frac{84510}{S_{T}^{2}}+1.134 \boldsymbol{A}_{S D}+\frac{8273}{A_{S D}}$
a. The most economical SD size (Asd) and the nearest larger standard AWG wire size

Nearest larger size $=106.6$ kcmil AWG (1/0)

Size of Conductor Circular Mils	AWG or B\&	Number of Strands	Diameter of Individual Strands (in.)	Outside Diameter (in.)	Breaking Strength (lb)	Weight (lb/mi)	Approx. Current Carrying Capacity ${ }^{2}$ (amps)	Geometric Mean Radius at 60 Cycles (ft)
1,000,000	-	37	0.1644	1.151	43.830	16,300	1300	0.0368
900,000	-	37	0.1560	1.092	39,610	14,670	1220	0.0349
800,000	-	37	0.1470	1.029	35.120	13,040	1130	0.0329
750,000	-	37	0.1424	0.997	33,400	12,230	1090	0.0319
700,000	-	37	0.1375	0.963	31.170	11.410	1040	0.0306
500,000	-	37	0.1273	0.891	27.020	9,781	940	0.0285
500,000	-	37	0.1162	0.814	22,610	8,161	840	0.0260
$500,000$	-	19	0.1622	0.811	21.590	8,161	840	0.0256
$450,000$	-	19	0.1539	0.770	19,750	7,336	780	0.0243
400,000	-	19	0.1451	0.726	17.560	6.521	730	0.0229
350.000	-	19	0.1357	0.679	16.890	5.706	670	0.0214
350,000	-	12	0.1708	0.710	16,140	5,706	670	0.0225
300,000	-	19	0.1257	0.629	13,510	4,891	610	0.01987
300.000	-	12	0.1581	0.657	13,170	4,891	610	0.0208
250,000	-	19	0.1147	0.574	11,360	4,076	540	0.01813
250.000	-	12	0.1443	0.600	11.130	4,076	540	0.01902
211.600	$4 / 0$	19	0.1055	0.528	9,617	3,450	480	0.01668
211,600	410	12	0.1328	0.552	9,483	3,450	490	0.01750
211,600	4/0	7	0.1739	0.522	9,154	3,450	480	0.01579
167.800	3/0	12	0.1183	0.492	7.556	2,736	420	0.01569
167,800	3/0	7	0.1548	0.464	7.366	2,736	420	0.01404
133,100	2%	7	0.1379	0.414	5,926	2,170	360	0.01252
106,600	$1 / 0$	7	0.1228	0.368	4,752	1,720	310	0.01113
83,690	1	7	0.1093	0.328	3,804	1,364	270	0.00992

Economic Design of Secondaries

Solution
$>$ TAC is given by
TAC $=\sum \boldsymbol{I} C_{T}+\sum I C_{S L}+\sum I C_{S D}+\sum I C_{P H}+$
$\sum O C_{\text {exc }}+\sum O C_{T, F e}+\sum O C_{T, C u}+\sum O C_{S L}+\boldsymbol{C u}+\sum O C_{S D, C u}$
$\boldsymbol{T A C}=384.12+9.54 S_{T}+\frac{10476}{S_{T}}+\frac{84510}{S_{T}^{2}}+1.134 A_{S D}+\frac{8273}{A_{S D}}$
$>$ b. The most economical transformer size (ST) and the nearest larger standard size

$$
\begin{aligned}
& \frac{\delta(T A C)}{\delta S_{T}}=0 \\
& =B-\frac{C}{S_{T}^{2}}-\frac{2 D}{S_{T}^{3}}=0
\end{aligned}
$$

TABLE 3.1
Standard Transformer Kilovoltamperes and Voltages
Kilovoltamperes High Voltages
 $2.400 / 4,160 \mathrm{Y} \quad 2.400$ $4,80008,320 \mathrm{Y} \quad 4.160 \mathrm{Y} / 2,400$ $7,200 / 12.470 \mathrm{Y}$ $7,200 / 12.470 \mathrm{Y}$

12.470 Gnd Y .200 | $7.620 / 13.200 \mathrm{Y}$ | 8.320 |
| :--- | :--- |
| 12.200 | | $13.600 \mathrm{Ge0} \mathrm{Y} 7.620-8.220 \mathrm{Y}$ 12.000 Gnd $Y 7.620 \quad 7.200$ 12.000 (30027.860 Gnd Y 5.200/22.860 Gnd Y $12.470 \mathrm{Y} / 7$ 13.800 Gnd Y $7.970 \quad 13,200$ Y 7,620 $13,800 / 23,900$ Gnd Y $\quad 13,200 \mathrm{Y}$ 13.800

$40004,940 \mathrm{GdY}$ 16,340 $19.920 / 34,500 \mathrm{Gnd} \mathrm{Y}$ 22.900 34,400

Low Voltages

Introduction

$>$ To satisfy the operation of motors, lamps and other loads, substantially constant voltage is required.
$>$ A wide variation of voltage may cause malfunctioning of consumer's appliances.
$>$ When the load in the system increases, the voltage in the consumer terminals falls due to the increase in the voltage drop in
$>$ Generator synchronous impedance
> Transmission lines
> Transformer impedance
> Feeders and secondary lines
The voltage variation are undesirable and must be kept within the prescribed limits.

System Voltage Terms:

$>$ 1. System voltage: The root-mean-square phase-to-phase voltage of a portion of an ac electric system.
2. Nominal system voltage: The voltage by which a portion of the system is designated, and to which certain operating characteristics of the system are related.
3. Maximum system voltage: The highest system voltage that occurs under normal operating conditions, and the highest system voltage for which equipment and other components are designed for satisfactory continuous operation without derating of any kind.
$>$ 4. Service voltage: The voltage at the point where the electric system of the supplier and the electric system of the user are connected.
>5. Utilization voltage: The voltage at the line terminals of utilization equipment.

Voltage Drops in Different Type of Circuits

Single phase two-wire system

$>$ For a single phase two-wire system shown in Figure, assuming that the resistance $R_{p}=R_{N}$ and reactance $X_{p}=X_{N}$.
$>$ Applying KVL at loop

$$
-\mathbf{V}_{s}+\Delta V_{p}+\mathbf{V}_{\text {load }}+\Delta V_{N}=0
$$

$>$ If the neutral conductor impedance $\left(\mathbf{Z}_{N}\right)$ is the same with phase conductor
$>$ impedance $\left(\mathbf{Z}_{p}\right), \Delta V_{p}=\Delta V_{N}$

$$
\begin{aligned}
& -\mathbf{V}_{S}+\mathbf{V}_{\text {load }}+2 \Delta V_{p}=0 \\
& \mathbf{V}_{S}-\mathbf{V}_{\text {load }}=2 \Delta V_{p} \\
& \Delta V_{1 \phi}=2 \Delta V_{p}=2 \Delta V
\end{aligned}
$$

Voltage Drops in Different Type of Circuits

Balanced three phase system

> Applying KVL at loop

$>$ For a balanced three phase system shown in Figure below, voltage drop across the line in each phase is ΔV_{p} which is similar to the following expression derived earlier.
$\Delta V=I(R \cos \theta+X \sin \theta)$
$\Delta V_{L}=\sqrt{3} \Delta V_{p}$

Note:

For evenly distributed load along the line like street lights is $\Delta V_{p} / 2$

Voltage Drops in Different Type of Circuits

$>$ Consider the three-phase 4 -wire 416 V secondary radial system with balanced per-phase loads as shown in the Figure. Determine: The total voltage drop in one phase .

Voltage Drops in Different Type of Circuits

Example

$>$ Consider the three-phase 4-wire 416 V secondary radial system with balanced per-phase loads as shown in the Figure. Determine: The total voltage drop in one phase .

Approximate

 solution

$$
\begin{gathered}
\boldsymbol{V D}=\boldsymbol{V}_{\boldsymbol{s}}-\boldsymbol{V}_{\boldsymbol{r}}=\boldsymbol{I R} \cos \boldsymbol{\theta}+\boldsymbol{I X} \sin \boldsymbol{\theta} \\
V D_{\text {Load }-A}=30[0.05(1)+0.01(0)]=1.5 \mathrm{~V} \\
V D_{\text {Load }-B}=20[(0.05+0.1)(0.5)+(0.01+0.02)(0.866)]=2.02 \mathrm{~V} \\
V D_{\text {Load }-C}=50[(0.05+0.1+0.05)(0.9)+(0.01+0.02+0.05)(0.436)]=10.744 \mathrm{~V} \\
V D_{\boldsymbol{T}}=\boldsymbol{V} \boldsymbol{D}_{\boldsymbol{A}}+V D_{\boldsymbol{B}}+V D_{\boldsymbol{C}}=14.264 \mathrm{~V}
\end{gathered}
$$

Voltage Drops in Different Type of Circuits

Example

$>$ Consider the three-phase 4-wire 416 V secondary radial system with balanced per-phase loads as shown in the Figure. Determine: The total voltage drop in one phase .

\[

\]

Voltage Drops in Different Type of Circuits

Example

$>$ Find the total voltage drop for the following single phase feeder which has a total length of 500 m and total impedance of $0.02+\mathrm{j} 0.04 \Omega$ and the voltage at point A is 250 V

Voltage Drops in Different Type of Circuits

Solution

Current in section AD is the vector sum of the three load currents:

$$
I_{A D}=50+100(0.8-j 0.6)+50(0.6-j 0.8)=160-j 100 A
$$

The impedance of section AD is:

$$
Z_{A D}=\frac{200}{500} \times(0.02+j 0.04)=0.008+j 0.016 \Omega
$$

The voltage drop of section AD is:

$$
V_{A D}=(160-j 100) \times(0.008+j 0.016)=2.88+j 1.76 \mathrm{~V}
$$

$>$ The same procedure can be applied to sections DC and CB and the total voltage drop will be the summation of the voltage drop of all three sections

Voltage Drops in Different Type of Circuits

Example

$>$ Assume the resistance of the following loop connected feeder is $0.001 \Omega / \mathrm{m}$, the voltage at point A is $\mathbf{2 5 0} \mathrm{V}$ and at point B is $\mathbf{2 4 6 . 5} \mathrm{V}$, find the voltage drop between points C and D. Assume we have DC system.

Voltage Drops in Different Type of Circuits

Solution

$$
\begin{aligned}
V_{A B}= & I_{x}(0.001 \times 200)+\left(I_{x}-50\right)(300 \times 0.001)+\left(I_{x}-70\right)(300 \times 0.001) \\
& +\left(I_{x}-100\right)(100 \times 0.001)+\left(I_{x}-110\right)(100 \times 0.001)
\end{aligned}
$$

Solving the equation will result in:

$$
\begin{gathered}
I_{x}=60.5 \mathrm{~A} \\
R_{C D}=0.001 \times 300=0.3 \Omega \\
V_{C D}=(60.5-50) A \times 0.3 \Omega=3.15 \mathrm{~V}
\end{gathered}
$$

Voltage Drops in Different Type of Circuits

Solution
Current actual Direction:

$$
I_{x}=60.5 \mathrm{~A}
$$

Voltage Drops in Different Type of Circuits

Example

$>$ Assume the impedance of the feeder is $0.001+j 0.005 \Omega / \mathrm{m}$, the voltage at point A is $250 \angle 0 \mathrm{~V}$ and at point B is $240 \angle 1.5 \mathrm{~V}$, find the voltage drop between points C and D. Assume we have $A C$ system now.

Voltage Drops in Different Type of Circuits

Solution

Assume the current in segment AC as: $\quad \boldsymbol{I}_{\boldsymbol{A C}}=\boldsymbol{I}_{\boldsymbol{X}}+\boldsymbol{j} \boldsymbol{I}_{\boldsymbol{Y}}$
The current in segment CD is: $\quad I_{C D}=I_{X}+j I_{Y}-(39-j 30)$
And in segment DB is: $\boldsymbol{I}_{D B}=\boldsymbol{I}_{X}+\boldsymbol{j} I_{Y}-(39-j 30)-(9-j 4.35)$

$$
V D_{A B}=I_{A C} Z_{A C}+I_{C D} Z_{C D}+I_{D B} Z_{D B}=250 \angle 0-240 \angle 1.5
$$

Substituting for the currents, the impedances and solving the equation, the current that flows in $A C$ is:

$$
I_{A C}=I_{X}+j I_{Y}=31.3-j 26.8 \mathrm{~A}
$$

Voltage Drops in Different Type of Circuits

Example

$>$ For the circuit given in Figure, determine the voltage drop. Assume the following:
$>\mathrm{i}$. Street lighting wire size is $16 \mathrm{~mm}^{2}$ where $R=2.33 \Omega / \mathrm{km}, X=0.095 \Omega / \mathrm{km}$,
$>$ ii. Neutral cable size is $120 \mathrm{~mm}^{2}$ where $R=0.309 \Omega / \mathrm{km}, X=0.095 \Omega / \mathrm{km}$,
$>$ iii. Each street lamp operates at 150 W with 0.65 lagging $p f$,
$>$ iv. Rated voltage of the lamp is 240 V ,
$>$ v. All $\mathbf{2 0}$ street lights are evenly distributed within a distance of $1 \mathbf{k m}$ (distance between each pole is 50 m).

Voltage Drops in Different Type of Circuits

Solution

Apparent power, $S=\frac{P}{p f}=\frac{20 \times 150}{0.65}=\frac{3000}{0.65}=4615.4 \mathrm{VA}$
Current, $I=\frac{s}{V_{p}}=\frac{4615.4}{240}=19.23 \mathrm{~A}$
$>$ assuming the total load is located at the end of the line (1 km away)
ΔV along the street lighting wire is:

$$
\begin{aligned}
\Delta V & =I(R \cos \theta+X \sin \theta) \\
& =19.23\left[2.33 \times 0.65+0.095 \times \sin \left(\cos ^{-1} 0.65\right)\right] \\
\Delta V & =19.23\left[1.515+0.095 \times \sin \left(49.46^{\circ}\right)\right] \\
& =19.23(1.515+0.095 \times 0.7599) \\
& =19.23(1.587) \\
& =30.52 \mathrm{~V}
\end{aligned}
$$

Voltage Drops in Different Type of Circuits

Solution

ΔV along the neutral wire is:

$$
\begin{aligned}
\Delta V & =I(R \cos \theta+X \sin \theta) \\
& =19.23\left[0.309 \times 0.65+0.095 \times \sin \left(\cos ^{-1} 0.65\right)\right] \\
& =19.23\left[0.2009+0.095 \times \sin \left(49.46^{\circ}\right)\right] \\
& =19.23(0.2009+0.095 \times 0.7599) \\
& =19.23(0.2731) \\
& =5.252 \mathrm{~V}
\end{aligned}
$$

Hence, total voltage drop is:

$$
\begin{aligned}
& \Delta V= 30.52+5.252=35.77 \\
& \Delta V=\frac{35.77}{2}=17.89 \mathbf{V}
\end{aligned}
$$

$>$ Therefore, for evenly distributed load the phase voltage at the end of load line is:

$$
V_{\text {load }}=240 \mathrm{~V}-17.89 \mathrm{~V}=222.1 \mathrm{~V}
$$

Floating Neutral using Millman's Theorem

$>$ Millman's theorem is used to determine the voltage at the ends of a circuit made up of only branches in parallel.
$>$ Since nodes N and n are common to all three phase ($\mathrm{R}, \mathrm{Y}, \mathrm{B}$), Millman's theorem is used to determine voltage drop across neutral impedance ($\mathbf{V}_{N n}$).

$$
\mathbf{V}_{N n}=\frac{\left(\mathbf{V}_{R n} \mathbf{Y}_{R}+\mathbf{V}_{Y n} \mathbf{Y}_{Y}+\mathbf{V}_{B n} \mathbf{Y}_{B}\right)}{\left(\mathbf{Y}_{R}+\mathbf{Y}_{Y}+\mathbf{Y}_{B}+\mathbf{Y}_{N}\right)}
$$

$>$ By knowing $\mathbf{V N n}$, voltage drop across the loads $\left(\mathbf{V}_{R N}, \mathbf{V}_{Y N}, \mathbf{V}_{B N}\right)$ can be obtained.
$>$ Floating neutral may damage the connected loads or create hazardous touch voltage at equipment body.

Floating Neutral using Millman's Theorem

Example

$>$ For the circuit given in Figure be a balanced RYB-sequence Y-connected source is connected to an unbalanced Y-load. Given $V R n=240 \angle 0^{\circ} \mathrm{V}$, determine voltage across the loads ($V_{R N}, V_{Y N}$ and $V_{B N}$) using Millman's theorem. Assume neutral line is open-circuit ($\mathbf{Z}_{N}=\infty \Omega$).

Floating Neutral using Millman's Theorem

> Given
$>\mathrm{Z}_{R}=1 \Omega, \mathrm{Z}_{Y}=10 \Omega, \mathrm{Z}_{B}=100 \Omega$ and $\mathbf{Z}_{N}=\infty \Omega$;
$>\mathbf{V}_{R n}=240 \angle 0^{\circ} \mathrm{V}, \mathrm{V}_{Y n}=240 \angle 240^{\circ} \mathrm{V}, \mathrm{V}_{B n}=240 \angle 120^{\circ} \mathrm{V}$
$>$ Hence:
$>Y_{R}=1 / 1=1 \mathrm{~S}, Y_{Y}=1 / 10=0.1 \mathrm{~S}, Y_{B}=1 / 100=0.01 \mathrm{~S}, Y_{N}=1 / \infty=0 \mathrm{~S}$,

$$
\begin{aligned}
\mathbf{V}_{N n} & =\frac{\left(\left(240 \angle 0^{\circ}\right)(1)+\left(240 \angle 240^{\circ}\right)(0.1)+\left(240 \angle 120^{\circ}\right)(0.01)\right)}{(1+0.1+0.01+0)} \\
& =\frac{\left(240 \angle 0^{\circ}+\left(24 \angle 240^{\circ}\right)+\left(2.4 \angle 120^{\circ}\right)\right)}{1.11} \\
& =\frac{240+24\left[\cos \left(240^{\circ}\right)+j \sin \left(240^{\circ}\right)\right]+2.4\left[\cos \left(120^{\circ}\right)+j \sin \left(120^{\circ}\right)\right.}{1.11} \\
& =\frac{240+24(-0.5-j 0.866)+2.4(-0.5+j 0.866)}{1.11} \\
& =\frac{240-12-j 20.78-1.2+j 2.078}{1.11} \\
& =\frac{226.8-j 18.71}{1.11} \\
& =204.3-j 16.85 \\
& =\sqrt{204.3^{2}+16.85^{2}} \angle \tan ^{-1}\left(-\frac{16.85}{204.3}\right) \\
& =\sqrt{42022} \angle \tan ^{-1}(-0.08248) \\
& =204.9 \angle-4.715^{\circ} \mathrm{V}
\end{aligned}
$$

Solution

Floating Neutral using Millman's Theorem

Solution

$$
\begin{aligned}
\mathbf{V}_{R N} & =\mathbf{V}_{R n}-\mathbf{V}_{N n} \\
& =240 \angle 0^{\circ}-\left(204.9 \angle-4.715^{\circ}\right) \\
& =240-(204.3-j 16.85) \\
& =240-204.3+j 16.85 \\
& =35.7+j 16.85 \\
\mathbf{V}_{R N} & =\sqrt{35.7^{2}+16.85^{2}} \angle \tan ^{-1}\left(\frac{16.85}{35.7}\right) \\
& =\sqrt{1558} \angle \tan ^{-1}(0.4719) \\
& =39.48 \angle 25.27^{\circ} \mathbf{V}
\end{aligned}
$$

From Millman's theorem, phase voltages calculated are as follows:

$$
\begin{aligned}
& \mathbf{V}_{R N}=39.48 \angle 25.27^{\circ} \mathrm{V} \\
& \mathbf{V}_{Y N}=376.3 \angle-149.5^{\circ} \mathrm{V} \\
& \mathbf{V}_{B N}=394.5 \angle 145.3^{\circ} \mathrm{V}
\end{aligned}
$$

Note:
It can be seen that phases that have higher equivalent impedances ($\mathbf{Z} Y$ and $\mathbf{Z B}$) will experience overvoltage compared to phase with small equivalent impedance (ZR).

Motor-Starting and Voltage Dips

$>$ When a motor is started, it typically draws a current 6-7 times its full load current for a short duration (commonly called the locked rotor current).
$>$ This means that there can be large momentary voltage drops system-wide, from the power source (e.g. transformer or generator) through the intermediary buses, all the way to the motor terminals.
$>$ A system-wide voltage drop can have a number of adverse effects:
$>$ Equipment with minimum voltage tolerances (e.g. electronics) may malfunction or behave aberrantly
$>$ Undervoltage protection may be tripped.
$>$ The motor itself may not start. Induction motors are typically designed to start with a terminal voltage $\mathbf{8} \mathbf{8 0 \%}$

Motor-Starting and Voltage Dips

$>$ A starting voltage requirement and locked-rotor current should be stated as part of the motor specification.
$>$ To determine the starting current for an induction motor, starting power of the motor must be determined using

$$
S_{\text {start }}=(\text { rated horsepower })(\text { code letter factor })
$$

Code Letter \begin{tabular}{c|c}
Kilovolt-Amperes per

Horsepower with Locked

Rotor

$|$

$0-3.14$

\hline A \& $3.15-3.55$

\hline B \& $3.55-3.99$

\hline C \& $4.0-4.49$

\hline D \& $4.5-4.99$

\hline E \& $5.0-5.59$

\hline F \& $5.6-6.29$

\hline G \& $6.3-7.09$

\hline H \& $7.1-7.99$

\hline J \& $8.0-8.99$

\hline K \& $9.0-9.99$

\hline L \& $10.0-11.19$

\hline M \& $11.2-12.49$

\hline N \& $12.5-13.99$

\hline P \& $14.0-15.99$

\hline R \& $16.0-17.99$

\hline S \& $18.0-19.99$

\hline T \& $20.0-22.39$

\hline U \& $22.4-$ and up

\hline
\end{tabular}

The KVA required by a motor starting at full voltage is quite close to the "locked rotor KVA" requirement of the motor, which is easily determined

Motor-Starting and Voltage Dips

$>$ A voltage dip is a short (from milliseconds up to seconds) decrease of more than 10 per cent of the supply voltage, but without the supply voltage disappearing completely.

$>$ The Voltage dip due to motor starting is calculated as:

$$
V D I P=\left|I_{\text {start }}\right|(R \cos \theta+X \sin \theta)
$$

Motor-Starting and Voltage Dips

Example

$>$ For the three-phase, 400 V system shown in the Fig, determine the voltage drop percentage detected at the bus supplying load 1 (bus 1) during starting period of the Motor connected to bus 2.

System data

Transformer:
11/0.4 kV, 250 kVA
$Z=0.0101+j 0.0143 p u$
Line:
$\mathrm{Z}_{\text {Line1 }}=0.025+\mathrm{j} 0.10 \mathrm{pu}$
$Z_{\text {Line2 }}=0.015+j 0.06 \mathrm{pu}$
Load 1: 400V, 80 kVA, 0.9 pf lagging
Load 2: 400V, 50 kVA, 0.9 pf lagging
Motor: 400V, 20hp, 0.9 pf lagging and has a lock-rotor current of 5 times full load current \& at 0.5 lag pf.

Motor-Starting and Voltage Dips

Solution

Motor-Starting and Voltage Dips

Solution

$$
\begin{aligned}
& V D P_{\text {bus }}=V D_{T, p u}+V D I P_{T, l o c}+V D_{\text {Line1,pu }} \\
& \text { VDIP }_{\text {Trans }}=\text { VD }_{\text {T,pu }}+\text { VDIP }_{\text {T,loc }} \\
& \text { (Transformer (Transformer } \\
& \text { VD - NOC) VDIP - Motor Start) } \\
& \text { I } \boldsymbol{I}_{T}=I_{T, \text { Load1 }}+I_{T, \text { Load2 }}
\end{aligned}
$$

Transformer VD - NOC:

$$
V D_{T}=I_{T}(R \cos \theta+X \sin \theta)
$$

$$
\begin{aligned}
& \text { Transformer VDIP - Motor Start: } \\
& \qquad \text { VDIP } \boldsymbol{T}_{\text {,loc }}=\left|I_{\text {loc }}\right|(R \cos \theta+X \sin \theta) \\
& \text { VD - Line } 1 \text { due to Load 1: } \\
& \text { VD }_{\text {Line1 pu }}=\left|I_{\text {Load1 }}\right|\left(\mathbf{R}_{\text {line1 }} \cos \theta+X_{\text {line1 }} \sin \theta\right)
\end{aligned}
$$

Transformer:

11/0.4 kV, 250 kVA $Z=0.0101+j 0.0143 p u$

$$
\mathrm{Z}_{\text {Line } 1}=0.025+\mathrm{j} 0.10 \mathrm{pu}
$$

$$
\mathrm{Z}_{\text {Line } 2}=0.015+\mathrm{j} 0.06 \mathrm{pu}
$$

Load 1: 400V, 80 kVA, 0.9 pf lagging Load 2: 400V, 50 kVA, 0.9 pf lagging

Motor-Starting and Voltage Dips

$$
\begin{aligned}
& \text { S_Base }=\mathbf{2 5 0 . 0} \mathrm{kVA} \\
& \text { V_LL_Base }=400 \mathrm{~V} \\
& \text { I_Base }=\mathbf{3 6 0 . 8 4 3 9} \text { A } \\
& V_{\text {LLssource }}=400 \angle 30^{\circ} \\
& \mathbf{V}_{\text {LL,source }}=\mathbf{3 4 6 . 4 1}+\mathbf{j 2 0 0 . 0} \\
& S_{\text {Load1 }}=80 k \angle \cos ^{-1}\left(p f_{1}\right), S_{\text {Load1 }}=720004+\mathbf{j 3 4 8 7 1} \\
& S_{\text {Load2 }}=50 k<\cos ^{-1}\left(p f_{2}\right), S_{\text {Load2 }}=45000+\mathbf{j} 21794 \\
& S_{\text {Load1,2 }}=S_{\text {Load1 }}+S_{\text {Load2 }}, S_{\text {Load1, } 2}=117000+\mathbf{j} 56667 \\
& \mathbf{I}_{\text {Mag }}=\frac{S_{M a g}}{\sqrt{3} V_{L L}}, \quad \mathbf{I}_{\text {Magpu }}=\frac{\mathbf{I}_{\text {Mag }}}{\mathbf{I}_{\text {Base }}}=\frac{\mathbf{S}_{\text {Mag }}}{\mathbf{S}_{\text {Base }}} \\
& I_{M a g 1}=115.4701 \mathrm{~A}, \mathbf{I}_{\text {Mag1pu }}=0.3200 \mathrm{pu} \\
& \mathbf{I}_{\text {Mag2 }}=72.1688 \mathrm{~A}, \mathbf{I}_{\text {Mag2 pu }}=\mathbf{0 . 2 0 0 0} \mathbf{p u} \\
& I_{M a g 1,2}=187.6389 \mathrm{~A}, \mathbf{I}_{M a g 1,2 p u}=0.5200 \mathrm{pu}
\end{aligned}
$$

Primary

Transformer:

$$
\begin{array}{r}
\text { 11/0.4 kV, } 250 \mathrm{kVA} \\
\mathrm{Z}=0.0101+\mathrm{j} 0.0143 \mathrm{pu} \\
\mathrm{Z}_{\text {Line } 1}=0.025+\mathrm{j} 0.10 \mathrm{pu} \\
\mathrm{Z}_{\text {Line2 }}=0.015+\mathrm{j} 0.06 \mathrm{pu}
\end{array}
$$

Load 1: 400V, 80 kVA, 0.9 pf lagging Load 2: 400V, 50 kVA, 0.9 pf lagging

Motor-Starting and Voltage Dips

Solution

Transformer VD - NOC:

$$
\begin{gathered}
\boldsymbol{I}_{T}=\boldsymbol{I}_{T, L \rightarrow a d 1}+\boldsymbol{I}_{T, L o a d 2} \\
\mathbf{S}_{\mathrm{T}}=\mathrm{S}_{\mathrm{Load} 1}+\mathbf{S}_{\mathrm{Load} 2} \\
\mathbf{V D}_{\mathrm{T}}=\mathbf{I}_{\mathrm{MAg} 1,2}\left(\mathbf{R}_{\mathrm{T}} \cos \boldsymbol{\theta}_{\mathbf{S}_{\mathrm{T}}}+\mathbf{X}_{\mathrm{T}} \sin \theta_{\mathbf{S}_{\mathrm{T}}}\right) \\
\mathbf{V D}_{\mathrm{T}}=\mathbf{0 . 5 2 0}(\mathbf{0 . 0 1 0 1} \times \mathbf{0 . 9}+\mathbf{0 . 0 1 4 3 \times 0 . 4 3 5 9)}) \\
\mathbf{V} \mathbf{D}_{\mathrm{T}}=\mathbf{0 . 0 0 8 0} \mathrm{pu}
\end{gathered}
$$


```
VD - Line 1 due to Load 1:
\(V_{\text {Line1 }}=I_{\text {Mag1 }}\left(R_{\text {line1 }} \cos \theta_{\text {Load1 }}+X_{\text {line1 }} \sin \theta_{\text {Load1 }}\right)\)
    \(V_{\text {Line1 }}=0.3200(0.025 \times 0.9+0.100 \times 0.4359)\)
        \(V_{\text {Linet }}=0.0211 \mathrm{pu}\)
```


Motor-Starting and Voltage Dips

Solution

$$
\begin{aligned}
& V \boldsymbol{D P}_{b u s 1}=V D_{T, p u}+\mathrm{T}^{\prime} V \boldsymbol{D I P}_{T, \text { Ioic }}+V D_{\text {Line1,pu }} \\
& I_{M, M a g}=\frac{P_{\text {Motor }}}{\sqrt{3} V_{L L}\left(p f_{\text {motor }}\right)}=\frac{(20 h p * 746) \text { Watt }}{\sqrt{3} 400(0.9)} \\
& I_{M, M a g}=23.9280 \mathrm{~A}=0.0663 \mathrm{pu} \\
& \mathbf{I}_{\text {loc_M,pu }}=5(23.9280) A=5(0.0663 \mathrm{pu}) \\
& \mathbf{I}_{\text {loc_M,pu }}=0.3316 \mathrm{pu} \\
& \text { Transformer VDIP - Motor Start: } \\
& \text { VDIP }_{T}=\left|I_{l o c, M}\right|\left(R_{T} \cos \theta_{l o c M}+X_{T} \sin \theta_{l o c M}\right) \\
& \text { Transformer: } \\
& \text { 11/0.4 kV, } 250 \mathrm{kVA} \\
& Z=0.0101+j 0.0143 p u \\
& Z_{\text {Line1 }}=0.025+\mathbf{j} 0.10 \mathrm{pu} \\
& Z_{\text {Linez }}=0.015+\mathbf{j} 0.06 \mathrm{pu}
\end{aligned}
$$

Motor-Starting and Voltage Dips

$$
\begin{aligned}
& V D I P_{b u s 1}=V D_{T, p u}+V D I P_{T, l o c}+V D_{\text {Line1,pu }} \\
& \text { VDIP }_{\text {Trans }}=\mathbf{V D}_{\mathrm{T}, \mathrm{pu}}+\text { VDIP }_{\mathrm{T}, \text { loc }} \\
& \text { (Transformer (Transformer } \\
& \text { VD-NOC) VDIP - Motor Start) } \\
& V_{T}=0.0080 \mathrm{pu} \\
& \mathrm{VD}_{\text {Limet }}=0.0211 \mathrm{pu} \\
& \mathbf{V D I P}_{\text {t,loc }}=0.0058 \mathbf{p u} \\
& V D I P_{b u s 1}=V D_{T, p u}+V D P_{T, I o c}+V D_{\text {Line1,pu }} \\
& \text { VDIP }_{\text {bus } 1}=0.0080+0.0058+0.021 \\
& \text { VDIP }_{\text {bus } 1}=\mathbf{0 . 0 3 4 8}=3.48 \%<\mathbf{3 . 5 0 \%}
\end{aligned}
$$

Motor-Starting and Voltage Dips

Example

- A three-phase URD distribution system in a residential area with the layout shown in the Figure below.
- A standard transformer size is selected as 75 kVA. See Table A for more information. The SL standard cable size is selected as \# 4/0 AWG. The SD standard cable size is selected as \# 1/0 AWG of 70 ft . See Table B for more information. The maximum limit of the VD $=\mathbf{3 . 5 \%}$.

Determine:

(a) The steady-state VD in pu at the most remote consumer meter for the annual system load assuming $\mathrm{pf}=0.9 \mathrm{lag}$.
(b) The VDIP in pu for motor starting at the most unfavorable location. The motor is three-phase $240-\mathrm{V}$, 50A locked rotor current, with a 50\% power factor
 locked rotor.

Motor-Starting and Voltage Dips

Example

Table A: Three-phase 7200-240 V distribution transformer data at $65^{\circ} \mathrm{C}$

Rated kVA	Core Loss kW	Copper Loss kW	R pu	C pu	Excitation Current A
15	0.083	0.194	0.013	0.0094	0.014
25	0.115	0.309	0.0123	0.0138	0.015
37.5	0.17	0.4	0.0107	0.0126	0.014
50	0.178	0.537	0.0107	0.0139	0.014
75	0.28	0.755	0.0101	0.0143	0.014
100	0.335	0.975	0.0098	0.0145	0.014

No. of customers being diversified 30-Min. Annual Max. Demands, kVA/Customer Class 1 Class 2 Class 3 1 18 10 2.5 2 14.4 7.6 1.8 4 12 6 1.5 12 10 4.4 1.2 100 8.4 3.6 1.1

Table B: Twin concentric Al/Cu XLPE 600 V cable data

Size	$\mathbf{R}(\mathbf{\Omega} / 1000 \mathrm{ft})$ per conductor		$\mathbf{X}(\Omega / 1000 \mathrm{ft})$ per phase conductor	Direct-burial Ampacity A	Per unit voltage drop per $10^{4} \mathrm{~A} . \mathrm{ft}$	
	$\begin{aligned} & \text { Phase } \\ & \text { conductor } \\ & 90^{\circ} \mathrm{C} \end{aligned}$	Neutral Conductor $80^{\circ} \mathrm{C}$			90%	$\begin{gathered} 50 \% \\ \text { PF } \end{gathered}$
2 AWG	0.334	0.561	0.0299	180	0.02613	0.01608
1 AWG	0.265	0.419	0.305	205	0.02098	0.01324
1/0 AWG	0.21	0.337	0.0297	230	0.01683	0.01089
2/0 AWG	0.167	0.259	0.029	265	0.0136	0.00905
3/0 AWG	0.132	0.211	0.028	300	0.01092	0.00752
4/0 AWG	0.105	0.168	0.0275	340	0.00888	0.00636
250 kcmil	0.089	0.133	0.028	370	0.00769	0.00573
350 kcmil	0.063	0.085	0.027	445	0.00571	0.00458
500 kcmil	0.044	0.066	0.026	540	0.00424	0.00371

NOTE: $\tilde{K}:$ per unit voltage drop per 10^{4} A.ft

Motor-Starting and Voltage Dips

Solution

$>$ (a) The steady-state VD in pu at the most remote consumer meter for the annual system load assuming pf $=0.9$ lagging.

$$
V D_{T o t a l}=V D_{T, p u}+V D_{S L, p u}+V D_{S D, p u}
$$

The Transformer Load
No. of customers = 12
Therefore, the Transformer Load $=12 * 4.4=52.8$ kVA

$$
\begin{aligned}
I_{T} & =\frac{S_{T}}{\sqrt{3} V}=\frac{52.8 \mathrm{kVA}}{\sqrt{3} 240 V}=127.0171 \mathrm{~A} \\
I_{T, p u} & =\frac{127.0171}{\frac{S_{B}}{\sqrt{3} V_{B}}}=\frac{127.0171}{\frac{75 \mathrm{kVA}}{\sqrt{3} 240}}=0.7040 \mathrm{pu}
\end{aligned}
$$

Transformer VD

$$
V D_{T}=I_{T}(R \cos \theta+X \sin \theta)
$$

	Rated kVA	Core Loss kW	Copper Loss kW	$\begin{gathered} \mathrm{R} \\ \mathrm{pu} \end{gathered}$	$\begin{gathered} \mathrm{x} \\ \mathrm{pu} \end{gathered}$	Excitation Current A
	50	0.178	0.537	0.0107	0.0139	0.014
	75	0.28	0.755	0.0101	0.0143	0.014

$$
\begin{gathered}
V D_{T}=0.7040(0.0101 \times 0.9+0.0143 \times 0.4359) \\
V D_{T}=0.0108 \mathrm{pu}
\end{gathered}
$$

Motor-Starting and Voltage Dips

Solution

$>$ (a) The steady-state VD in pu at the most remote consumer meter for the annual system load assuming pf $=0.9$ lagging.

$$
V D_{T o t a l}=V D_{T, p u}+V D_{S L, p u}+V D_{S D, p u}
$$

The Secondary Line Load

No. of customers $=4$
Therefore, the SL Load $=4 * 6=24 \mathrm{kVA}$

$$
\begin{aligned}
& I_{S L, p u}= \frac{24.0 \mathrm{kVA}}{\frac{S_{B}}{\sqrt{3} V_{B}}}=\frac{24.0 \mathrm{kVA}}{\frac{75 \mathrm{kVA}}{\sqrt{3} 240}}=0.320 \mathrm{pu} \\
& I_{S L}=57.7350 \mathrm{~A}
\end{aligned}
$$

Secondary line VD

$$
\begin{gathered}
I_{S L}=57.7350 \mathrm{~A} \\
V D_{S L, p u}=K\left[\frac{I \times l}{10^{4}}\right] \\
V D_{S L, p u}=0.0088\left[\frac{57.735 \times 150 \mathrm{ft}}{10^{4}}\right] \\
V D_{S L, p u}=0.0077 \mathrm{pu}
\end{gathered}
$$

NOTE:

The pu VD is calculated using " K " factor and actual current (A) and conductor length (ft). No need for current pu values.

Size	$\mathbf{R}(\Omega / 1000 \mathrm{ft})$ per conductor		$\mathbf{X}(\Omega / 1000 \mathrm{ft})$ perphase conductor	Direct-burial Ampacity A	Per unit voltage drop per $10^{4} \mathrm{~A}$.ft	
	$\begin{aligned} & \text { Phase } \\ & \text { conductor } \\ & {90^{\circ} \mathrm{C}}^{\mathrm{C}} \end{aligned}$	$\begin{aligned} & \text { Neutral } \\ & \text { Conductor } \\ & \mathbf{8 0}^{\circ} \mathrm{C} \end{aligned}$			$\begin{aligned} & 90 \% \\ & \text { PF } \\ & \hline \end{aligned}$	$\begin{gathered} 50 \% \\ \text { PF } \end{gathered}$
2/0 AWG	0.167	0.259	0.029	265	0.0136	0.00905
3/0 AWG	0.132	0.211	0.028	300	0.01092	0.00752
4/0 AWG	0.105	0.168	0.0275	340	0.00888	0.00636
250 kcmil	0.089	0.133	0.028	370	0.00769	0.00573

Motor-Starting and Voltage Dips

Solution

$>$ (a) The steady-state VD in pu at the most remote consumer meter for the annual system load assuming $\mathrm{pf}=0.9$ lagging.

$$
V D_{T o t a l}=V D_{T, p u}+V D_{S L, p u}+V D_{S D, p u}
$$

The Service Drop Load
No. of customers = 1
Therefore, the SL Load $=1^{*} 10=10$ kVA
Transformer VD

$$
\begin{gathered}
I_{S D}=24.0563 \mathrm{~A} \\
V D_{S D, p u}=K\left[\frac{I \times l}{10^{4}}\right] \\
V D_{S D, p u}=0.01683\left[\frac{24.0563 \times 70 \mathrm{ft}}{10^{4}}\right] \\
V D_{S D, p u}=0.0028 \mathrm{pu}
\end{gathered}
$$

The load Total Voltage Drop is

NOTE:

The pu VD is calculated using " K " factor and actual current (A) and conductor length (ft). No need for current pu values.

Size	$\mathbf{R}(\Omega / 1000 \mathrm{ft})$ per conductor		$\mathbf{X}(\Omega / 1000 \mathrm{ft})$ perphase conductor	Direct-burial Ampacity A	Perunit voltage drop per $\mathbf{1 0}^{4}$ A.ft	
	Phase conductor $90^{\circ} \mathrm{C}$	$\begin{aligned} & \text { Neutral } \\ & \text { Conductor } \\ & \mathbf{8 0}^{\circ} \mathrm{C} \end{aligned}$			$\begin{gathered} 90 \% \\ \text { PF } \\ \hline \end{gathered}$	$\begin{gathered} 50 \% \\ \text { PF } \end{gathered}$
1/0 AWG	0.21	0.337	0.0297	230	0.01683	0.01089

$$
\begin{array}{r}
V D_{T}=0.0108 p u \quad V D_{S L, p u}=0.0077 \mathrm{pu} \\
V D_{T o t a l}=V D_{T, p u}+V D_{S L, p u}+V D_{S D, p u} \\
V D_{T o t a l}=0.0213 p u<0.035 p u
\end{array}
$$

Less than the given criteria (0.035 pu)

Motor-Starting and Voltage Dips

Solution

$>$ (a) The steady-state VD in pu at the most remote consumer meter for the annual system load assuming $\mathrm{pf}=0.9$ lagging.

$$
V D_{T o t a l}=V D_{T, p u}+V D_{S L, p u}+V D_{S D, p u}
$$

The Service Drop Load
No. of customers = 1
Therefore, the SL Load $=1^{*} 10=10$ kVA

Service drop VD

$$
\begin{gathered}
I_{S D}=24.0563 \mathrm{~A} \\
V D_{S D, p u}=K\left[\frac{I \times l}{10^{4}}\right] \\
V D_{S D, p u}=0.01683\left[\frac{24.0563 \times 70 \mathrm{ft}}{10^{4}}\right] \\
V D_{S D, p u}=0.0028 \mathrm{pu}
\end{gathered}
$$

The load Total Voltage Drop is
NOTE:
The pu VD is calculated using " K " factor and actual current (A) and conductor length (ft). No need for current pu values.

Size	$\mathbf{R}(\Omega / 1000 \mathrm{ft})$ per conductor		$\mathbf{X}(\Omega / 1000 \mathrm{ft})$ perphase conductor	Direct-burial Ampacity A	Perunit voltage drop per $\mathbf{1 0}^{4}$ A.ft	
	Phase conductor $90^{\circ} \mathrm{C}$	$\begin{aligned} & \text { Neutral } \\ & \text { Conductor } \\ & \mathbf{8 0}^{\circ} \mathrm{C} \end{aligned}$			$\begin{gathered} 90 \% \\ \text { PF } \\ \hline \end{gathered}$	$\begin{gathered} 50 \% \\ \text { PF } \end{gathered}$
1/0 AWG	0.21	0.337	0.0297	230	0.01683	0.01089

$$
\begin{array}{r}
V D_{T}=0.0108 p u \quad V D_{S L, p u}=0.0077 \mathrm{pu} \\
V D_{T o t a l}=V D_{T, p u}+V D_{S L, p u}+V D_{S D, p u} \\
V D_{T o t a l}
\end{array}=0.0213 p u<0.035 p u \quad .
$$

Less than the given criteria (0.035 pu)

Motor-Starting and Voltage Dips

Solution

$>$ (b) The VDIP in pu for motor starting at the most unfavorable location.

The motor is three-phase $\mathbf{2 4 0 - V}$, 50A locked rotor current, with a $\mathbf{5 0 \%}$ power factor locked rotor.

$$
\begin{aligned}
& V D I P_{T}= V D_{T, p u}+V D I P_{T, l o c} \quad V D_{T}=0.0108 \mathrm{pu} \\
& V D I P_{T, l o c}=\left|I_{l o c}\right|(R \cos \theta+X \sin \theta) \\
& V D I P_{T, l o c}= \frac{50}{75 k V A /(\sqrt{3} * 240)}(0.0101(0.5)+0.0143(0.866)) \\
& V D I P_{T, l o c}=0.0048 \mathrm{pu} \mathrm{I}_{\text {loc }}=0.2771 \mathrm{p5}
\end{aligned}
$$

Rated kVA	Core Loss kW	Copper Loss kW	R pu	X pu	Excitation Current A
50	0.178	0.537	0.0107	0.0139	0.014
75	0.28	0.755	$\underline{0.0101}$	$\underline{0.0143}$	0.014

Motor-Starting and Voltage Dips

Solution

(b) The VDIP in pu for motor starting at the most unfavorable location.

The motor is three-phase $\mathbf{2 4 0 - V}$, 50A locked rotor current, with a $\mathbf{5 0 \%}$ power factor locked rotor.

$$
\begin{array}{cc}
V D I P_{S L}=V D_{S L, p u}+V D I P P_{S L, I o c} & V D_{S L, p u}=0.0077 \mathrm{pu} \\
V D_{S L, p u}=K\left[\frac{\left.I_{M L o c}\right) \times l}{10^{4}}\right] & I_{S L}=57.7350 \mathrm{~A} \\
V D P_{S L, p u}=0.00636\left[\frac{50 \times 150 \mathrm{ft}}{10^{4}}\right] & V D_{S L, p u}=K\left[\frac{I \times I}{10^{4}}\right] \\
V D I P_{S L, p u}=0.0048 \mathrm{pu} & V D_{S L, p u}=0.008 s\left[\frac{57.735 \times 150 f t}{10^{4}}\right]
\end{array}
$$

Size	$\mathbf{R}(\Omega / 1000 \mathrm{ft})$ per conductor		$\mathbf{X}(\Omega / 1000 \mathrm{ft})$ per phase conductor	Direct-burial Ampacity A	Per unit voltage drop per $10^{4} \mathrm{~A} . \mathrm{ft}$	
	$\begin{aligned} & \text { Phase } \\ & \text { conductor } \\ & 90^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { Neutral } \\ & \text { Conductor } \\ & \mathbf{8 0}^{\circ} \mathrm{C} \end{aligned}$			$\begin{aligned} & 90 \% \\ & \text { PF } \end{aligned}$	$\begin{gathered} 50 \% \\ \text { PF } \end{gathered}$
2/0 AWG	0.167	0.259	0.029	265	0.0136	0.00905
3/0 AWG	0.132	0.211	0.028	300	0.01092	0.00752
4/0 AWG	0.105	0.168	0.0275	340	0.00888	0.00636
250 kcmil	0.089	0.133	0.028	370	0.00769	0.00573

Motor-Starting and Voltage Dips

Solution

(b) The VDIP in pu for motor starting at the most unfavorable location.

The motor is three-phase 240-V, 50A locked rotor current, with a $\mathbf{5 0 \%}$ power factor locked rotor.

$$
\begin{aligned}
V D I P_{S D}= & V D_{S D, p u}+V D I P_{S D, I o c}
\end{aligned} V_{S D, p u}=0.0028 \text { pu } 1
$$

Table B: Twin concentric AI/Cu XLPE 600 V cable data

Size	$\mathrm{R}(\Omega / 1000 \mathrm{ft})$ per conductor		$\begin{gathered} \mathrm{X}(\Omega / 1000 \mathrm{ft}) \\ \text { per phase } \\ \text { conductor } \end{gathered}$	Direct-burial Ampacity A	Per unit voltage drop per 10^{4} A.ft	
	Phase conductor $90^{\circ} \mathrm{C}$	$\begin{aligned} & \text { Neutral } \\ & \text { Conductor } \\ & \mathbf{8 0}^{\circ} \mathrm{C} \end{aligned}$			$\begin{gathered} 90 \% \\ \text { PF } \end{gathered}$	$\begin{gathered} 50 \% \\ \text { PF } \\ \hline \end{gathered}$
2 AWG	0.334	0.561	0.0299	180	0.02613	0.01608
1 AWG	0.265	0.419	0.305	205	0.02098	0.01324
1/0 AWG	0.21	0.337	0.0297	230	0.01683	0.01089

Motor-Starting and Voltage Dips

Solution

$>$ (b) The VDIP in pu for motor starting at the most unfavorable location.
The Total Voltage Dip due to motor starting is:

$$
\begin{aligned}
& V D_{T}=0.0108 \mathrm{pu} \quad V D P_{\text {T,loc }}=0.0048 \mathrm{pu} \\
& V D_{S L, p u}=0.0077 p u \quad V_{D I P_{S L, p u}}=0.0048 p u \\
& V D_{S D, p u}=0.0028 \mathrm{pu} \quad V D I P_{S D, p u}=0.00381 \mathrm{pu} \\
& V D P_{T o t a l}=V D_{T, p u}+V D I P_{T, l o c} \\
& +V D_{S L, p u}+V D I P_{S L, l o c} \\
& +V D_{S D, p u}+V D I P_{S D, l o c} \\
& \text { VDIP }_{\text {Total }}=0.0347<0.035
\end{aligned}
$$

$$
9
$$

