
SkEE 4443 
Power System Analysis 

INSPIRING CREATIVE AND INNOVATIVE MINDS 

CHAPTER 2 

Power Flow (PF) Studies 



Learning outcome 

• Understand the p.f. problem and methods of solution.

Enabling objectives: 

• You should be able to establish p.f.  equations for general power system network

• You should be able to solve the p.f. equation. Using numerical methods, namely,

Gauss-Seidel method and Newton-Raphson (N-R)

• You should be able to calculate branch power flows and power losses

• You should have an appreciation of the relevance of p.f. studies in power system

planning and operation
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Introduction 
 Power flow study is the analysis of a

power system in normal steady-state
operation.

 One of the most common
computational procedures used in
power system analysis is the power
flow or sometimes called as load flow
calculation.

 Under a given set of loads power flow
study will determine:
 Voltages
 Currents
 Real power
 Reactive power

 It is the fundamental network analysis
which provides a snapshot of the
network.



Introduction 
 Why do we need power flow study? 

 
 The planning, design, and operation of power systems require power 

flow calculations to analyze the steady-state performance of the 
power system under various operating conditions and to study the 
effects of changes in equipment configuration. 
 

 Determine 
 Equipment loading 
 System security 
 Transfer limits 
 Stability limits 
 Network development 
 Reactive compensation 

 Subject to 
 Equipment ratings 
 Reliability standards 

 



Introduction 
 Who Uses Power Flow? 

 
 Power System Consultants 

 System Studies 
 System Design 

 
 Electrical Utilities 

 System Planning 
 Operation Planning 
 Real-time Network Control 

 
 The power flow problem was originally motivated within planning 

environments where engineers considered different network 
configurations necessary to serve an expected future load.  
 

 Later, it became an operational problem as operators and operating 
engineers were required to monitor the real-time status of the network 
in terms of voltage magnitudes and circuit flows. 
 
 
 



Power Flow Problem Formulation 
 The power flow solution contains the voltages and angles at all 

buses, and from this information, we may compute the real and 
reactive generation and load levels at all buses and the real and 
reactive flows across all circuits. 
 

 The power flow calculation is a network solution problem. The 
voltages and currents are related by the following equation: 
 
 
 
 
 
 

 where, 
  [I] is the vector of total positive sequence currents flowing into the 

network buses 
  [V] is the vector of positive sequence voltages at the network buses 
  [Y] is the network admittance matrix 

(1)          
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Power Flow Problem Formulation 
 Equation (1) is a linear algebraic equation with complex coefficients. If 

either [I] or [V] were known, the solution for the unknown quantities 
could be obtained by application of widely used numerical solution 
techniques for linear equations. 
 

  The terminal conditions at each bus are normally described in terms 
of active and reactive powers (P and Q). Thus, the bus current at bus 
i is related to these quantities as follows:  
 
 
 
 

 where * designates the complex conjugate.  
 Combining Equations (1) and (2) yields, 

 
 Equation (3) is nonlinear and cannot be readily solved by closed-form 

matrix techniques. Because of this, power flow solutions are obtained 
by procedures involving iterative techniques. 
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Power Flow Problem Formulation: 
Bus injection 
 

 An injection is the power (P or Q), that is being injected into or 
withdrawn from a bus by an element having its other terminal (in the 
per-phase equivalent circuit) connected to ground. Such an element 
would be either a generator or a load. 
 

 Positive injection is defined as one where power is flowing from the 
element into the bus. 
 

 Negative injection is then when power is flowing from the bus, into the 
element. 
 
 G1

PG=50 MW
QG=30 MVar

PD=-50 MW
QD=-30 MVar

PNET=PG-PD

QNET=QG-QD

G1
Generators may 
have either 
positive or 
negative reactive 
power injections 

Loads normally 
have negative 
real and 
reactive power 
injections. 



Bus Admittance Matrix or Ybus 
 

 First step in solving the power flow is to create what is known as the 
bus admittance matrix, often call the Ybus.   
 

 The Ybus gives the relationships between all the bus current 
injections, I, and all the bus voltages, V. 
 

  
 The Ybus is developed by applying KCL at each bus in the system to 

relate the bus current injections, the bus voltages, and the branch 
impedances and admittances 
 

     nodebusinj VYI 
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Formation of Bus Admittance Matrix (Ybus) 
From Kirchoff’s Current Law (KCL) – 

 

 the current injections be equal to the sum of the currents flowing out 
of the bus and into the lines connecting the bus to other buses, or to 
the ground.  

 Therefore, recalling Ohm’s Law, I=V/Z=VY, the current injected into 
bus 1 may be written as: 
 
 

 Similarly for other buses we can write              
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Formation of Bus Admittance Matrix (Ybus) 
 

 Rearranging the equations we have 
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Formation of Bus Admittance Matrix (Ybus) 
 

 General formula for building Ybus 
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Formation of Bus Admittance Matrix (Ybus) 
 

 The matrix is symmetric, i.e., Yij=Yji. 
 A diagonal element Yii = Self Admittance  
 is obtained as the sum of admittances for all branches connected to 

bus i, including the shunt branch 
 
 
 

 The off-diagonal elements are the negative of the admittances 
connecting buses i and j, i.e., Yij=-yji = mutual admittance. 
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Modeling Shunts in the Ybus  
 

 Since  
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Ybus  
2 Bus example: Solution 
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Ybus  
2 Bus example: Solution 
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 If the current injection at bus 1 and 

bus 2 are  
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Ybus  
3 Bus example 

 Convert impedance to admittance and draw the diagram 
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Ybus  
3 Bus example 
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Applying KCL at each bus 
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Ybus  
3 Bus example 
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Input System Data for Power Flow Program   
SYSTEM DATA 
 Most power flow programs perform their calculations 

using a per unit representation of the system rather than 
working with volts, amperes, and ohms.  
 

 Converting the system data to a per unit representation 
requires the selection of a base kVA and base voltage. 
current. 
 

 The system data specifies the base kVA (or MVA) for the 
entire system. A base kVA of 10000 kVA (10 MVA) is 
often used for industrial studies. For utility systems, the 
accepted convention is a base of 100 MVA. 
 

 The base kV is chosen for each voltage level.  



Input System Data for Power Flow Program   
SYSTEM DATA: Bus Data 
 The bus data describes each bus and the load and 

shunts connected to that bus. The data includes the 
following: 
 bus number; 
 bus name; 
 bus type; 
 load; 
 shunt; 
 per unit voltage and angle; and bus base kV. 

 
 Load is normally entered in MW and MVar at nominal 

voltage. Normally, the load is treated as a constant MVA, 
that is, independent of voltage. 



Input System Data for Power Flow Program   
SYSTEM DATA: Generator Data 

 
 Generator data is entered for each generator in the system 

including the system swing generator. The data defines the 
generator power output and how voltage is controlled by the 
generator. The data items normally entered are as follows: 
 
 real power output in MW; 
 maximum reactive power output in MVar (machine maximum 

reactive limit); 
 minimum reactive power output in MVar (machine minimum 

reactive limit); 
 scheduled voltage in per unit; and 
 generator in-service/out-of-service code. 



Input System Data for Power Flow Program   
SYSTEM DATA: Branch/Line Data 

 
 The term “branch” refers to all elements that connect two buses 

including transmission lines, cables, series reactors, series 
capacitors, and transformers. The data items include the 
following: 
 resistance; 
 reactance; 
 charging susceptance (shunt capacitance); 
 line ratings; 
 line in-service/out-of-service code; and 
 line-connected shunts. 

 Lines are represented by a model with series resistance and 
reactance and one-half of the charging susceptance placed on 
each end of the line. The resistance, reactance, and susceptance 
are usually input in either per unit or per cent, depending on 
program convention. Line ratings are normally input in amperes 
or MVA.  



Input System Data for Power Flow Program   
SYSTEM DATA: Transformer data 

 
 Additional data is required for transformers. This can either be 

entered as part of the branch data or as a separate data category 
depending on the particular power flow program being used. This 
additional data usually includes the following: 
 

 tap setting in per unit; 
 tap angle in degrees; 
 maximum tap position; 
 minimum tap position; and 
 scheduled voltage range with tap step size or a fixed scheduled 

voltage using a continuous tap approximation. 
 

 The last three data items are needed only for load tap changing 
(LTC) transformers that automatically vary their tap setting to 
control voltage on one side of the transformer. 



Solving Power Flow Problem 

Assumptions: 
 

 At generator or PV bus, the active power PG is controlled by  
     speed governor and the voltage magnitude is controlled by a   
     voltage  regulator. Thus, real power, P and voltage magnitude, V    
     are treated as known parameters.  

 
  At load bus, a reasonable approximation is that the load active  

and reactive power demand, PD and QD are considered as known 
parameters.   
 

  At one generator bus, treat it as a slack or reference bus in 
which the active and reactive powers are variables to make up 
system losses.  



Power Flow Input and Output and Control 

Input 
 Load (P,Q) 
 Active Power Generation  
 Network model 
 Controls (transformer, interchange, var) 
Output 
 P, Q at the slack bus 
 V at the load bus 
 Relative power angles at the generator and load buses 

 
Generator Voltage Control 
 PV bus 

 
Transformer Tap Control 
 Tap positions 

 
Interchange Control 
 Generation MW dispatch 



Classification of Buses in a Power System  

 The power system buses (busbars) are classified as follows: 
 
 
 
 
 
 
 
 
 

Load Bus 
 Also called the P-Q bus 
 Real power Pi and Qi are specified 
 All load buses fall into this category, including buses that have 

not either load or generation.  
 



Classification of Buses in a Power System  

Generation Bus 
 Also called the P-V bus or voltage-controlled buses  
 Voltage magnitude |Vi| and real power Pi are specified 
 Able to specify (and therefore to know) the voltage magnitude of 

this bus.  
 Most generator buses fall into this category, independent of 

whether it also has load 
 

Slack or Swing Bus 
 Known as reference bus 
 Voltage magnitude |Vi| and phase angle       are specified 
 There is only one swing bus, and it can be designated by the 

engineer to be any generator bus in the system.  
 This generator “swings” to compensate for the network losses, or, 

one may say that it “takes up the slack.”  
 

i





Introduction 
 When analyzing power systems we know neither the complex bus 

voltages nor the complex current injections 
 

 Rather, we know the complex power being consumed by the load, 
and the power being injected by the generators plus their voltage 
magnitudes 
 

 Therefore, we cannot directly use the Ybus equations, but rather 
must use the power balance equations 
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Power flow problem 
 Basic equation for power-flow analysis is derived from the nodal 

analysis equation for the power system: 
 
 
 
 
 
 
 

 the typical element Yij is 
 
 

 In advance of each power-flow study certain bus voltages and 
power injections must be given known values , 
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Power flow problem 
 The net current injected into the network at bus i in terms of the 

elements Yij of Ybus is given by the summation 
 
 

 Let Pi and Qi denote the net real and reactive power entering the 
network at the bus i .  
 
 
 

 Expanding this equation and equating real and reactive parts, we 
obtain 
 
 
 
 

 The above constitute the rectangular and polar form of the power-flow 
equations; . They provide calculated values for the net real power Pi 
and reactive power Qi  entering the network at typical bus i . 
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Power flow problem 
 The net scheduled power being injected into the network at bus i 

 
 
 
 
 
 
 
 

 Then the mismatch powers ΔPi and  ΔQi  can be obtained as 
 
 
 
 

 Mismatches occur in the course of solving a power-flow problem 
when calculated values of Pi and Qi do not coincide with the 
scheduled values. 
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Power flow problem 
 The complete definition of power flow problem requires 

knowledge of four variables  of each k-bus in the system:  
 Pi- Real or active power 
 Qi- reactive or quadrature power 
 Vi- voltage magnitude 
 δi- voltage phase angle 

 
 Only two are known a priori to solve the problem, and the aim of 

power flow is to solve the  remaining two variables at a bus. 
 

 Depending upon which two variables are specified a priori, the 
buses are classified into three categories  



The nine buses of the system a re categorize as follows: 
 
 
 
 
 
 
 
 
The mismatches corresponding to the specified P and Q are 
 
@ PQ buses 
 
@ PV buses 
 

Power flow problem 
 Suppose that the P-Q load is known at each of the nine buses of a small 

power system and that synchronous generators are connected to buses 
1,2, 5 and 7. For a power-flow study, identify the ΔP and ΔQ mismatches 
and the state variables associated with each bus. Choose bus 1 as the 
slack bus. 
 

  ;     ;  752 

 , ;  , ; ,  ;  ,  ; , 9988664433 QPQPQPQPQP 

Example 1 

Solution 

  ;   ;   752 PPP 

 
The state variables are 
 
@ PQ buses 
 
@ PV buses 
 
Therefore there are 13 equations to solve 
 

9988664433 ,  , ;  , ;   ,  ;  ,  VVVVV



The Gauss-Seidel Method 
 The complexity of obtaining a formal solution for power flow in a power 

system arises because of the differences in the type of data specified for 
the different kinds of buses. 
 

 Consider a 4 bus power system with bus 1 designated as slack bus 
 
 
 
 
 
 

 For bus 2 in the four-bus system, 
 
 
 

 The loads on real p.s. are specified in terms of real and reactive power, 
not as currents. Relationship between power and current at bus i can be 
expressed as: 
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The Gauss-Seidel Method 
 Current injected at bus 2 can be found as: 

 
 
 
 

 If                        are the scheduled real and reactive power, respectively, 
entering the network at bus 2 can be obtained by equating Equations 1 
and 2 as 
 
 
 
 

 Solving for V2 gives 
 

 If we assume that buses 3 and 4 are also load buses with real and 
reactive power specified, we can get similar expressions as 
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The Gauss-Seidel Method 
 If the       was not present, then it could have been solved using the usual 

elimination methods. However, the Eq. is now a non-linear Eq., since it 
contain products of unknown variables. The only way it can be solved is 
by means of iteration.  
 

 The solution proceeds by iteration based on the scheduled real and 
reactive power at buses 2, 3, and 4, the scheduled slack bus voltage        
,                    and initial voltage estimates                     at the other buses. 
 

 Solution of Eq. (3) gives the corrected voltage        calculated from 
 
 
 
 

 As the corrected voltage is found at each bus, it is used to calculate the 
corrected voltage at the next bus.  
 
 
 

 This complete the first iteration in which calculated values are found for 
each state variable. 
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The Gauss-Seidel Method 
 This process of solving the power-flow equations is known as the Gauss-

Seidel iterative method. 
 

 The number of iterations required may be reduced if the correction in 
voltage at each bus is multiplied by some constant known as 
acceleration factor given by 
 

 For example, at bus 2  in the first iteration we have the accelerated value                                                                              
defined by the straight-line formula. 
 
 
 

 For a system of N buses the general equation for the calculated voltage 
at any bus i where P and Q are scheduled is 
 
 
 

 Then updated with 
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The Gauss-Seidel Method:  
Handling PV buses 

 When voltage magnitude rather than reactive power is specified at bus i , 
the real and imaginary components of the voltage for each iteration are 
found by first computing a value for the reactive power. 
 

 In the four-bus example if bus 4 is a PV bus, 
 
 
 

 Substituting       for 
 
 
 

 Since       is specified, we correct the magnitude of      as follows 
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The Gauss-Seidel Method:  
Handling PV buses 

 General Equations used in the algorithm for the reactive power is. 
 
 
 

 From a practical viewpoint the PG and QG output of the generator must 
be within definite limits given by the inequality 
 
 
 

 Voltage is calculated as follows 
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The Gauss-Seidel Method:  
 
 
 
 

The advantages of the G-S method can be listed below: 
 The iteration eq. are quite simple and easy to program. In fact, with computing 

tools, such as MATLAB, it is fairly straightforward to perform power flow  
calculations   using iterative eqs. which have been developed. 
 

 Since Y-bus is a sparse matrix, the memory requirements can be reduced 
substantially by storing only the non-zero elements of the matrix. 
 

 The iterations are numerically stable and typically a fairly reliable convergence is 
obtained, provided a feasible solution exists. This is due to the fact that the Y-bus 
matrix has predominant diagonal element values 

The G-S method has some disadvantages. 
 
 The number of iterations increases as the system size increases. 

 
 The main reason of large number of iterations is that the convergence of the G-S 

method is asymptotic. In other words, the convergence slows down as the values 
get closer to the final values. Hence, in general, it is difficult to obtain higher 
precision results. 
 

 This method may not converge for systems with negative impedance branches. 



The Gauss-Seidel Method: Summary  
 
 
 
  Step 1 

• Calculate the bus admittance matrix Ybus. 

• Include the admittances of all transmission lines, transformers, 
between lines, but exclude the admittances of the loads or 
generators themselves. 

Step 2 

• Select a slack bus. 

• One of the busses in the power system should be chosen as the slack 
bus.  Its voltage will be assumed to be 1.00.  

Step 3 

• Select initial estimates for all bus voltages. 

• The estimate should be reasonable as poor choice may result in 
convergence to incorrect values. Usually we start with 1.00 (flat 
start). 

Step 4 
• Write voltage equations for every other bus in the system 

• The voltage equation will have generic form  
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The Gauss-Seidel Method: Summary  
 
 
 
  Step 5 

• Calculate and update estimate of the voltage at each load bus in 
succession using the voltage equation 

Step 6 

• Compare the difference between the old voltage estimates and the 
estimates 

• If the differences between the estimates less than specified tolerance 
for all busses, we are done. 

Step 7 

• Confirm that the resulting solution is reasonable. 

• Typical value of phase range is less than 45. 

• Larger ranges may indicate the system converged to an incorrect 
solution. 

• Change the initial condition.  Try again. 



The Gauss-Seidel Method: 2 bus example  
 
 
 
 

 Consider a simple two bus power system and calculate the voltage at bus 2. Apply 
Gauss-Seidel method  

 

G

Bus 1 Bus 2

Z12=0.1+j0.5
Shunt admittance is neglected

Load: 
P=0.30 p.u.
Q=0.2 p.u.

Solution 

STEP 1 

Calculate the bus admittance matrix 
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The Gauss-Seidel Method: 2 bus example  
 
 
 
 G

Bus 1 Bus 2

Z12=0.1+j0.5
Shunt admittance is neglected

Load: 
P=0.30 p.u.
Q=0.2 p.u.

Determine the voltage at each bus for the specified load condition 

STEP 2 

Bus 1 : Slack bus. V1=1.00 pu 

STEP 3 

Select initial values (0)  of all bus voltages: 

Bus 2 is a Load bus. Choose V2
(0) =1.00 pu  as initial estimate 

Determine the voltage at each bus for the specified load condition 

STEP 4 

Write voltage equations for every other bus in the system 
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The Gauss-Seidel Method: 2 bus example  
 
 
 
 G

Bus 1 Bus 2

Z12=0.1+j0.5
Shunt admittance is neglected

Load: 
P=0.30 p.u.
Q=0.2 p.u.

STEP 5: Calculate an updated estimate of the voltage at each load bus 

Initial estimate V2
0=1.00 pu 

 

 

 

 

 

Second estimate 

 

 

 

Third iteration 

 

 

 Calculate for Fourth and fifth iteration etc… 
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The Gauss-Seidel Method: 2 bus example  
 
 
 
 

STEP 6: compare the differences between the old and new estimates 

If the magnitude of the voltage is barely changing, we consider this value is close enough to the 

correct answer.  Iteration stops. 

STEP 7: Confirm that the resulting solution is reasonable 

V1=1.00 pu 

V2=0.8315-8.994 pu   assumed value for discussions 

The phase angles differ by only 9,  

these result appear reasonable 

Calculate current flowing in the transmission 

 line from Bus 1 to Bus 2 

Calculate power supplied by the transmission line to Bus 2 

 

 

This is almost equal to the power being consumed by the loads. Thus the solution appears to be 

correct. 
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The Gauss-Seidel Method: 3 bus example  
 
 
 
 

A simple three-bus power system with generation at buses 1 and 3.  The voltage at bus 1 is 

V1=1.025∠0.  Voltage magnitude at bus 3 is fixed at 1.03 pu with real power generation of 300 MW.  

A load consisting of 400 MW and 200 Mvar is taken from bus 2.  Line impedances are marked in per 

unit on a 100 MVA base.  Line resistances and line charging suceptances are neglected.  

 

Using Gauss-Seidel method and initial estimates of V2
(0)=1.0+j0 and V3

(0)=1.03+j0 and keeping 

V3=1.03 pu, determine the phasor values of V2 and V3.  Stop after two (2) iterations. 

 

G1 G2

V1=1.025∠0 V3  =1.03

P3=300 MW

400 MW+j200MVar

+j0.025
+j0.025

+j0.05

Bus 1

Bus 2

Bus 3



The Gauss-Seidel Method: 3 bus example  
 
 
 
 

G1 G2

V1=1.025∠0 V3  =1.03

P3=300 MW

400 MW+j200MVar

+j0.025
+j0.025

+j0.05

Bus 1

Bus 2

Bus 3

1. Calculate Line admittances 

 y12 = -j40, 

  y13 = -j20  

  y23 = -j40 

2. Expressed  load and generation in per units 

 

 

3. Bus 1 is taken as slack bus.  Starting from an initial estimate  V2 is computed 

from equation: 
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4. Bus 3 is a PV bus or voltage controlled bus therefore Q and δ are unknown. 

Determine Q first using 

 

 

4. Compute V3 are  as follows 

 

 

 

Applying the same procedure for the second iteration we obtain 

The Gauss-Seidel Method: 3 bus example  
 
 
 
 

G1 G2

V1=1.025∠0 V3  =1.03

P3=300 MW

400 MW+j200MVar

+j0.025
+j0.025

+j0.05
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If after several iterations the bus voltages converge to V2=1.000571-j0.0366898 pu 

V3=1.029706+j0.0246 pu 

Determine the line flows and line losses and  

the slack bus real and reactive power. 

The Gauss-Seidel Method: 3 bus example  
 
 
 
 

G1 G2

V1=1.025∠0 V3  =1.03

P3=300 MW

400 MW+j200MVar

+j0.025
+j0.025

+j0.05

Bus 1

Bus 2

Bus 3

77.70.012 jS ossL 

25.10.013 jSLoss 

42.180.023 jSLoss 

MVARjMWS 51.901001 



An illustrative five-bus system has the following bus power and voltage 

specifications: 

 

 

 

 

 

 

 

 

Show calculation for one iteration to solve the five PFEs using Gauss-Seidel 

method. 

The Gauss-Seidel Method: 5 bus example  
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From system data,  V1  =  1.02  0,  

    PG2 = 1.0 ; 

     V2  = 1.02 

      S3  =  P3  +  jQ3  =  -0.25 – j0.1; 

      S4  =  P4  +  jQ4  =  -0.25 – j0.1 ; 

      S5  =  P5  + jQ5 = -0.25 – j0.1 . 

Let  us assume the following initial estimates: 

 

 

 

Bus 2 is the only P-V bus.  Let us calculate Q2
1  

 

 

The Gauss-Seidel Method: 5 bus example  
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We fix V2
1 to 1.02 5.1, the magnitude being set at the specified value with the phase 

angle kept as the calculated value. 

The voltages at the load buses after the first iteration are: 

 

 

 

 

 

The Gauss-Seidel Method: 5 bus example  
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You may apply acceleration factor (), (about 1.6 and cannot exceed 2) to speed up the 

convergence 

 

 

 

 

 

The Gauss-Seidel Method: 5 bus example  
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THE Newton-Raphson Method 
 
 
 
 

 Taylor's series expansion for a function of two or more variables is the basis for 
the Newton-Raphson method of solving the power-flow problem. 
 

 Let us consider the equation of a function h1 of two variables x1 and x2 equal to a 
constant b1 expressed as 
 
 
 
 
 

 and a second equation involving another function h2 such that 
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Difference between 
calculated and specified 

Indipendent control 
variable (a constant) 

Specified function value 

Note: 
In mathematics, a Taylor series is a representation of a function as 
an infinite sum of terms that are calculated from the values of the 
function's derivatives at a single point 

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Series_(mathematics)
https://en.wikipedia.org/wiki/Derivative


THE Newton-Raphson Method 
 
 
 
 

 For a specified value of u let us estimate the solutions, (initial guess) 
 
 
 
 

 If we designate the correction values                     to get actual solution            , 
we can write 
 
 
 
 

 Now we can solve this problem by  Taylor's series expansion  
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THE Newton-Raphson Method 
 
 
 
 

 If we neglect the partial derivatives of order greater than 1 , we can rewrite 
 
 
 
 
 
 
 
 

  square matrix of partial derivatives is called the jacobian J  

 
 By solving the mismatch equations we can determine                      as 

 
 
 
 

 Since initial guess do not determine the correct solution, we must try to get new 
estimate as 
 
 
 

 We repeat the process until the corrections become so small in magnitude that 
they satisfy a chosen precision index ɛ > 0 
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THE Newton-Raphson Method 
 
 
 
 

 Use Newton-Raphson Mehtod to solve  
 

 We can rewrite this equation as 
 

 Now applying Taylor’s series expansion we have 
 
 
 
 

 By rearranging the last equation we have 
 
 
 
 
 

 Substituting the values given in the function we have 
 
 
 

 Next we can get updated value of x as 
 
 
 

Example 
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THE Newton-Raphson Method 
 
 
 
 

 General formula for this example 
 

 Starting from initial guess x(0)=1, Iteratively solving we get 
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THE Newton-Raphson Method 
 
 
 
 

 Using the Newton-Raphson method, solve for x1 and x2 of the nonlinear 
equations 
 
 
 
 

 Treat the parameter u as a fixed number equal to 1, and choose the initial 
conditions for x1 and x2. Solve until the error is reasonably small.  Let initial x1=0 
and x2=1 

Example 2 
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THE Newton-Raphson Method 
 
 
 
 

First iteration 
 Find mismatch 

 
 
 
 
 

 Substitute in mismatch equation  

Example 2 

 Inverting this simple 2 X 2 matrix, we determine the initial corrections 
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First iteration 
 Therefore                        are  

 
 
 
 
 

 Second Iteration 
 
 
 
 
 

 Substitute in mismatch equation  
 

Example 2 
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THE Newton-Raphson Method 
 
 
 
 

 And updating the Jacobian, we compute the new corrections 
 
 
 
 

 Therefore                        are  
 
 
 
 
 

 Continuing the 3rd iteration                     found to be very small which is less than 
10-5  
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The Newton-Raphson Method 
 
 
 
 

 To apply the Newton- Raphson method to the solution of the power-flow 
equations, we express bus voltages and line admittances in polar form. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Let us compare the nodal power equations with the general one as below 

Application to power flow 
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The Newton-Raphson Method 
 
 
 
 

 Correspondence to the Δg mismatches,  the power mismatches for the typical 
load bus can be written as  
 
 
 
 
 

 For simplicity sake, we now write mismatch equations for a four-bus system, 
 
 
 
 
 
 

 By multiplying the last 3 terms in each equation we can also write 

Application to power flow 

  























 

)0(
2

)0(
11)0(

)0(
2

)0(
1

g

g
J

x

x

calciDiGicalcischii

calciDiGicalcischii

QQQQQQ

PPPPPP

___

___

)(
)(





4
4

3
3

2
2

4
4

3
3

2
2

4
4

3
3

2
2

4
4

3
3

2
2

V
V

Q
V

V

Q
V

V

QQQQ
Q

V
V

P
V

V

P
V

V

PPPP
P

iiiiii
i

iiiiii
i

















































































4

4

4
4

3

3

3
3

2

2

2
24

4
3

3
2

2

4

4

4
4

3

3

3
3

2

2

2
24

4
3

3
2

2

V

V

V

Q
V

V

V

V

Q
V

V

V

V

Q
V

QQQ
Q

V

V

V

P
V

V

V

V

P
V

V

V

V

P
V

PPP
P

iiiiii
i

iiiiii
i


























































































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 Collecting all the mismatch equations into vector-matrix form yields 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 In the general case if there are Ng voltage-controlled buses besides the slack bus, 
a row and column for each such bus is omitted from the polar form of the system 
jacobian, 
 

Application to power flow 

Jacobian Matrix  



The Newton-Raphson Method 
 
 
 
 

 Collecting all the mismatch equations into vector-matrix form from the second 
equation yields 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 The solution can be obtained by iterative process 

Application to power flow 

Jacobian Matrix  



The Newton-Raphson Method 
 
 
 
 

 In this equation, Bus 1 is assumed to be the slack bus  
 

 The Jacobian matrix gives the linearized relationship between small changes in 
voltage angle i(k) and voltage magnitude Vi(k) with the small changes in 
real and reactive power Pi(k)  and Qi(k) . 
 

 Elements of the Jacobian matrix are the partial derivatives of P and Q, evaluated 
at i(k) and Vi(k)  
 
 
 
 
 
 
 

 
 
 
 

Application to power flow 
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J1= (n-1)×(n-1) J2 =(n-1)×(n-1-m) 

J3 =(n-1-m)×(n-1) 
J4 =(n-1-m)×(n-1-m) 

If m buses are voltage-controlled, 
m equations involving Q and V 
and corresponding columns of the 
Jacobian matrix are eliminated 

 n-1 real power constraints and n-
1-m reactive power constraints 
Jacobian matrix is of order (2n-2-
m)×(2n-2-m) 
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 Expressions for the elements of Jacobian can be easily found by differentiating 
the appropriate number of terms  
 
 
 
 
 
 

 
 
 
 

Application to power flow 
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Diagonal and off-diagonal elements of J1: 
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 Expressions for the elements of Jacobian can be easily found by differentiating 
the appropriate number of terms  
 
 
 
 
 
 

 
 
 
 

Application to power flow 
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 Expressions for the elements of Jacobian can be easily found by differentiating 
the appropriate number of terms  
 
 
 
 
 
 

 
 
 
 

Application to power flow 
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 Expressions for the elements of Jacobian can be easily found by differentiating 
the appropriate number of terms  
 
 
 
 
 
 

 
 
 
 

Application to power flow 
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 Expressions for the elements of Jacobian can be easily found by in a different 
form as 
 
 
 
 
 
 

 
 
 
 

Application to power flow 
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 Collecting all the mismatch equations into vector-matrix form from the second 
equation yields 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Power flow Solution Procedure 
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2 Bus Example 

In a two bus system, bus 1 is a slack bus with V1=1.00 pu.  A load of 100 MW and 50 
Mvar is taken from bus 2.  The line impedance is z12 = 0.12+j0.16 pu on a base of 100 
MVA. Using Newton-Raphson method determine V2. Continue until converge.   

50 Mvar 
100 MW 
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2 Bus Example 
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Solution 

V1=1.00 

100 MW 

50 Mvar 

Power flow equations in polar forms: 
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2 Bus Example 

Solution 
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2 Bus Example 

Solution 
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2 Bus Example 

Solution 

Partial derivatives of P2 w.r.t. 2 and  V2 

)13.53cos(5)87.126cos(5 2
212122  VVVP 

)87.126sin(5 1212
2

2 





 VVP

)13.53cos(52)87.126cos(5 2121
2

2 


 VV
V
P



Partial derivatives Q2 w.r.t. 2 and  V2 

)13.53sin(5)87.126sin(5 2
212122  VVVQ 

)87.126cos(5 1212
2

2 





 VVQ

)13.53sin(10)87.126sin(5 2121
2

2 


 VV
V
Q





Initial values? Slack bus voltage is V1 = 1.0 0 pu. 

Initial estimates : 

P2 = ?; Q2 =? 
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2 Bus Example 

Solution 
Expressed Load in p.u.   5.00.1
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2 Bus Example 

Solution 

The elements of Jacobian matrix 
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2 Bus Example 

Solution 

The elements of Jacobian matrix 
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The set of linear equations in the first iteration becomes 
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2 Bus Example 

Solution 

Solution of the matrix gives: 
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2 Bus Example 

Solution 

The set of linear equations in the 2nd iteration becomes 
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CONTINUE WITH THE 3RD ITERATION! 
Good Luck…… 



Power Flow (PF) Studies 

The general power flow problem involves evaluation of node (bus) voltages for  

given injected powers at the buses. The injected powers essentially represent  

the generations and loads at the buses. It is assumed that the network  

configuration and the branch impedances are known which, of course, is true in 

the case of an existing power system. To address future loads and generations, 

various alternative configurations are evaluated to establish the best  

configuration. The concept of accepting generations as injected power is quite  

straightforward. However, it may cause some confusion in the case of loads. 

Note that a load can be mathematically treated as negative injected power. 

In fact, when both loads and generators are present at the same bus, we even 

talk in terms of net injected power. In other words, the net injected power is the  

generation minus the load at that bus. 
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Typical objectives of the power flow studies are given below: 

• Buses with voltage level violations i.e. voltage beyond ±5% of rated value 

• Current and power flows in all branches 

• Equipment over load conditions 

• Power losses in the system 

• Transformer tap specifications to improve voltage levels 

• Capacitive compensation (reactive support)  

It is obvious that power flow studies are an important aspect of power system  

operation and planning. In the case of operation, pf studies are used to arrive at a  

feasible and economic operating condition for given load and system  

configurations. However, in the case of power system planning, the objective will  

be to arrive at the equipment ratings and the best configuration for various future  

load conditions and contingencies.  

 



In practice, there is a strong incentive to operate power system as close to balanced  

conditions as possible, or else we are essentially wasting the system capacity.  

Balanced operation can generally be achieved by proper planning. The industrial  

and utility power system networks can normally be treated as balanced systems.  

However, there could be some unbalance present in the LV distribution networks. It  

is common to assume a balanced power system for power flow (pf) studies. The  

solution of the pf problem is not so straight forward. The simples way to perform  

power-flow calculations is by iteration. Whenever iterative methods are used, there  

is no guarantee that the method will converge and provide a solution. After the  

advent of computers, various methods to solve pf problem have been developed and  

researched extensively .Two methods have survived the test of time and they do  

provide reliable power flow solutions.  

• The first one is a simple and reliable method called the Gauss-Siedal method of 
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 iteration using Y-bus. Though quite reliable, it is not very efficient for large  

 systems, as it requires a very large number (hundreds) of iterations. 

• The second method, which is more complex to formulate and solve, is called 

the fast decoupled (Newton Raphson) method.  

The fast decoupled method uses the imaginary part of the Y-bus matrix for  

iterations and is computationally very efficient. Typically, it provides the final  

solution within a   few iterations. If a convergence is not obtained with fast  

decoupled method, it is reasonably safe to assume that the specified gen/load  

conditions do not constitute a feasible operating condition i.e. bus voltages may  

be too high or too low. 

The difficulty of solving a power flow problem is best illustrated by considering  

the following numerical examples. 
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Given: V2 = 1+j0 pu and S2 =4+j3 pu 

To find: Source bus voltage and pf  ans:(4+j4.25) 

Given: V1 = 1+j0 pu and S2 =4+j3 pu 

To find: Load bus voltage 
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The main assumptions in the case of power flow 

modeling is that the system is balanced. 

For the purpose of developing the p.f. equation, the 

power system network is generally treated as a black 

box as shown beside. 

Network model for p.f. problem 



The black box essentially represents the positive  

sequence equivalent network of the power system.  

From the p.s. point of view, the black box essentially  

contains all the lines, transformers and capacitors in  

the p.s. However, in network theory, we normally say  

that it contains linear passive elements. The nodes in  

the network are brought out as shown in Fig. and  

numbered as 1,2,…i,…n 

The generation and load at the buses are indicated by SGi and  SLi, respectively. 

Hence, the net injected power at a given ith bus can be written as: 

  Si = SGi-SLi   for  i = 1 to n 

Or  Pi = PGi – PLi for   i = 1 to n 

     Qi = QGi – QLi for  i = 1 to n 
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Network model for pf problem 



We use the subscript ‘i’, to emphasize that they are the specified or known values at  

the bus in the case of power flow problems. This is generally  

true, but there are some exceptions. We will discuss the  

exceptions later. We can recall that the power flow problem 

 essentially involves solving for the node voltages for given  

injected powers. In other words, we need to solve for the  

voltages, Vi (for i = 1 to n), at all nodes. 

The complex injected power at a given node can also be  

written in the following form: 

 Si =(Pi + jQi)=Vi(Ii)* for i = 1 to n                 (3) 

Where, Ii is the corresponding injected current at the bus and Vi is the bus voltage. 

We can write the above eq. in the following form:                       for i = 1 to n     (4) 
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Network model for p.f. problem 
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We also have the network equation which relate injected currents and node voltages, 

namely: 
               (5) 
 

Where  

         is the injected currents at the nodes (nx1) 

       is the node admittance matrix (nxn) 

         is the node voltages (nx1) 

 

You should note the network inside the black box is essentially represented by the  

node admittance (Y-bus) matrix. We also know how to establish the admittance  

matrix for a given network. It is probably a good idea at this stage to compare 

equations 4 and 5 with the equation used for iterations in the sample example,  

namely, equation1 and 2. You should note that the equation 4 and 5 are more  

versatile, since they can be applied to any general network. 
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  busbusbus VYI 

busI

busY

busV



In fact, it is possible to use the same iterative procedure to solve the general power  

flow problem. The steps can be written as below: 

1. Assume initial voltages for at all nodes 

2. Calculate the injected currents at all nodes using equation 4 

3. Obtain new estimates of the node voltages using equation 5 

4. Repeat steps 3 and 4, until convergence is obtained for all node voltages 

In theory, the above procedure is OK. However, it is considered computationally  

inefficient. Figure below gives a simple network showing the nodal currents, 

voltages and powers. It is convenient to use branch admittances rather than  

impedances. 
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Denoting the voltages of nodes k and i as Ek and Ei respectively, and the admittance 

of the branch between them as yki  ,then the current flowing in this branch from node 

k to node i is given by 

Let the nodes in the network be numbered 0,1,…,n, where 0 designates the 

reference node. By KCL, the injected current Ik must be equal to the sum of the 

currents leaving node k, hence, 

 

Since E0 = 0, and if the system is linear, 

 

If this equation is written for all the nodes except the reference, i.e. for all busbar in 

the case of a power system network, then a complete set of equations defining the 

network is obtained in matrix form as,  
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where                          self-admittance of node k,  

                                  mutual admittance between nodes k and i 

in summation notation                             for i = 1,…,n. 

The nodal admittance matrix has a well defined structure, which makes it easy to 

construct automatically. Tiney et.al were the first to exploit the sparsity feature of 

YBUS in greatly reducing numerical computations in LF studies and in minimizing 

the memory required as only non-zero terms need be stored. 

Its properties are as follows. 

i) Square of order  n x n 

ii) Symmetrical, since yki = yik   

iii) Complex 

iv) Each off diagonal element yki is the negative of the branch admittance between 

nodes k and i, and is frequently of value zero 

v) Each diagonal element ykk is the sum of the admittance of the branches which 

terminate on node k, including branches to ground. 
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vi) Because in all but the smallest practical networks very few nonzero mutual 

admittances exist, matrix Y is highly sparse. In a system containing hundreds of 

buses, the sparsity may be as high  as 90% 

The complete definition of power flow problem requires knowledge of four variables  

of each k-bus in the system:  

i) Pk- Real or active power 

ii) Qk- reactive or quadrature power 

iii) Vk- voltage magnitude 

iv) δk- voltage phase angle 

Only two are known a priori to solve the problem, and the aim of LF is to solve the  

remaining two variables at a bus. We define three different bus conditions based on  

the steady state assumptions of constant system frequency and constant voltage,  

where there are controlled.  

 

 

 

 



i) Voltage controlled bus.  

The total injected active power Pk is specified, and the voltage magnitude Vk is  

maintained at a specified value by reactive power injection. This type of bus 

generally corresponds to either a generator where Pk is fixed by turbine governor 

setting and Vk is fixed by automatic voltage regulators acting on the machine 

excitation, or a bus where the voltage is fixed by supplying reactive power from 

static shunt capacitors or rotating synchronous compensators i.e. at substation 

In practice, it is more convenient to specify the injected active power and voltage 

magnitude at the generator buses, rather than injected active and reactive power. 

In other words, the specified values are the active power, voltage magnitude, and 

we will need to solve for the reactive power and voltage angle at the generator bus. 

The active power of a generator is controlled by the governor and is directly related 

to the governor setting.  

Also, the voltage magnitude is controlled by the voltage regulator and is directly 

related to voltage regulator setting. 

 
 
 

 

  
  
 
 
 



 

Hence, the specification of active power and voltage magnitude is more convenient 

from the point of view of generator operation. Such a specification is often referred 

to as P-V bus in pf problems. Consequently the buses where injected powers are 

specified can be referred to as P-Q buses. 

In general, the generator buses are referred to as P-V buses and the load buses are 

referred to P-Q buses. For the purpose of iterations, we use the eq. 

 

 

 

However, we will need to use as estimated value for the injected reactive power for 

the P-V bus, since the value of reactive power  is no longer specified. We know that 

injected power at a bus is related to the injected current and the bus voltage by the 

following eq.  

 

 
 

 
 

 

  
  
 
 
 




















 



N

ik
k

kik
i

ii

ii
i VY

V
jQP

Y
V

)(
1

*
1

  iiiii IVjQPS



The injected current at a bus can be calculated using equation, 

Combining the two above equations, we can write the equation for the estimated 

value of the injected reactive power as given below: 

We can now write the modified version of voltage equation for P-V buses as below: 

 

 

 

Note that the above eq. is used only when the subscript ‘i’ corresponds to P-V 

buses. Of course, we will still use the equation for P-Q buses. As before the latest 

available voltage values are used on the RHS of equations Qest-i and Vi(est)  

 

 

 

Finally, the equation gives the new estimated value of the voltage Vi(est) in complex 

form. 
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However, we are really only interested in the voltage angle, since the voltage 

magnitude has already been specified at the P-V bus. In other words, we just 

ignore the magnitude obtained by above equation.  

Mathematically, we can write the corresponding eq. as below: 

 

The rest of the iteration process remains the same. 

ii) Slack(swing) bus.  

The injected powers in a pf problem essentially represent the loads and scheduled 

generation values for a given system condition. In practice, it is not possible to 

specify scheduled generation values at all the generators. The reason being that, 

the total generation and load should satisfy the following equations 
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   LossesLG PPP

   LossesLG QQQ

In other words, we will need to know the total system losses, before generations at 

all generator buses can be specified. A person familiar with the system may have 

some idea of the system losses. To get the exact value of losses for a given system 

condition, we will need to solve the power flow problem. In fact, calculation of 

power losses is one of the objectives of pf calculations. In view of the above, the 

injected power at one of the generation buses is not specified. Instead, the voltage 

magnitude and angle are specified at that bus. Such a bus is called the swing bus or 

the slack bus. Typically, the bus with the largest generation is specified as the swing 

bus. We can use the swing bus voltage as the reference vector, which means that its 

vectorial angle is zero. Hence, it is a common practice to specify the voltage 

magnitude at the swing bus and set the angle to zero, while solving pf problems. 

After solving the pf problem, it will be necessary to calculate the injected power at 

 



the swing bus, and to ensure that the pf values are within the capability of the 

generator at the swing bus. This bus arises because the system losses are not known 

precisely in advance of the LF calculation. Therefore the total injected power cannot 

be specified at every single bus. It is usual to choose one of the available voltage 

controlled buses as slack, and to regard its active power as unknown. The slack bus 

voltage is usually assigned as the system phase reference, and its complex voltage is 

therefore specified. The analogy in a practical power system is the generating 

station which has the responsibility of system frequency control. 

iii) PQ Bus 

At this type of bus, the net powers Pi and Qi are known (PDi and QDi are known) and 

PGi and QGi are specified. The unknown are Vi  and δi. 
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2n Power flow eqs 

4n variables Pi, Qi, |Vi| and δi.  



SLFE can be solved for 2n variables if remaining 2n variables can be specified. 

Fixed a priori two variables at each bus.  

Non linear algebraic equation difficult to solve 

Use iterative numerical techniques.  

Depending upon which two variables are specified a priori, the buses are classified 

into three categories  

PQ bus    Pi, Qi 

PV bus    Pi, |Vi| 
Slack/Swing/Ref bus                                               P1, Q1? 

Why slack bus? 

i.e. diff   

This is known in the end only. 

Bus connected to the largest 

GenR    SLACK No. 1 

f(x,y) = 0 dim 2n 
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   GiLDi SSS



 

 

 

 

 

Where, x = dependent or state vector dim 2n  (2n unspecified variables) 

  y = vector of independent variables  (2n vari speci a priori)  
   

  u = control variables 
   p = fixed parameters (uncontrollable)  

    u----> |Vpv|, Pi  

For SLFE solution to have practical significance, all the state and control  

variables must lie within specified practical limits. These limits, which are  

dictated by specifications of power system hardware and operating constraints   

are described below. 

(i) Voltage magnitude must satisfy the inequality 

(ii)                              System stability requirement 

(iii) Owing to physical limitations of P and Q generation sources, 

 

PV- V maintained if controllable 

Q source available 

 

 

        
 
                                                      
 

 

  
  
 
 
 

    









p
u

y

maxmin iii VVV 

maxkiki  

,
maxmin GiGiGi PPP 

maxmin GiGiGi QQQ 



 

 

 

 

 

Transformer taps 

Phase shifting transformer  

Specify variables (2n) at all buses (y) 

2n SLFE solved iteratively for 2n (remaining) variables (x)  

Compute line flows & losses 

Approximate LFS 

R=0; PL=0 

The LF problem can now be fully defined as follows: 

Assume a certain nominal bus load configuration. Specify  PGi + jQGi at all the PQ 

buses; specify PGi and IViI at all the PV buses. Also specify IV1I and δi (=0) at the 

slack bus. Thus 2n variables of the vector y are specified. The 2n SLFE can now be 

solved iteratively to determine the values of the 2n variables of the vector x 

comprising voltages and angles at the PQ buses, reactive powers and angles at the 

PV buses and active and reactive powers at the slack bus. The next step is to 

compute line flows. 
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G
a 

Gg 

Lines Z 

1-2 Zd 

1-3 Zc 

1-4 Zf 

2-3 Zb 

2-4 Ze 

Generat
or 

Impedance 

Ga Za 

Gg Zg 

1. Develop Bus Admittance Matrix 

2. Estimation bus voltages 

3. Update voltages until converge 

       ITERATION techniques 
 

Consider a simple power system: 

Impedances are expressed in p.u. on a common 

MVA base. 

Impedance are converted to admittance: 
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Convert impedance to admittance 

Draw admittance diagram 
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The admittance diagram of the simple system 
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Applying KCL at each bus 

Bus 1 

Bus 2 

Bus 3 

Bus 4 
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  )()( 4334133123323 VVyVVyVVyI 

 34434 VVyI 



Rearranging,  

  31321211312101 VyVyVyyyI 

  32322312201122 VyVyyyVyI 

  43433423132231133 VyVyyyVyVyI 

4 43 3 44 4I y V y V  
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Write equations for I1 and I2 

Quick Exercise 
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Exercise 1 

117 

From 
Bus 

To Bus R(pu) X(pu) B(pu) 

1 2 0.004 0.0533 0 

2 3 0.02 0.25 0.22 

3 4 0.02 0.25 0.22 

2 4 0.01 0.15 0.11 

4 5 0.006 0.08 0 

Determine Y Admittance matrix of the system 



Exercise 2 

The power system shown is operating at steady state.  The reactance of each  

transmission line is X = 20 ohm.  The generators and transformers are rated as  

follows: 

– G1: 20 MVA, 12 kV,  X = 1.20 p.u. 

– G2: 60 MVA, 13.8 kV,  X = 1.40 p.u. 

– G3: 50 MVA, 13.2 kV,  X = 1.40 p.u. 

– T1: 25 MVA, 12/69 kV, X = 0.08 p.u. 

– T2: 75 MVA, 13.8/69 kV, X = 0.16 p.u. 

– T3: 60 MVA, 69/13.2 kV, X = 0.14 p.u. 

– T4: 75 MVA,  69/13.8 kV,  X = 0.16 p.u. 
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One-line diagram Ex 2 

Use a power base of 100 MVA and a voltage  base of 12 kV in the circuit of 

generator 1, form the bus admittance matrix Ybus .The three phase load absorbs 

57 MVA, 0.6 pf lagging at 10.45kV. 
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A typical bus of a power system 
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 yi1 
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 yin 

 yi0 

Vi V1 

Vn 

Power is given by the following equations: 

S = Sgenerated  - Sload 

Si = SiG – SiL 

S1 = S1G – S1L 

S2 = S2G – S2L 



Power-flow analysis equations 

























































4

3

2

1

44434241

34333231

24232221

14131211

4

3

2

1

V
V
V
V

YYYY
YYYY
YYYY
YYYY

I
I
I
I

Basic equation for power-flow analysis is derived from the nodal analysis equation 

for the power system: 

For a four-bus p.s. 

 
 

For bus 2 in the four-bus p.s. 
 

4243232221212 VYVYVYVYI 
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The loads on real p.s. are specified in terms of real and reactive power, not as 

currents. Relationship between power and current at bus i can be expressed as: 

 

Current injected at bus 2 can be found as: 
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Solving for V2 gives 
 











 424323121*

2

22

22
2

1 VYVYVY
V

jQP
Y

V

Similar equations can be created for each load bus in the power system 

The basic equation for pf studies are given in equations 4 & 5. 

Main objective is to solve the same more efficiently. 

Hence, we will be reorganising the equation to meet the objective. 

Such a rearrangement will hopefully provide for computational efficiency and better 

convergence. One such method is known as the Gauss-Seidel method. 

Such a terminology has been given, since the method is based on the general 

procedure suggested by Gauss to solve non-linear simultaneous equation. It was 

later modified by Seidel, which resulted in a slightly faster convergence. In other 

words, it resulted in fewer iterations. Expand the matrix equation given in eq.(5) to 

obtain an expression for injected current at any given node as shown below:  
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Substitute eq.6 into eq. 3, which results in the following eq: 

 

 

Now move the conjugate to LHS and express the summation in the expanded form. 

The resulting eq. is as shown below: 

 

 

Eq. (8) is essentially a set of simultaneous eqs, where node voltages are the 

unknown variables. 

In fact, we have ‘n’ unknown values, namely, V1, V2      ,… Vi ,… Vn and ‘n’ eqs. 

If the first term in the RHS of eq.8, namely       , was not present, then it could have 

been solved using the usual elimination methods. 

However, the eq. is now a non-linear eq., since it contain products of unknown 

variables. The only way it can be solved is by means of iteration.   
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There are ‘n’ eqs. in eq(8), one eq. corresponding to each node in the system. 

We will use the first eq. to get the new estimate for V1and the second eq. to obtain 

the new estimate for V2, and so on. 

Hence, we can write the general eq. for iteration for the voltage at ith bus as shown 

below: 

   

                                                                      for i=1 to n  (9) 

The above eq. looks very complex, but it is essentially obtained by rearranging the 

terms in equation (8). 

In other words, by moving all the terms in the RHS to the LHS except for the term 

YiiVi. Finally we can move Yii also to LHS and swap the eq. around. The eq.(9) is 

the general iteration eq. for the bus voltages. Vi(new) provides a new estimate for the 

bus voltages after each iteration. Note, however, that evaluation of RHS requires the 

voltages at all buses, including the voltage at the bus where the new estimate is 

being calculated. Obviously, voltages obtained at the previous iteration are used for 
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the calculations. 

Initial voltage estimates of           pu is normally used at all buses to start the 

iterations. The method suggested by Gauss made use of the previous iteration 

voltage values at all buses for calculating new voltage estimates. However, Seidel 

suggested that the convergence is faster if the latest available voltage values are 

used. That is, when calculating the new estimate for voltage at bus 3, the latest 

estimates of the voltages at buses 1 & 2 (present iteration values) can be used, rather 

than previous iteration values. Of course, at other buses we will have to use the 

voltages from the previous iteration. 

The above iterations are carried out for all buses, until the bus voltage at each bus 

converges to their final values. The convergence of iterations is checked as below: 

                                                               for i =1 to n 

Note that convergence must be checked for real and imaginary parts. 

The symbol     is referred to as the convergence factor.  
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Typical values of the convergence factor used in practice are 0.0001 to 0.00001 pu. 

Such small values for voltage convergence are necessary to obtain power flow 

convergence in the range of about 0.01 (1%) to 0.001(0.1%). 

If higher convergence factors are used, substantial errors could occur in pf and 

power loss calculations. 

The advantages of the G-S method can be listed below: 

1. The iteration eq. are quite simple and easy to program. In fact, with computing 

tools, such as MATLAB, it is fairly straightforward to perform pf calculations   

        using iterative eqs. which have been developed. 

2. Since Y-bus is a sparse matrix, the memory requirements can be reduced 

       substantially by storing only the non-zero elements of the matrix. 

3. The iterations are numerically stable and typically a fairly reliable convergence 

         is obtained, provided a feasible solution exists. This is due to the fact that the 

         Y-bus matrix has predominant diagonal element values. 
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The G-S method has some disadvantages, which becomes particularly significant 

while solving larger power systems. 

1.The number of iterations increases as the system size increases. 

The number of iterations can be excessive for large systems. i.e. 500-800 iterations 

are quite common for a system with 50 buses. In fact, a few thousand iterations are 

not uncommon in the case of large utility systems, where a few hundred buses are 

quite common. Some empirical methods have been suggested to reduce the number 

of iterations, by means of an acceleration factor. This does reduce the iterations 

slightly, but it still requires fairly large number of iterations. Also, the value of the 

acceleration factor depends on the system and needs experimentation. 

2. The main reason of large number of iterations is that the convergence of the G-S 

method is asymptotic. In other words, the convergence slows down as the values get 

closer to the final values. Hence, in general, it is difficult to obtain higher precision 

results. 

3. This method may not converge for systems with negative impedance branches. 

 
 

129 



Basic procedure for the Gauss-Seidel  
iterative method Step 1 

• Calculate the bus admittance matrix Ybus. 
• Include the admittances of all transmission lines, transformers, 

between lines, but exclude the admittances of the loads or 
generators themselves. 

Step 2 

• Select a slack bus. 
• One of the busses in the power system should be chosen as the 

slack bus.  Its voltage will be assumed to be 1.00.  

Step 3 

• Select initial estimates for all bus voltages. 
• The estimate should be reasonable as poor choice may result in 

convergence to incorrect values. Usually we start with 1.00 
(flat start). 

Step 4 

• Write voltage equations for every 
•  other bus in the system 
• The voltage equation will have 
• generic form  
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Step 5 
• Calculate and update estimate of the voltage at each load bus 

in succession using the voltage equation 

Step 6 

• Compare the difference between the old voltage estimates and 
the estimates 
• If the differences between the estimates less than specified 

tolerance for all busses, we are done. 

Step 7 

• Confirm that the resulting solution is reasonable. 
• Typical value of phase range is less than 45. 
• Larger ranges may indicate the system converged to an 

incorrect solution. 
• Change the initial condition.  Try again. 
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Write equations for P2 and Q2 (for 2nd iteration) of a 5 bus system 

1 2 

Line  
Series impedance 
=0.1+j0.5 
Shunt neglected 

G Load:  
P=0.30 pu 
Q= 0.20 pu 

STEP 1 

Calculate the bus admittance matrix 
 

9231.13846.0
50.010.0

11 j
jz

y
line

line 

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9231.13846.011 jY 

9231.13846.022 jY 

9231.13846.012 jY 

9231.13846.021 jY 



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

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


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9231.13846.09231.13846.0
9231.13846.09231.13846.0
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jj

Ybus
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Determine the voltage at each bus for the specified load condition 

STEP 2 

Bus 1 : Slack bus. V1=1.00 pu 

 

 

STEP 3 

Select initial values (0)  of all bus voltages: 

Bus 2 is a Load bus. Choose V2
(0) =1.00 pu  as initial estimate 

Determine the voltage at each bus for the specified load condition 
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STEP 4 

Write voltage equations for every other bus in the system 

     Real and reactive power at Bus 2: 

      Si = SiG – SiL 

      P2=-0.3 pu; Q2=-0.2pu 

 

Voltage equation for bus 2 
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STEP 5: Calculate an updated estimate of the voltage at each load bus 

Initial estimate V2
0=1.00 pu 

 

 

 

 

 

Second estimate 
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Third iteration 
 
 
 
 
Calculate for Fourth and fifth iteration etc… 

STEP 6: compare the differences between the old and new estimates 

If the magnitude of the voltage is barely changing, we consider this value is close 

enough to the correct answer.  Iteration stops. 

STEP 7: Confirm that the resulting solution is reasonable 

V1=1.00 pu 

V2=0.8315-8.994 pu   assumed value for discussions 

The phase angles differ by only 10,  

these result appear reasonable 

Calculate current flowing in the transmission 

 line from Bus 1 to Bus 2 
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V1=1.00 pu 

V2=0.8315-8.994 pu 

 Calculate power supplied by the transmission line to Bus 2 

 

 

 

This is almost equal to the power being consumed by the loads.  Thus the 

solution appears to be correct. 

If the real and reactive power supplied by bus 2 is 0.3+j0.2, and 

If the voltage on the slack bus is 1.00 pu, 

Then the voltage at bus 2 will be V2=0.8315-8.994 pu (get this from your 

calculation) 

This voltage is correct only for the assumed conditions; if a different amount 

of power were supplied, a different voltage V2 will be calculated. 
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Example 
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A simple three-bus power system with generation at buses 1 and 3.  The voltage at 

bus 1 is V1=1.025∠0.  Voltage magnitude at bus 3 is fixed at 1.03 pu with real 

power generation of 300 MW.  A load consisting of 400 MW and 200 Mvar is taken 

from bus 2.  Line impedances are marked in per unit on a 100 MVA base.  Line 

resistances and line charging suceptances are neglected.  

V1=1.025∠0 1 3 

2 

400 MW 
200 Mvar 

P3=300 MW 

V3=1.03 

+j0.025 

+j0.025 

+j0.05 
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V1=1.025∠0 1 3 

2 

400 MW 

P3=300 MW 

V3=1.03 

+j0.025 

+j0.025 

+j0.05 

Using Gauss-Seidel method and initial estimates of V2
(0)=1.0+j0 and V3

(0)=1.03+j0 
and keeping V3=1.03 pu, determine the phasor values of V2 and V3.  Stop after two 
(2) iterations. 

200 Mvar 
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V1=1.025∠0 1 3 

2 

400 MW 

P3=300 MW 

V3=1.03 

+j0.025 

+j0.025 

+j0.05 

1. Calculate Line admittances 

 y12 = -j40, 

  y13 = -j20  

  y23 = -j40 

2. Expressed  load and generation in per units 

 
  pujjS sch 0.20.4

100
200400

2 




puP sch 0.3
100
300

3  200 Mvar 

1. Bus 1 is taken as slack bus.  Starting from an initial estimate  V2 and V3 are 

computed from equation: 
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0.003.1)0(
3 jV 

05.00025.1)1(
2 jV 

Bus 3 is Voltage Control Bus 

What you know about voltage control bus? 

 

  

Determine Q V1=1.025∠0 1 3 

2 

400 MW 

P3=300 MW 

V3=1.03 

+j0.025 

+j0.025 
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Since V3 is held constant at 1.03 pu, only the imaginary part of Vc3
(1) is retained 

0152.003.1)1(
3 jVc 

0409.00001.1)2(
2 jV 

3671.1)2(
3 Q

0216.00298.1)2(
3 jVc 

0216.00298.1)2(
3 jV 
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If after several iterations the bus voltages converge to V2=1.000571-j0.0366898 pu 

V3=1.029706+j0.0246 pu 

Determine the line flows and line losses and  

the slack bus real and reactive power. 

77.70.012 jS ossL 

25.10.013 jSLoss 

42.180.023 jSLoss 

MVARjMWS 51.901001 

V1=1.025∠0 1 3 

2 

400 MW 

P3=300 MW 

V3=1.0
3 

+j0.025 
+j0.025 

+j0.0
5 



A major advantage of the Gauss-Seidel iterative method is that it is relatively stable  

and usually results in the right answer. The method however converges to a solution  

relatively slow and requiring a lot of computer time. Simple tricks that can be  

applied to speed up the convergence process: 

• Applying updated bus voltage values immediately; 

• Use of an acceleration factor 

1. Applying updated bus voltage values immediately 

Start using the new estimates of bus voltage as soon as they are calculated, (instead  

of waiting to the beginning of the next iteration). An illustrative five-bus system has 

the following bus power and voltage specifications: 
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Show calculation for one iteration to solve the five PFEs using Gauss-Seidel 

method. 
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Solution 
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From system data,  V1  =  1.02  0,  

    PG2 = 1.0 ; 

     V2  = 1.02 

      S3  =  P3  +  jQ3  =  -0.25 – j0.1; 

      S4  =  P4  +  jQ4  =  -0.25 – j0.1 ; 

      S5  =  P5  + jQ5 = -0.25 – j0.1 . 

Let  us assume the following initial estimates: 

 

 

 

Bus 2 is the only P-V bus.  Let us calculate Q2
1  
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We fix V2
1 to 1.02 5.1, the magnitude being set at the specified value with the 

phase angle kept as the calculated value. 

The voltages at the load buses after the first iteration are: 
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Voltage at each bus is multiplied by some constant. The multiplier is called an 

acceleration factor (),  is set at about 1.6 and cannot exceed 2. 

 

 

For bus i during iteration k  

 

 

 0
2

1
2

0
2

1
2

0
2

1
,2 )1( VVVVVV acc  

 1
,

1
,

1
,, )1(   k

acci
k

i
k
acci

k
i

k
acci

k
acci VVVVVV 



Consider a Four bus power system  
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bus to bus Series Z (R+jX) (pu) Series Y (G-jB) (pu) Shunt Y  
(MVAr) 

Y/2 (pu) 

1-2 0.01008+j0.0504 3.8152629-j19.078144 10.25 0.05125 

1-3 0.00744+j0.03720 5.169561-j25.847809 7.75 0.03875 

2-4 0.00744+j0.03720 5.167561-j25847809 7.75 0.03875 

3-4 0.01272+j0.06360 3.023705-j15.118528 12.75 0.06375 
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Bus admittance matrix 

Bus 
no. 

1 2 3 4 

1 8.985190 -
j44.835953 

-3.815629 + 
j19.078144 

-5.169561 
+j25.847809 

0 

2 -3.815629 + 
j19.078144 

8.985190 – 
j44.835953 

0 -5.169561 
+j25.847809 

3 -5.169561 
+j25.847809 

0 8.193267 – 
j40.863838 

-3.023705 + 
j15.118528 

4 0 -5.169561 
+j25.847809 

-3.023705 + 
j15.118528 

8.193267 – 
j40.863838 
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bus to bus Series z (r+jx) (pu) Series y (G-jB) (pu) Shunt y  
(MVAr) 

y/2 (pu) 

1-2 0.01008+j0.0504 3.8152629-j19.078144 10.25 0.05125 

1-3 0.00744+j0.03720 5.169561-j25.847809 7.75 0.03875 

2-4 0.00744+j0.03720 5.167561-j25847809 7.75 0.03875 

3-4 0.01272+j0.06360 3.023705-j15.118528 12.75 0.06375 



Derive buses voltage equations 
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Using an acceleration factor of 1.6 gives  

 

 

 

Using V2,acc
1 in similar calculations for bus 3 gives first iteration value 

 

Next proceed with Voltage bus 4 
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 
  

unitper 051706.0973703.0
1032316.0983564.06.11

0
2

1
2

0
2

1
,2

j
j

VVVV acc





 

unitper 066708.0953949.01
,3 jV acc 

This is voltage control bus.  What we know about voltage control buses? 
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Compute Q4
1 

Use this value to calculate V4
1 

Correct the magnitude of V4
1 to be equal to 1.02 etc.. 

 

 

 

 

Exercise 

In a two bus system, bus 1 is a slack bus with V1=1.00 pu.  A load of 100 MW and 

50 Mvar is taken from bus 2.  The line impedance is z12 = 0.12+j0.16 pu on a base of 

100 MVA. 

a) Using Gauss-Seidel method determine V2. Perform 4 iteration. 

b) Repeat using Newton-Raphson.  Perform 2 iteration. 

c) Explain how S1 and real and reactive power loss in the line can be 

calculated. 
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NEWTON-RAPHSON POWER FLOW SOLUTION 

• N-R method is mathematically superior to the Gauss-Seidel. 

• Less prone to divergence with ill-conditioned problems. 

• For large system it is more efficient and practical. 

Current entering bus i is given by 

Expressing this equation in polar form gives 
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



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Complex power at bus i is 

iiii IVjQP *

  )(
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n
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Separating real and imaginary parts 

)cos(
1

jiijijj

n

j
ii YVVP  



)sin(
1

jiijijj

n

j
ii YVVQ   



We have two equations for each load bus (P and Q) and one equation for each 

voltage controlled bus (P).  

2 equations 

per load bus 

1 equation per 

voltage control 

bus  

)cos(
1

jiijijj

n

j
ii YVVP  



)sin(
1

jiijijj

n

j
ii YVVQ   



Expanding these equations in Taylor’s series and neglecting all higher order terms 

results in the following set of linear equations. 
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In this equation, Bus 1 is assumed to be the slack bus  

Jacobian matrix 
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The Jacobian matrix gives the linearized relationship between small changes in 

voltage angle i
(k) and voltage magnitude Vi

(k) with the small changes in real 

and reactive power Pi
(k)  and Qi

(k) . 

Elements of the Jacobian matrix are the partial derivatives of P and Q, evaluated at 

i
(k) and Vi

(k)  
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In short form 
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P mismatches for all 
PQ and PV busbars 
Q mismatches for all 
PQ busbars 

V corrections for 
all PQ busbars             

δ corrections for all 
PQ and PV busbars             
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J1= (n-1)×(n-1) J2 =(n-1)×(n-1-m) 

J3 =(n-1-m)×(n-1) J4 =(n-1-m)×(n-1-m) 
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For voltage-controlled buses the voltage magnitudes are known 

If m buses are voltage-controlled, 

m equations involving Q and V 

and corresponding columns of the 

Jacobian matrix are eliminated 

 n-1 real power constraints and n-

1-m reactive power constraints 

Jacobian matrix is of order (2n-

2-m)×(2n-2-m) 

As an i.e., the Jacobian matrix eq. for the four busbar system is given as eq. below 
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Diagonal and off-diagonal elements of J1: 
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Diagonal and off-diagonal elements of J3: 
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The terms Pi
(k) and Qi

(k) are the difference between the scheduled and calculated 

values (power residuals) 
   k

ii
k

i PPP 

   k
ii

k
i QQQ 

The new estimates for bus voltages 
 
 
 
 
 

Procedure for power flow solution by N-R method 

For load buses:  

Pi and Qi are specified  

Set voltage magnitude and  equal to slack bus values 
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Calculate Pi
(k), Qi

(k) , Pi
(k)  and Qi

(k) using the equations: 
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Procedure for power flow solution by N-R method 

For voltage-controlled buses:  

Calculate Pi
(k) and Pi

(k) using  
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The Jacobian matrix (J1, J2, J3 and J4) 
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The Jacobian matrix (J1, J2, J3 and J4) 
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Solve the linear simultaneous equation 

Compute new voltage magnitudes and phase angles  
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bus to bus Series Z (R+jX) (pu) Series Y (G-jB) (pu) 

1-2 0.02+j0.04 10-j20 

1-3 0.01+j0.03 10-j30 

2-3 0.0125+j0.025 16-j32 

Line data Base 100 MVA 
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400 MW 

250 Mvar 

1 
2 

3 

200 
MW 

Slack bus 
 V1 = 1.050 

V3 = 1.04 

Consider a three bus power system  
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Determine elements of Jacobian matrix 
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Determine elements of Jacobian matrix 
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400 MW 

250 Mvar 

1 2 

3 

200 
MW 

Slack bus 
 V1 = 
1.050 

V3 = 
1.04 
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Initial values 
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4 pu 

2.5 pu 
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Evaluating the Jacobian  Matrix 
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Evaluating the Jacobian  Matrix 
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Evaluating the Jacobian  Matrix 
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Evaluating the Jacobian  Matrix 
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Solve the linear simultaneous equation 

Compute new voltage magnitudes and phase angles  
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1
2

1
3

1
2







V




   k
i

k
i

k
i  1

   k
i

k
i

k
i VVV 1
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For the second iteration 



































































1
2

1
3

1
2

103589.48402838.17538577.28
379086.15656383.65981642.32

302567.21765618.31724675.51

050914.0
021715.0
099218.0

V




001767.0
05641.0
10023.0

0
2

1
3

1
2







V




The new bus voltages in the 2nd iteration 

971684.0)001767.0(97345.0
49862.0)05641.0(44221.0
69363.2)10023.0(5934.2

2
2

2
3

2
2







V



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For the third iteration 



































































2
2

2
3

2
2

954870.47396932.17548205.28
351628.15597585.65933865.32

1474477.21693866.31596701.51

000143.0
000038.0
000216.0

V




0000044.0
00013751.0
00217724.0

2
2

2
3

2
2







V




The new bus voltages in the 3rd iteration 

97168.0
49876.0

6963.2

3
2

3
3

3
2







V



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The solution is assumed to converge after 3 iterations with a maximum power 

mismatched of 2.5×10-4 





4988.004.1
696.297168.0

3

2

V
V

puQ
puP
puQ

4085.1
1842.2
4617.1

1

1

3







Exercise 

In a two bus system, bus 1 is a slack bus with V1=1.00 pu.  A load of 100 MW 

and 50 Mvar is taken from bus 2.  The line impedance is z12 = 0.12+j0.16 pu on a 

base of 100 MVA. Using Gauss-Seidel method determine V2. Continue until 

converge.  How many iteration? Repeat using Newton-Raphson.  Perform until 

convergence.  How many iteration? Discuss/compare between the two solutions. 

Explain how S1 and real and reactive power loss in the line can be calculated. 
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50 Mvar 
100 MW 

V1=1.00 

1 
2 

z12 = 0.12+j0.16 

 y12 = 3-j4  y12 = ?  

 Ybus = ?  













13.53587.1265
87.126513.535

busY

Solution with N-R 

1 2 

 y12 = 3-j4 

V1=1.00 
100 MW 

50 Mvar 

Power flow equations in polar forms: 

)cos(
1

jiijijj

n

j
ii YVVP  



)sin(
1

jiijijj

n

j
ii YVVQ   





191 

V1=1.00 

1 2 

50 Mvar 
100 MW 

 y12 = 3-j4 

)cos(
1

jiijijj

n

j
ii YVVP  

















13.53587.1265
87.126513.535

busY

)13.53cos(5)87.126cos(5

)13.53cos(5)87.126cos(5

)cos()cos(

)cos(

2
21212

221212

2222222212212112

222
1

22










VVV

VVVV

YVVYVV

YVVP jjjj

n

j









At bus 2 
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V1=1.00 

1 2 

50 Mvar 

100 MW 
 y12 = 3-j4 

)sin(
1

jiijijj

n

j
ii YVVQ   



)13.53sin(5)87.126sin(5

)13.53cos(5)87.126sin(5

)sin()sin(

)sin(

2
21212

221212

2222222212212112

222
1

22







 


VVV

VVVV

YVVYVV

YVVQ jjjj

n

j























13.53587.1265
87.126513.535

busY

At bus 2 
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Partial derivatives of P2 w.r.t. 2 and  V2 

)13.53cos(5)87.126cos(5 2
212122  VVVP 

)87.126sin(5 1212
2

2 





 VVP

)13.53cos(52)87.126cos(5 2121
2

2 


 VV
V
P



Partial derivatives Q2 w.r.t. 2 and  V2 

)13.53sin(5)87.126sin(5 2
212122  VVVQ 

)87.126cos(5 1212
2

2 





 VVQ

)13.53sin(10)87.126sin(5 2121
2

2 


 VV
V
Q


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Expressed Load in p.u.   5.00.1
100

50100
2 jjS 




0.10
2 V 0.00

2 

 

033
)13.53cos(510087.126cos511

)13.53cos(5)87.126cos(5
2

20
21

0
21

0
2

0
2





 VVVP 

100.10
22

0
2  PPP

Initial values? Slack bus voltage is V1 = 1.0 0 pu. 

Initial estimates : 

P2 = ?; Q2 =? 

 
 
 

Load 

Slack bus voltage is V1 = 1.0 0 pu. 

Initial estimates : 

 
 

5.00.12 jS 

0.10
2 V 0.00

2 
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 

044
)13.53sin(510087.126sin511

)13.53sin(5)87.126sin(5
2

20
21

0
21

0
2

0
2





 VVVQ 

5.0050.00
22

0
2  QQQ

The elements of Jacobian matrix 

)87.126sin(5 1212
2

2 





 VVP

4)87.126sin(511
2

20
1 








PJ

)13.53cos(52)87.126cos(5 2121
2

2 


 VV
V
P



3)13.53cos(512)87.126cos(15
2

2
2 






V
PJ
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)87.126cos(5 1212
2

2 





 VVQ

)13.53sin(10)87.126sin(5 2121
2

2 


 VV
V
Q



3)87.126cos(511
2

20
3 








QJ

4)13.53sin(110)87.126sin(15
2

20
4 






V
QJ

The set of linear equations in the first iteration becomes 







































0

2

0
2

43
34

5.0
0.1

V











































0
2

0
2

1

5.0
0.1

43
34

V









 














16.012.0
12.016.0

43
34 1
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Solution of the matrix gives: 

2.0

10.0
0

2

0
2





V



8.0)2.0(1

7296.510.0)10.0(0
1
2

1
2





V

radian

For the second iteration 

 

7875.092.17075.2
)13.53cos(58.0)7296.5(87.126cos518.0

)13.53cos(5)87.126cos(5
2

21
21

1
21

1
2

1
2





 VVVP 

2125.0)7875.0(0.11
22

1
2  PPP

 

3844.056.29444.2
)13.53sin(58.0)7296.5(87.126sin518.0

)13.53sin(5)87.126sin(5
2

21
21

1
21

1
2

1
2





 VVVQ 

1156.0)3844.0(50.01
22

1
2  QQQ
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The set of linear equations in the 2nd iteration becomes 







































1
2

1
2

7195.27075.2
4157.19444.2

1156.0
2125.0

V


Solution of the matrix gives: 

0773.0

0350.0
1
2

1
2





V



7227.0)0773.0(8.0

135.0)0350.0(10.0
2

2

2
2





V

radian

CONTINUE WITH THE 3RD ITERATION! 
Good Luck…… 



Example of Exam Question 

a) In the Gauss Seidel method there is term called acceleration factor. Explain 

acceleration factor briefly.   (5 marks) 

b) For the power system shown, the bus admittance matrix Ybus in per unit is 

given by: 

 
 
 
 
 
 
 
 

For each bus k, specify the bus type, and determine which of the variables Vk,  

δk, Pk and Qk are input data and which are unknowns. (2 marks) 
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





















5.45.15.15.031
5.15.05.75.262

316293

jjj
jjj
jjj



Example of Exam Question 
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





















5.45.15.15.031
5.15.05.75.262

316293

jjj
jjj
jjj

Set up the mismatch equation in vector-matrix form of the Newton-Raphson power 

flow method. (3 marks) 

The mismatch equation in vector-matrix form of the Newton-Raphson power flow 

method. (3 marks)       

       General equation 

  

 



































VJJ
JJ

Q
P 

43

21
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The mismatch equation in vector-matrix form of the Newton-Raphson power flow 

method. (3 marks) 











































































































2

3

2

2

2

3

2

2

2

2

3

3

3

2

3

2

2

3

2

2

2

2

3

2

V

V
QQQ
V
PPP
V
PPP

Q
P
P











Assume an initial estimate of voltage V2 = 

1.0/0° and the rotor angle δ3 = 0° , calculate the 

bus real and reactive power mismatches to be 

used in the first iteration of the Newton-

Raphson power flow method. (9 marks) 























5.45.15.15.031
5.15.05.75.262

316293

jjj
jjj
jjj

Example of Exam Question 
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

































VJJ
JJ

Q
P 

43

21

Solve the linear simultaneous equation 

Compute new voltage magnitudes and phase angles  

   k
i

k
i

k
i  1    k

i
k

i
k

i VVV 1

Continue until the residuals Pi
(k) and Qi

(k) are less than the specified 
accuracy. 









)(

)(

k
i

k
i

Q

P




































Q
P

JJ
JJ

V

1

43

21
 

)()(

)()(

k
i

sch
i

k
i

k
i

sch
i

k
i

QQQ

PPP




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

































VJJ
JJ

Q
P 

43

21











































































































2

3

2

2

2

3

2

2

2

2

3

2

2

3

3

2

3

3

2

2

2

2

3

2

V

V
QQQ
V
P
V
P

PP

PP

Q
P
P










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























5.45.15.15.031
5.15.05.75.262

316293

jjj
jjj
jjj

Ybus

























565.717134.4435.1085811.1435.1081623.3
435.1085811.1565.719057.7435.1083246.6
435.1081623.3435.1083246.6565.714868.9

busY
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)cos(
1

jiijijj

n

j
ii YVVP  



)cos( 222

3

1
22 jjjj

j
YVVP  



)cos()cos(

)cos(

3223233222222222

122121122








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Additional Question 
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
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Assume an initial estimate of voltage V2 = 1.0/0° and the rotor angle δ3 = 0° , 

calculate Jacobian Matrix to be used in the first iteration of the Newton-Raphson 

power flow method. (9 marks) 
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A four bus power system data is shown in Tables Q1a and Q1b. Form a bus 

admittance matrix, Ybus, and determine the voltages at the end of first iteration 

using Gauss-Seidel method. The reactive power constraint on generator 2 is 

0.2  Q2  1.0. Use flat start estimates to start calculation. (16 marks) 
 

Lines Admittance (per unit) 
1 – 2 2 – j8.0 
1 – 3 1 – j4.0 
2 – 3 0.666 – j2.664 
2 – 4 1 – j4.0 
3 - 4 2 – j8.0 

Bus Generation Load Bus Voltage Remarks 

P Q P Q V  
1 - - 0.2 0.1 1.06 0 Slack 
2 0.5 - - - 1.04 - PV 
3 - - 0.4 0.3 - - PQ 
4 - - 0.3 0.1 - - PQ 
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Ybus

The admittance bus matrix 

Lines Admittance (per unit) 
1 – 2 2 – j8.0 
1 – 3 1 – j4.0 
2 – 3 0.666 – j2.664 
2 – 4 1 – j4.0 
3 - 4 2 – j8.0 

What is the type of Bus 2?  What is known?  What is unknown? 

Bus 2 is PV bus.  Known P and V2. Unknown Q2 and 2   

Write the equation for Q2 
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What’s next? 

The value of Q2 is less than the minimum specified 

Reactive power is fixed at 0.2 (lower limit) 

Characteristics of the NR LF 

With sparse programming techniques and optimally ordered triangular factorisation,  

the Newton method for solving LF has become faster than other methods for large  

systems. The number of iterations is virtually independent of system size (from a flat  

voltage start and with no automatic adjustments) due to the quadratic characteristic 

of convergence. Most systems are solve in 2-5 iterations with no acceleration factor  

being necessary. With good programming the time per iteration rises nearly linearly  

with the number of system buses N, so that the overall solution time varies as N. One  

Newton iteration is equivalent to about seven Gauss Seidal iterations. 

For a 500 bus system, the conventional Gauss Seidal method takes about 500  

iterations and the speed advantage of the Newton method is then 15:1.  

 

 
   
 



Storage requirements of the Newton method are greater, however, but increase  

linearly with system size. It is therefore attractive for large systems. The Newton  

method is very reliable in system solving, given good starting approximations.  

Heavily loaded systems with phase shifts up to 90 can be solved. The method  

did not troubled by ill-conditioned systems and the location of slack bus is not  

critical.  

Due to the quadratic convergence of bus voltages, high accuracy (near exact  

solution) is obtained in only a few iterations. This is important for the use of LF  

is short circuit and stability studies. 

The method is readily extended to include tap changing transformers, variable  

constrains on bus voltages, and reactive and optimal power scheduling. Network  

modifications are easily made. The success of the Newton method is critical on  

the formulation of the problem defining equation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  
  
 
 
 



Comparison of LF methods 

G-S and NR methods are compared when both use Ybus as the network model. 

G-S method works well when programmed using rectangular coordinates, whereas  

NR requires more memory when rectangular coordinates are used. 

G-S method requires the fewest number of arithmetic operations to complete an  

iteration due to the sparsity of the network matrix and the simplicity of the solution  

techniques. Consequently, this method requires less time per iteration. With the NR  

method, the elements of the Jacobian are to be computed in each iteration, so the  

time is considerably longer. For typical large system, the time per iteration in the  

NR method is roughly equivalent to 7 times that of G-S method. The time per  

iteration in both methods increases directly as the number of buses of the network. 

The number of iterations for the G-S method increases directly as the number of  

buses of the network, whereas the number of iterations for the NR method  

remains practically constant (3-5 iterations). In the G-S method, convergence is  

affected by the choice of slack bus and the presence of series capacitor, but the  

 
 
 
 
 
 
 
 
 
 
 
 

 

  
  
 
 
 



sensitivity of the NR method is minimal to these factors which cause poor  

convergence. Therefore, for large systems the NR method is faster, more accurate  

and more reliable than G-S method. 
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