SKEE 4443
POWER SYSTEM ANALYSIS

CHAPTER 2
Power Flow (PF) Studies



Learning outcome

* Understand the p.f. problem and methods of solution.

Enabling objectives:

* You should be able to establish p.f. equations for general power system network

* You should be able to solve the p.f. equation. Using numerical methods, namely,

Gauss-Seidel method and Newton-Raphson (N-R)
* You should be able to calculate branch power flows and power losses

* You should have an appreciation of the relevance of p.f. studies in power system

planning and operation



Introduction

Power flow study is the analysis of a
power system in normal steady-state
operation.

One of the most common
computational procedures used in
power system analysis is the power
flow or sometimes called as load flow
calculation.

Under a given set of loads power flow

study will determine:
= \oltages
= Currents
» Real power
= Reactive power

It is the fundamental network analysis
which provides a snapshot of the
network.



Introduction

Why do we need power flow study?

The planning, design, and operation of power systems require power
flow calculations to analyze the steady-state performance of the
power system under various operating conditions and to study the
effects of changes in equipment configuration.

Determine

= Equipment loading

= System security
Transfer limits

Stability limits

Network development

= Reactive compensation
Subiject to

= Equipment ratings

» Reliability standards




Introduction

Who Uses Power Flow?

Power System Consultants
= System Studies
= System Design

Electrical Utilities
= System Planning
= QOperation Planning
= Real-time Network Control

The power flow problem was originally motivated within planning
environments where engineers considered different network
configurations necessary to serve an expected future load.

Later, it became an operational problem as operators and operating
engineers were required to monitor the real-time status of the network
in terms of voltage magnitudes and circuit flows.



Power Flow Problem Formulation

The power flow solution contains the voltages and angles at all
buses, and from this information, we may compute the real and
reactive generation and load levels at all buses and the real and
reactive flows across all circuits.

The power flow calculation is a network solution problem. The
voltages and currents are related by the following equation:

I, Y Yo - Y Y. IV,

l, Yo Yy Yy Yon || Vs
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where, ] DY Yoo oo Yy Y. |V,

network buses

1] is the vector of total positive sequence currents flowing into the

V] is the vector of positive sequence voltages at the network buses
Y] is the network admittance matrix



Power Flow Problem Formulation

Equation (1) is a linear algebraic equation with complex coefficients. If
either [I] or [V] were known, the solution for the unknown quantities
could be obtained by application of widely used numerical solution
techniques for linear equations.

The terminal conditions at each bus are normally described in terms
of active and reactive powers (P and Q). Thus, the bus current at bus
| is related to these quantities as follows:

| — (P + J*Qu)* ) {(P _3Q )} =Y |xV] (3)

[ Vi V
where * designates the complex conjugate.
Combining Equations (1) and (2) yields,

Equation (3) is nonlinear and cannot be readily solved by closed-form
matrix techniques. Because of this, power flow solutions are obtained
by procedures involving iterative techniques.



Power Flow Problem Formulation:
Bus injection

= An injection is the power (P or Q), that is being injected into or
withdrawn from a bus by an element having its other terminal (in the
per-phase equivalent circuit) connected to ground. Such an element
would be either a generator or a load.

» Positive injection is defined as one where power is flowing from the
element into the bus.

= Negative injection is then when power is flowing from the bus, into the
element.

Generators may Loads normally

have either have negative

positive or real and
Ps=50 MW | negative reactive | p,=-50 MWI reactive power Pner=Ps-Pp
Qs=30 MVar power injections Qp=-30 MVar injections_ Quer=Q6-Qp




Bus Admittance Matrixor Y, .

= First step in solving the power flow is to create what is known as the
bus admittance matrix, often call the Ybus.

= The Ybus gives the relationships between all the bus current
injections, |, and all the bus voltages, V.

[I inj ]: [Ybus ]X [Vnode]

= The Ybus is developed by applying KCL at each bus in the system to
relate the bus current injections, the bus voltages, and the branch
impedances and admittances

Bus; v Bus;
13

Y10 Yao



Formation of Bus Admittance Matrix (Y, )
From Kirchoff's Current Law (KCL) —

» the current injections be equal to the sum of the currents flowing out
of the bus and into the lines connecting the bus to other buses, or to
the ground.

= Therefore, recalling Ohm’s Law, 1=V/Z=VY, the current injected into
bus 1 may be written as:

L, =Y,V + YV, =)+ YV, - V)
= Similarly for other buses we can write
I, = YyoVy + Y5 (V, =V + Y, (V, —V5)
I, = Y3V + Y5, (Vs = V) + Y5, (Vs =V,) + Y5, (Vs =V,)
I, =YV + VsV, =Vs5)

Bu54

Bus; Bus;
13




Formation of Bus Admittance Matrix (Y, )
= Rearranging the equations we have

L, =V (Vo + Y2+ Y3)+ TV (=2) +V5(=013)

L, =Vi(=Y2) +Vo(Vag + Yoy + 323) +V5(=153)

L =Vi(=y3) + Vi (=03) + ViV + V31 + V3o + 30 + Vo (=034)
L, =Vi(=y3)+ V(Y + Vi3)

_y10 T Vi T Vo3 — V2 — Vi3 0
Y, = — V2 Yoo TV 1 V3 — V3 0
— V3 — Vi Yo T V31T V3 T V3 — Vi
i 0 0 Va3 Yao T Va3 _




Formation of Bus Admittance Matrix (Y, )

» General formula for building Ybus

Bus;

V, -V,

. =ViYio+Z .
i ij

jii Iy




Formation of Bus Admittance Matrix (Y,,)

The matrix is symmetric, i.e., Yij=Y]i.
A diagonal element Yii = Self Admittance
IS obtained as the sum of admittances for all branches connected to
bus i, including the shunt branch 1
Yi=VYio+ Z_
j Zij

J#i
The off-diagonal elements are the negative of the admittances
connecting buses i and j, i.e., Yij=-yji = mutual admittance.

1 E.g. for a 4 bus system
Y. =——
! Y11 Y12 Y13 Y14

21

Y, Y, Y. Y
Yy Yy Yo Yy
Y, Y., Y. Y

<<
I

41




Modeling Shunts in the Ybus

Bus; Bus; = Since
I ! L ! I y
Vi —V .=V, -V)y. +V. =
% /)2 /2 % ij (\/I |)yu i o
= - om other lines y
Vi = e +Yij "‘5
2 Bus example
Bus; Bus;

Z15 =0.03+j0.04 Bus,

B
| 237 =0.03+j0.04
le £ 12 2 ) l21
G V, P
V1 V1

— Y/2=j01 — Y/2=j0.1 y/2 =j0.1

1
. = Iaam) I




Ybus

2 Bus example: Solution

Bus;
Z17 =0.03+j0.04 | Bus; Bus,

B
l12 21 |
<G> I — — Iv2 l 12
V1 J. Vi

y/2=jo.1

J_ y/2=j0.1 J' y/2 =i0.1
T T i

N
(=Y
N
11
o
o
w
&,
S
o
Y
Ts
S
. ]
<
N

y/2=j0.1

i -

LTy, Y, [V [2-j159 12-j16 ] [V,
= X — X
L 1Y, Y, | |V, | 12-jl6 12-j159] |V,



Ybus

2 Bus example: Solution

Bus; Bus,

= |f the current injection at bus 1 and 2 #12 =0.03+0.04 I
bus 2 are Vi

TN

J' y/2=j0.1 J'y/z =j0.1
L] |50 I I
| |48

V] [12-j159 12-ji6 T [ 5 0.0738— j0.902
= X =
V, 12-j16 12-]15.9 —-4.8| |-0.0738-0.1098
= Then the power flow from bus1 and bus 2 are

ST [V ] [ (0.0738-j0.902)5) | [037- 451
S, | [V.I7| | (-0.0738- j0.1098)(—4.8) | |0.35+ j5.27



Ybus

3 Bus example
= Convert impedance to admittance and draw the diagram

Bus; 2 =i0.4 Bus,

1
J

ZG2=j0.8

Z34 =j0.08

Bus; Vi =25 Bus,

Ye1=-j T G2=-j1.25

Vs

Y34 =j12.5



Ybus

3 Bus example

Applying KCL at each bus
Bus1 | =y V +y,V,-V,)+y,V,-V,)
Bus2 |, =vy,V,+y,(V,-V)+Yy,V,-V,)

Bus 3 |3 = y32(V3 —V2)+ y31(\/3 —V1)+ y34(V3 _V4)
Bus 4 |4 = y43(V4 _V3)

Rearranging

I, = (ym T YT Yis )‘/1 =YV = Yi3Vs

I, ==Y,V + (yzo T Yt Yo )‘/2 — ¥YV;

I, ==y V= Y,V, + (Y13 T Yoz T Yay )‘/3 — Y3V,
|, ==YuVs +YisVY,



Ybus

3 Bus example

Rearranging

Y=Yt Yt Vs Y, =Y, ==Y,

Yo =Yoot Y+ VY Y13 :Y31 ==Y
Yo = Y3+ Yos + Yoy Vo = Y5 = =Yg

Y44 = Y4 Y34 :Y43 ==Yy

YooY, Y, Y.| [-i83 j25 j5 0
v - Yo Yu Yo Ya| _| 025 0875 s 0

Y., Y., Yy Y., j50 j5.0 —j225 j125

Y, Yo Yo Y| L O 0 j125 —j12s



Input System Data for Power Flow Program

SYSTEM DATA

* Most power flow programs perform their calculations
using a per unit representation of the system rather than
working with volts, amperes, and ohms.

= Converting the system data to a per unit representation
requires the selection of a base kVA and base voltage.
current.

» The system data specifies the base kVA (or MVA) for the
entire system. A base kVA of 10000 kVA (10 MVA) is
often used for industrial studies. For utility systems, the
accepted convention is a base of 100 MVA.

= The base kV is chosen for each voltage level.



Input System Data for Power Flow Program

SYSTEM DATA: Bus Data

= The bus data describes each bus and the load and
shunts connected to that bus. The data includes the
following:
= bus number;

= bus name;

* Dbus type;

= |oad;

= shunt;

= per unit voltage and angle; and bus base kV.

» Load is normally entered in MW and MVar at nominal
voltage. Normally, the load is treated as a constant MVA,
that is, independent of voltage.



Input System Data for Power Flow Program

SYSTEM DATA: Generator Data

» Generator data is entered for each generator in the system
including the system swing generator. The data defines the
generator power output and how voltage is controlled by the
generator. The data items normally entered are as follows:

» real power output in MW;

= maximum reactive power output in MVar (machine maximum
reactive limit);

= minimum reactive power output in MVar (machine minimum
reactive limit);

= scheduled voltage in per unit; and

= generator in-service/out-of-service code.



Input System Data for Power Flow Program

SYSTEM DATA: Branch/Line Data

» The term “branch” refers to all elements that connect two buses
iIncluding transmission lines, cables, series reactors, series
capacitors, and transformers. The data items include the
following:

* resistance;

* reactance;

» charging susceptance (shunt capacitance);
* line ratings;

* line in-service/out-of-service code; and

* line-connected shunts.

= Lines are represented by a model with series resistance and
reactance and one-half of the charging susceptance placed on
each end of the line. The resistance, reactance, and susceptance
are usually input in either per unit or per cent, depending on
program convention. Line ratings are normally input in amperes
or MVA.



Input System Data for Power Flow Program

SYSTEM DATA: Transformer data

= Additional data is required for transformers. This can either be
entered as part of the branch data or as a separate data category
depending on the particular power flow program being used. This
additional data usually includes the following:

tap setting in per unit;

tap angle in degrees;

maximum tap position;

minimum tap position; and

scheduled voltage range with tap step size or a fixed scheduled
voltage using a continuous tap approximation.

= The last three data items are needed only for load tap changing
(LTC) transformers that automatically vary their tap setting to
control voltage on one side of the transformer.



Solving Power Flow Problem

Assumptions:

= At generator or PV bus, the active power P is controlled by
speed governor and the voltage magnitude is controlled by a
voltage regulator. Thus, real power, P and voltage magnitude, V
are treated as known parameters.

= At load bus, a reasonable approximation is that the load active
and reactive power demand, Py and Q are considered as known
parameters.

= At one generator bus, treat it as a slack or reference bus in
which the active and reactive powers are variables to make up
system losses.



Power Flow Input and Output and Control

Input

= Load (P,Q)

* Active Power Generation

= Network model

= Controls (transformer, interchange, var)

Output

= P, Q at the slack bus

= V atthe load bus

» Relative power angles at the generator and load buses

Generator Voltage Control
= PV bus

Transformer Tap Control
= Tap positions

Interchange Control
= Generation MW dispatch



Classification of Buses in a Power System

» The power system buses (busbars) are classified as follows:

Classification Knowns | Unknowns
PQ (Load Bus) P, Q V, o
PV (Generator Bus) P,V Q, o
Vo (Swing Bus) V, o P,Q

Load Bus
= Also called the P-Q bus
» Real power Pi and Qi are specified

= All load buses fall into this category, including buses that have
not either load or generation.



Classification of Buses in a Power System

Generation Bus

Also called the P-V bus or voltage-controlled buses

Voltage magnitude |Vi| and real power Pi are specified

Able to specify (and therefore to know) the voltage magnitude of
this bus.

Most generator buses fall into this category, independent of
whether it also has load

Slack or Swing Bus

Known as reference bus

Voltage magnitude |Vi| and phase angle 51. are specified

There is only one swing bus, and it can be designated by the
engineer to be any generator bus in the system.

This generator “swings” to compensate for the network losses, or,
one may say that it “takes up the slack.”






Introduction

= When analyzing power systems we know neither the complex bus
voltages nor the complex current injections

= Rather, we know the complex power being consumed by the load,
and the power being injected by the generators plus their voltage
magnitudes

= Therefore, we cannot directly use the Ybus equations, but rather
must use the power balance equations

Vi Via Vi L=y +y,(V,=V)+y,(V,=V))+-+y,V,=V,)

—i Yin
- |vn
:'—l L=t yvant YotV Wi—yiVi=yaVo——v,V,
j

o : ; L=V.2 vy =23V, Jj#i

J=0 J=1

J

= L=VY,+> YV, j#i
j=1



Power flow problem

= Basic equation for power-flow analysis is derived from the nodal
analysis equation for the power system:

Il Yll Kz YL' Yln Vl
[2 Ym Yzz Yzz' an Vz
]i B }/il )71'2 ii in Vl
_]n_ _Y;zl KlZ Kli Ynn__Vn_

= the typical elementY; is
Y, =IYs|£6; =[Yyle’ =|Y|(cos 6, + jsing)) =G + jB

= In advance of each power-flow study certain bus voltages and
power injections must be given known values, ...

V, = ’\/i ‘e’ﬁ — ’vi‘ggi =V. (cos 5. + jsin 5i) . Other bus voltages can |
' be represented similarly |
by changing the
. subscript from i to |



Power flow problem

The net current injected into the network at bus i in terms of the
elements Y; of Y, is given by the summation

=YV, +Y,V,, 4+ 4+ YV = ZY

In" n

Let P,and Q, denote the net real and reactlve power entering the
network at the bus i .

_JQ V ZYm n ‘Yln i n‘ée +5 5

Expanding this equation and equating real and reactive parts, we
obtain

P RCLV ZYm nJ Z‘Ym i ‘COS(Hin+5n_5i)

Q, :—Im{v PRAY } ——Z\Ym V,|sin(@,, + 35, - 6,)
The above constitute the rectangular and polar form of the power-flow

equations; . They provide calculated values for the net real power P,
and reactive power Q, entering the network at typical bus i .



Power flow problem

= The net scheduled power being injected into the network at bus i
P‘_sch — I:)Gi - I:)Di

Qi_sch = QGi _QDi

Bus, Bus;

= Then the mismatch powers AP, and AQ; can be obtained as

__________________________________

AI:)i — Pi_sch — Pi_calc — (PGi - I:)Di)_ Pi_calc . Wher.1 AP,and AQ,are

AQ; = Qi_sch _Qi_calc = (Qg; _QDi)_Qi_calc zero it reaches power
' balance equations

__________________________________

= Mismatches occur in the course of solving a power-flow problem
when calculated values of P, and Q, do not coincide with the

scheduled values.



Power flow problem

= The complete definition of power flow problem requires

knowledge of four variables of each k-bus in the system:
= P.- Real or active power
Q- reactive or quadrature power
= V.- voltage magnitude
= Q- voltage phase angle

= Only two are known a priori to solve the problem, and the aim of
power flow is to solve the remaining two variables at a bus.

» Depending upon which two variables are specified a priori, the
buses are classified into three categories



Power flow problem

Example 1

» Suppose that the P-Q load is known at each of the nine buses of a small
power system and that synchronous generators are connected to buses
1,2, 5 and 7. For a power-flow study, identify the AP and AQ mismatches
and the state variables associated with each bus. Choose bus 1 as the

slack bus.
Solution

The nine buses of the system a re categorize as follows:

The state variables are

.6 5V,

@ PV buses 0, ; Os ;0,

@ PQ buses ’\/3

.8, 3V

8 3V

958 ’\/9

Therefore there are 13 equations to solve

The mismatches corresponding to the specified P and Q are

@ PQ buseS AP};:AQ} 3 AI:)4:AQ4 9 APﬁ:AQ6 ;ApgaAQg ;AP93AQ9

@ PVbuses AP, ; AP, ; AP,

, 04



The Gauss-Seidel Method

The complexity of obtaining a formal solution for power flow in a power
system arises because of the differences in the type of data specified for
the different kinds of buses.

Consider a 4 bus power system with bus 1 designated as slack bus

_I1 | _El Y, Y, Y, “V1 |
1, _ Y, ¥, Y, Y, |V,
1, Y, Y, Y, Y, |V,

_I 4 _}:1 Y, Y, Y, i _V4 i

For bus 2 in the four-bus system,

I 2 = Y2 lvl + Y22V2 + Y23V3 + Y24\/4 ( 1 )

The loads on real p.s. are specified in terms of real and reactive power,
not as currents. Relationship between power and current at bus i can be
expressed as:

S, =V2I; =P, + jQ,
S; :Vz*l — Pz — JQz



T

he Gauss-Seidel Method

Current injected at bus 2 can be found as:

2 sch JQZ sch
V2

(2)

I, =

If P, g —1Q, e are the scheduled real and reactive power, respectively,
entering the network at bus 2 can be obtained by equating Equations 1
and 2 as

2 sch JQ2 sch

V- =Y,V +Y V5 +Y ViYLV, (3)
2

1 SC Q SC
Solving for V, gives  V, = [ R LR (Y21V1+Y23V3+Y24V4)} (4)
Y22 V2
If we assume that buses 3 and 4 are also load buses with real and
reactive power specified, we can get similar expressions as

1
Y44

1|P sch — JQ sC
=—| 22 * == (Y31V1 YRV, +Y,5V, )} V=
Yis V,

sc J Q sc
{ - V - (Y41V1 +Y42V2 +Y43V3 ):|
4



M _
V' =—

The Gauss-Seidel Method

If the V; was not present, then it could have been solved using the usual
elimination methods. However, the Eq. is now a non-linear Eq., since it
contain products of unknown variables. The only way it can be solved is
by means of iteration.

The solution proceeds by iteration based on the scheduled real and
reactive power at buses 2, 3, and 4, the scheduled slack bus voltage
V, = ’\/1‘ £, and initial voltage estimates v, ;v ;v © the other buses.

Solution of Eq. (3) gives the corrected voltage vV calculated from

1 I:)z_sch o jQ2_sch
Y22 VZ(O)*

Vz(l) = — (Yz Vit Y23V3(0) + Y24V4(0) )}

As the corrected voltage is found at each bus, it is used to calculate the
corrected voltage at the next bus.

1 |:P3sch - jQ3_sch

(0)*
V3

o
1 [ s sh — Q4 an _(Y41V1+Y42V2“)+Y43V3(3))

- (Y21V1 +Y32V2(1) +Y34V4(0) )} V4(1) v \Vi (0)*
4

Y33 Y44

This complete the first iteration in which calculated values are found for
each state variable.



The Gauss-Seidel Method

= This process of solving the power-flow equations is known as the Gauss-
Seidel iterative method.

» The number of iterations required may be reduced if the correction in
voltage at each bus is multiplied by some constant known as
acceleration factor given by

» For example, at bus 2 in the first iteration we have the accelerated value

V,".. defined by the straight-line formula.
I/Z(l)acc - (1 - a)I/Z(O) + aV2(1) - V2(O) + a(VZ(l) - 1/2(0))

» For a system of N buses the general equation for the calculated voltage
at any bus i where P and Q are scheduled is

| about 1.6 and
v =(1- Ot)V(k b +aV(k) SRVALS +a(\/(k) TRVALS) | cannot exceed 2

I _acc

i-1 f—==-=-=-=-=-=-=-="

(k) . | _sch JQI _sch (k) (k-1 I Note: !

Vi Y (k 1)* ZYUVJ ZYUVJ : In power-flow :

. ' J=itl ! studies ais :

» Then updated with 1 generally setat |
:

|

k acc i_acc i_acc



The Gauss-Seidel Method:
Handling PV buses

When voltage magnitude rather than reactive power is specified at bus i,
the real and imaginary components of the voltage for each iteration are
found by first computing a value for the reactive power.

In the four-bus example if bus 4 is a PV bus,

Q, =-ImV (Y, V, +Y, V.2 _+Y, V" 1Y, V0O
> 4 V1T T 43 44V 4

2_acc 3 _acc

Substituting Q, for Q,

1 [P iQs
VD = Y_[% B (Y41V1 FA +Y43V3(_3)acc)
44 4

2 _acc

Since Vil is specified, we correct the magnitude of v, as follows

\V/ ()
V4(i)co o N4 ‘

4
(1)‘
4




The Gauss-Seidel Method:
Handling PV buses

» General Equations used in the algorithm for the reactive power is.

(k) _ (k=1)* (k) (k-1)
Q Im[v {ZYUVJ +ZYUVJ +H

j=1

= From a practical viewpoint the P5; and Qg output of the generator must
be within definite limits given by the inequality

Qs

<|Qsi| =|Qs

min max

Pl <|Peil <|Po;

I max

= \oltage is calculated as follows

_ JQ(k) i—1 V(k)
Vi(k) Y. [ (k 1)* _ZY'JVJ(k) ZY'JVJ(k ! V'(kc)o" ’V ‘ ’V(")‘

j=i+l



The Gauss-Seidel Method:

The advantages of the G-S method can be listed below:

The iteration eq. are quite simple and easy to program. In fact, with computing
tools, such as MATLAB, it is fairly straightforward to perform power flow
calculations using iterative eqs. which have been developed.

Since Y-bus is a sparse matrix, the memory requirements can be reduced
substantially by storing only the non-zero elements of the matrix.

The iterations are numerically stable and typically a fairly reliable convergence is
obtained, provided a feasible solution exists. This is due to the fact that the Y-bus
matrix has predominant diagonal element values

The G-S method has some disadvantages.

The number of iterations increases as the system size increases.

The main reason of large number of iterations is that the convergence of the G-S
method is asymptotic. In other words, the convergence slows down as the values
get closer to the final values. Hence, in general, it is difficult to obtain higher
precision results.

This method may not converge for systems with negative impedance branches.



The Gauss-Seidel Method: Summary

e Calculate the bus admittance matrix Y,
¢ Include the admittances of all transmission lines, transformers,
between lines, but exclude the admittances of the loads or

generators themselves.

e Select a slack bus.

e One of the busses in the power system should be chosen as the slack

bus. Its voltage will be assumed to be 1.0£0.
e Select initial estimates for all bus voltages.

e The estimate should be reasonable as poor choice may result in
convergence to incorrect values. Usually we start with 1.0£0 (flat
start).

\
e Write voltage equations for every other bus in the system
e The voltage equation will have generic form
V—l Pi_'Qi iYV —V_l R_]Qz ZZ_I: V i v
T W U AR e i



The Gauss-Seidel Method: Summary

¢ Calculate and update estimate of the voltage at each load bus in
succession using the voltage equation

e Compare the difference between the old voltage estimates and the
estimates

e |f the differences between the estimates less than specified tolerance
for all busses, we are done.

¢ Confirm that the resulting solution is reasonable. )
e Typical value of phase range is less than 45°.

e Larger ranges may indicate the system converged to an incorrect
solution.

e Change the initial condition. Try again. )




The Gauss-Seidel Method: 2 bus example

= Consider a simple two bus power system and calculate the voltage at bus 2. Apply
Gauss-Seidel method

Bus 1 Bus 2

| | Load:
p P=0.30 p.u.
| Z1,=0.1+j0.5 | Q=02 p.u.

Shunt admittance is neglected

Solution
STEP 1
Calculate the bus admittance matrix

I 1
Z;e 0.10+j0.50

yline = = 03846— 119231
Y, =0.3846— j1.9231
Y,, =0.3846— j1.9231 Y _{

0.3846—j1.9231 —-0.3846+ j1.923 1}
bus —

Y, =—0.3846+ j1.9231

Y

—0.3846+ j1.9231 0.3846— j1.9231

12

=—-0.3846+ j1.9231

21



The Gauss-Seidel Method: 2 bus example

Determine the voltage at each bus for the specified load condition
STEP 2 Bus 1 Bus 2

| | Load:
Bus 1 : Slack bus. V,=1.0£0 pu » P=0.30 p.u.
| | Q=0.2 p.u.

STEP 3 Z1,=0.1+j0.5

Shunt admittance is neglected

Select initial values (@ of all bus voltages:

Bus 2 is a Load bus. Choose V,(9=1.020 pu as initial estimate
Determine the voltage at each bus for the specified load condition
STEP 4

Write voltage equations for every other bus in the system

V0D 1 |:P2 - JjQ, (Y, v, )}

1 ~0.30+ j0.2 :
(»
- 222 _[(-0.3846 + j1.9231
2 0.3846 - j1.9231{ VO ( . M ]}
v, = 1 0'3603{146'3 —[(1.9612.£101.3)1.£0] Note:
> 1.9612£-78.8 Vv,
P,=-0.3 p.u; Q,=-0.2p.u




The Gauss-Seidel Method: 2 bus example

STEP 5: Calculate an updated estimate of the voltage at each load bus

Initial estimate V,%=1.0£0 pu Bus 1 Bus 2

I I Load:
p P=0.30 p.u.
I Z1,=0.1+j0.5 I Q=02 p.u.

Shunt admittance is neglected

—[(1.9612.£101.3)1.£0]

vl - 1 [0.3603./146.3
> 1.9612/-78.8 VA

~ 1 [0.36032146.3
1.9612/-788  1£0
=9

~[(1.96122101.3)1.£0]

Second estimate

V2o 1 0.3603.2146.3
> 1.9612/-78.8 VA
=9

— [(1.96124101.3)140]}

Third iteration

Vv 1 [0.36034146.3

= ToeTs, 5% VE —[(1.96124101.3)140]} =7
. . 5

Calculate for Fourth and fifth iteration etc...



The Gauss-Seidel Method: 2 bus example

STEP 6: compare the differences between the old and new estimates
If the magnitude of the voltage is barely changing, we consider this value is close enough to the
correct answer. lteration stops.

STEP 7: Confirm that the resulting solution is reasonable

V;=1.0£0 pu
V,=0.8315/-8.994 pu — assumed value for discussions
The phase angles differ by only 9°, | = (V1 _Vz)

- ZLine
these result appear reasonable

_1£0-0.8315£-8.994

Calculate current flowing in the transmission — 0.10+ j0.50
line from Bus 1 to Bus 2 =0.4333£-42.65

Calculate power supplied by the transmission line to Bus 2

This is almost equal to the power being consumed by the loads. Thus the solution appears to be

correct.



The Gauss-Seidel Method: 3 bus example

A simple three-bus power system with generation at buses 1 and 3. The voltage at bus 1 is
V,=1.02520°. Voltage magnitude at bus 3 is fixed at 1.03 pu with real power generation of 300 MW.
A load consisting of 400 MW and 200 Mvar is taken from bus 2. Line impedances are marked in per

unit on a 100 MVA base. Line resistances and line charging suceptances are neglected.

Using Gauss-Seidel method and initial estimates of V,(0=1.0+j0 and V,(@=1.03+j0 and keeping

|V5|=1.03 pu, determine the phasor values of V, and V. Stop after two (2) iterations.

P;=300 MW

V,=1.02520 Bus 1 Bus 3 |vs|=1.03

+j0.025

400 MW+j200MVar



The Gauss-Seidel Method: 3 bus example

1. Calculate Line admittances
P;=300 MW

|Vs|=1.03

Vi, = -j40, V;=1.02520 Bus 1 Bus 3
Y13 =120 +j0.025

2. Expressed load and generation in per units

4 |2 :
S, «n :_( 00+ ) O0)=—4.O—12.0 p.u P, «n _ 300 =3.0 p.u

100 - 100

3. Bus 1 is taken as slack bus. Starting from an initial estimate V, is computed

from equation:

1, =1.0+ ;0.0

S2_sch

(0)
N10i + YoV + YoV
2

7, =1.03+ 0.0

@ _
V, " =
Yor + Yas

v,"Y =1.0025— j0.05



The Gauss-Seidel Method: 3 bus example

4. Bus 3 is a PV bus or voltage controlled bus therefore Q and 6 are unknown.

Determine Q first using |7, =1.0025+ ;0.05

Qg(l) =—3 &3(0)* B/30(y13 T Y )_ y13V1 o y23V2(1) ]} V1=1.02520

P3=300 MwW
|vsl=1.03

4. Compute V; are as follows +0.025
Sz_sch + V + V(l) V(l)
(0)* y31 1 y32 2 V (1) — ’\/ ‘ 3
(VA \ 3_corr 3 ’V(l)‘
3 3
y21 + y32

v»  =1.03—j0.0152

3 corr

Applying the same procedure for the second iteration we obtain

+j0.025

400 MW+j200MVar

V,”” =1.0001- j0.0409 V_,? =1.0298+ j0.0216

c

Q,? =1.3671 V,? =1.0298+ j0.0216




The Gauss-Seidel Method: 3 bus example

If after several iterations the bus voltages converge to V,=1.000571-j0.0366898 pu
V,=1.029706+j0.0246 pu

Determine the line flows and line losses and

V;=1.02520

the slack bus real and reactive power.

+j0.025

St oss12 = 0.0+ j7.77
S sz = 0.0+ j1.25 400 MWH200MVar
S ossaz = 0.0+ j18.42

S, =100 MW + j90.51 MVAR




The Gauss-Seidel Method: 5 bus example

An illustrative five-bus system has the following bus power and voltage

specifications:

bus

Show calculation for one iteration to solve the five PFEs using Gauss-Seidel

method.

[ 2—j6
—1+ j3
0+ jO
O+ joO

| —1+ )3

—1+ j3
3—j9
—1+ j3
O+ joO
—1+ j3

0O+ jO
—1+ j3
2—j6
—1+ j3
O+ jo

0O+ joO
O+ joO
—1+ j3
2—j6
—1+ j3

—1+ j3]
—1+ j3
0+ jO

—1+ j3
3—j6 |




The Gauss-Seidel Method: 5 bus example

From system data, V, = 1.02 £ 0,
Ps, =1.0;
vV, =1.02
S; = Py + jQ; = -0.25-j0.1;
S, = P, +jQ, = -0.25-j0.1;
Se = P. +jQ;=-0.25-j0.1.
Let us assume the following initial estimates:
Vy=v>=r"=1.0£L0;6,=0
VY =1.02.20

Bus 2 is the only P-V bus. Let us calculate Q,!

O) = —Im(V (v, 7, + Yo, V2 + VoV + Vo V2 + Yo V2
=0.1224



The Gauss-Seidel Method: 5 bus example

1 P, — le
Vzl - |: 2 0 2 _Y21V1 _Y23V30 _Y24V40 _Y25V50:|
Y,, V,

=1.016+ jO.0908 =1.019.5.1°

We fix V,* to 1.02 £5.1°, the magnitude being set at the specified value with the phase

angle kept as the calculated value.

The voltages at the load buses after the first iteration are:

A\

1 [P,—jQ
\/31 - v |: 3V 0* : _Y31V1 _Y32V21 _Y34V40 _Y35V50:|
33 3

=0.9804 + j0.0129 =0.9805.£0.75°

eeie NN
-8 |

Y44 V4O* o Y4 1V1 T Y42V21 T Y43\/31 T Y45\/50

=0.9804 + j0.0129 =0.9805£0.75°



The Gauss-Seidel Method: 5 bus example
A

1 P.— O
\/51 — Y |: SV O : _Y51V1 —Y52V21 _Y53V31 _Y54V41 }
55 5

=0.9812 + j0.000005 =0.9812£2—0.003°

You may apply acceleration factor (a), (about 1.6 and cannot exceed 2) to speed up the

convergence

V4 =(1-aV S +aV " =V +aV +V )

i _acc k acc i _acc i _acc



THE Newton-Raphson Method

» Taylor's series expansion for a function of two or more variables is the basis for
the Newton-Raphson method of solving the power-flow problem.

= Let us consider the equation of a function h, of two variables x, and x, equal to a

constant b, expressed as

h1(X19X2:u) — b1

gl(X19X29u) — h](X19 Xz,U)_bl — O

= and a second equation involving another function h, such that

h2(X19X29u) — bz
gz(xlaxzau) = hz(XI,XZ,U)—b2 =0

e

Difference between
calculated and specified

Indipendent control
variable (a constant)

%

N

Specified function value

Note:

In mathematics, a Taylor series is a representation of a function as
an infinite sum of terms that are calculated from the values of the

function's derivatives at a single point

fla)+

f'(a) f"(a)
TR AT

(z~a)*+

fﬁf ( ﬂ-}
3l

(x—a)’+--



https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Series_(mathematics)
https://en.wikipedia.org/wiki/Derivative

THE Newton-Raphson Method

= For a specified value of u let us estimate the solutions, (initial guess)
0 0 0 0
g, (X, x u)y=h(x{?,x, u)y—b, 0
0 0 0 0
g, (X, x{P, u) =h,(x(?,x”, u)y—b, #0

= If we designate the correction values AX{”, Ax{” to get actual solution - ,
we can write

= Now we can solve this problem by Taylor's series expansion

(0) (0)
og og
s s 0 0 0 0
gl(X19X29u):g1(X1( ),xé),u)+Ax1()—1 +AX§ )E1 4 ...=0
OX, OX,
(0) (0)
% o 1%,
gz(X19X2>u): gz(xl(o)a Xéo)au)‘FAXl(o)& +AX§O)& +---=0
OX, OX,




THE Newton-Raphson Method

= |f we neglect the partial derivatives of order greater than 1 , we can rewrite

Jacobian matrix (J)

square matrix of partial derivatives is called the jacobian J

= By solving the mismatch equations we can determine AXl(O),Axéo) as

= Since initial guess do not determine the correct solution, we must try to get new
estimate as

X\ = X" + Ax{”

() _ (0) (0)
X5 = X5 +AX,

= We repeat the process until the corrections become so small in magnitude that
they satisfy a chosen precision index € > 0



THE Newton-Raphson Method  Example

Use Newton-Raphson Mehtod to solve h(x)= x> =2
We can rewrite this equation as g(x)= X2-2=0

Now applying Taylor’s series expansion we have

(0)
0= g(x@)+ ax®9X)

OX
By rearranging the last equation we have
1
AX® = 0) (O_ g(X(O)))
ag(X)
OX

Substituting the values given in the function we have

AX© = _2):(0) %(-(x® -2))

Next we can get updated value of x as

1
XD = xO 4+ AX© = XO 4 — _x(-(x© -2))



THE Newton-Raphson Method  Example

= General formula for this example &+ — y ) L Ay ®) — 3 (&) +%X(—(X(k) _2))
X

= Starting from initial guess x(0)=1, Ilteratively solving we get

K x® Ag(x™®) Ax (0
0 1 —1 0.5
1 1.5 0.25 —0.0833

2 141667 6.953x107° —2.454x%10"°
3 1.41422 6.024x107°



THE Newton-Raphson Method

Example 2

Using the Newton-Raphson method, solve for x1 and x2 of the nonlinear

equations

g,(X,, X,,u)=h (X, X,,u)—b, =4ux,sin X, + 0.6 =0
g, (X, X,,u) =h,(X,, X,,u)—b, =4X> —4ux, cos X, +0.3=0

Treat the parameter u as a fixed number equal to 1, and choose the initial
conditions for x1 and x2. Solve until the error is reasonably small. Let initial x1=0

Partial differentiation with respect to the x 's yields

and x2=1
Solution
a9, 09,
| OX, OX,
|99, 99,
| OX,  OX,
a9, 09,
| oX;  OX,
199, 99,
| OX,  OX,

|

|

4ux, cos X, 4usin X, }

4ux, sin X, 8X, —4ucos X,

4X, cos X, 4sin X,

}Ifu=1

4X,sin X; 8X, —4cos X,



THE Newton-Raphson Method  Example2

First iteration

= Find mismatch -

»  Substitute in mismatch equation

r =(0)

og, o9

ox,  ox, {Axf‘”} _ [0 - 9,04, X", u)}

09, 99, | |AX” ] |0-g,(x?,x{”,u)
OX, OX,

= [nverting this simple 2 X 2 matrix, we determine the initial corrections




THE Newton-Raphson Method  Example2

First iteration
= Therefore - are

X =x + AX(” =0+ (-0.15) =-0.15rad
XM = x{¥ + Ax{” =1+(-0.075) = 0.925rad

=  Second lteration

» Substitute in mismatch equation

4X, cos X, 4sin X,
4X,sin X; 8X, —4cos X,




THE Newton-Raphson Method  Example2

= And updating the Jacobian, we compute the new corrections

= Therefore -

x? = xM + Ax{V = -0.15+(=0.016335) = —0.166335rad
x? = x + Ax{” =0.925+(-0.021214) = 0.903768rad

are

= Continuing the 3™ iteration- found to be very small which is less than
10

x* =-0.166876rad
x\¥ =0.903057rad



The Newton-Raphson Method

Application to power flow

= To apply the Newton- Raphson method to the solution of the power-flow
equations, we express bus voltages and line admittances in polar form.

2= ReLV ZYm nJ Z‘Ym : ‘cos(&in+5n—5i)

‘G + Z‘Ym V,|cos(é,,

n=1, n#i

er equations/ with' the general one as below
bl — hl(X19 2> U)
hl(xla X29 U) — bl

» Let us compare the nodal p



The Newton-Raphson Method

Application to power flow

= Correspondence to the Ag mismatches, the power mismatches for the typical
load bus can be written as

AX

Ax® |~
= For simplicity sake, we now write mismatch equations for a four-bus system

oP, oP, aP

AP. = P,

i i sch

AQi = Qi_sch _Qi_calc = (QGi _QDi)_Qi_calc

_P

i calc

:(PGi _PDi)_P

i calc

AP, = “AO, +—AS, +— A0, + il A A
6Q GQ 6Q
——A5 : A5 —L A5 Qi A Q, A
= By multlplying the last 3 terms in each equatlon we can also write
oP, oP, oP, oP, AN, oP, AN, oP, AN
AP, = ~AO, + —— A0, +—FAS, +
=20, 4% 25,25 20, 2% TMalgu i Mlav VeV v

oQ, oQ, oQ, oQ, AV, oQ, AN oQ; AN,
AQ, = - A0, + LAO, +—AS, + |V, : + [V, ' +V, i
05, % T35, 4% * 3o, A% Mg il Mgl TV v v



The Newton-Raphson Method

Application to power flow

= Collecting all the mismatch equations into vector-matrix form yields

oP, 0P || 0P, 0P, |

06, os, ||alv, v, A5 1 [aAR-
I S = Ty “2 5
oP, oP, || 6P, &P, : :
83, o8, ol oV.ll | AS, | | AP,

0, _ cQ, | @0, 00, " AWl AQ,
86, 85, | o, o, | : :
L, L g, |

A A N e
6, o8, | a, eV, |

\ i J

Jacobian Matrix

» |n the general case if there are Ng voltage-controlled buses besides the slack bus,

a row and column for each such bus is omitted from the polar form of the system
jacobian,



The Newton-Raphson Method

Application to power flow

Collecting all the mismatch equations into vector-matrix form from the second

equation yields

oP, oP, oP, oP,
5 - . 2 s | ‘V4‘—-
S, 88, oy, oy,
I : J,, :
op, . op |l P, | 2P,
86, 63, ||" *'e, Yo,
o0, a0, ] v %% v, cQ,
&6, es, | ey, o,
LT, : J,, :
oQ, cQ, v, cQ, v, 9 | |
&6, &8, ey, V.|
\ J
|

Jacobian Matrix

The solution can be obtained by iterative process

AS,

AS,
AW,
Vz

Na

vl




The Newton-Raphson Method

Application to power flow
= In this equation, Bus 1 is assumed to be the slack bus

» The Jacobian matrix gives the linearized relationship between small changes in
voltage angle Aoi(k) and voltage magnitude A|Vi(k) | with the small changes in
real and reactive power APi(k) and AQi(K) .

= Elements of the Jacobian matrix are the partial derivatives of P and Q, evaluated
at ASi(k) and A | Vi(k) |

J;= (n-1)x(n-1) J, =(n-1)x(n-1-m) If m buses are voltage-controlled,
& / m equations involving AQ and AV
and corresponding columns of the
Jacobian matrix are eliminated
AP J, ‘ J, || AS
AQ| I |7 Av \ 4
\ n-1 real power constraints and n-
1-m reactive power constraints
J, =(n-1-m)*X(n-1-m) . Jacobian matrix is of order (2n-2-

J; =(n-1-m)>(n-1) m)x(2n-2-m)



The Newton-Raphson Method

Application to power flow

Expressions for the elements of Jacobian can be easily found by differentiating

the appropriate number of terms
AP B J I, AO
AQ | [T 7, Al

Diagonal and off-diagonal elements of J;:

OP. : :
8—5I — Z|\/i”\/jHYij‘51n(6’ij — O, +5j)
i j=i
OoP, : _ _
55:. = MV VY Isin(gy — s, +5) =i
P :Zn: Vv, ¥, | cos@, — 5, +5)




The Newton-Raphson Method

Application to power flow

Expressions for the elements of Jacobian can be easily found by differentiating

Diagonal and off-diagonal elements of J,:

the appropriate number of terms
AP B J I, AO
AQ | [T 7, Al
oP,

— 1 = 2M,;|[Y;i|cos 6, + i|\/l IYii|cos(@; — o, +5))

al\/|| J=i I

S =Mi[[Yy|cos@; =& +5)  j=i

|

P, = Zn]vi||\/J.HYU.\<:os(¢9ij — S +35;)
i=1



The Newton-Raphson Method

Application to power flow

Expressions for the elements of Jacobian can be easily found by differentiating

the appropriate number of terms
AP B J I, AO
AQ | [T 7, Al

6|5| ZIV ||V HY'J‘COS( —O; +Ij)

j=i

Diagonal and off-diagonal elements of J5:

= —
D MM feos@, 5 v 5 i

Q; = __Zn:Ni"\/jHYij‘Sin(eij —0; +0;)




The Newton-Raphson Method

Application to power flow

= Expressions for the elements of Jacobian can be easily found by differentiating

the appropriate number of terms
AP B J | J, AO
AQ| | TS| 7, Al

Diagonal and off-diagonal elements of J,:

Q; = _iNiH\/jHYij‘Sin(Hij —0; +0;)



The Newton-Raphson Method

Application to power flow

Expressions for the elements of Jacobian can be easily found by in a different
form as



The Newton-Raphson Method

Power flow Solution Procedure

= Collecting all the mismatch equations into vector-matrix form from the second
equation yields

Aéi(k) ‘AVI ‘(k)

P QM AP®  AQWM

i_calc i calc i

5i(k+1) — 5i(k) +A5i(k)

V= v



The Newton-Raphson Method 2 Bus Example

In a two bus system, bus 1 is a slack bus with V,=1.0£0 pu. A load of 100 MW and 50
Mvar is taken from bus 2. The line impedance is z;, = 0.12+j0.16 pu on a base of 100
MVA. Using Newton-Raphson method determine V,. Continue until converge.

V,=1.0£0
100 MW

O 50 Mvar

1 Z1y — 0.12"‘]0.16

Y12 = 3-j4



The Newton-Raphson Method 2 Bus Example

Solution - 5/—-5313 5./126.87
1 5,126.87  5/—53.13

O Vi = 3-i4 100 MW

50 Mvar

V1=1.0£0
1 2

Power flow equations in polar forms:

£ = Zn:|Vi||Vj||Y;j|COS(6’ij — 0, +95;)
J=1

O, = _i“/;”Vj”YiASin(@y — 0, +9,)
=1



The Newton-Raphson Method 2 Bus Example

Solution
O yi2 = 3-14
[5£-53.13 5.126.87
1 2 | 5£126.87  5£—53.13
At bus 2 P =>"[V|v,|v,|cos©, — 5, +5)
j=1
P, = |V, |v,,|cos@,, — 5, +5))
j=l1
=V |V Y21|COS(921 —0,+0)) +|V2”V2||Y22|COS(922 —0,+0,)
=|V,||,|5 c0s(126.87 = &, + &,) +|V,|V,|5 cos(—53.13)
=V, |i|5c08(126.87 =8, +5,) +|V,| 5 cos(~53.13)




The Newton-Raphson Method 2 Bus Example

Solution
5/-53.13 5.126.87
bus [ 5./126.87 54—53.13}
At bus 2
O, =—> IV |v,|¥,|sino, -5, +5)
=
O, = —]Z';: V|V, | Y| singd,, — 8, +5))

AL |Y21 sin(6,, — o, + 6,) _|V2”V2”Y22|Sin(‘922 — 0, +0,)
=—{V,|[V1[5sin(126.87 — S, + &) — |V, ||V, |5 cos(—53.13)
= |V, ||;|5sin(126.87 — 5, + &) — |V, | 5sin(—53.13)




The Newton-Raphson Method 2 Bus Example

Solution

Partial derivatives of P, w.r.t. 0, and | Vz‘

P, =V ||V|5c0s(126.87 — &, + &) +|V,|* 5 cos(—53.13)

or, _ V,|V,[58in(126.87 — 5, + 5,)
05,

ff\f/)z\ = 5|V1|c0s(126.87 =&, +6,) + 2|/, [5 cos(=53.13)
2

Partial derivatives Q, w.r.t. 0, and | V,|

O, =V, |V;[55in(126.87 — S8, + &) — |V, | 5sin(—53.13)

90, _ ‘1/2“1/1‘5005(126.87—52 +0,)

06,

% = —5|V|sin(126.87 — &, + 6,) — 10|V, | sin(—53.13)
2



The Newton-Raphson Method 2 Bus Example

Solution

Expressed Load in p.u. S, =— (100 +,/50) _

100

—1.0— jO.5

Initial values? Slack bus voltage is V, = 1.0 Z0 pu.
Initial estimates :  1;’|=1.0 &2 =0.0
P,=7,Q,="

0 0 0 o|?
P =7, |/|5c0s(126.87 = 5,° + ) +|V,°| 5cos(=53.13)

=1x1x5c0s(126.87 —0+0)+1*> x 5cos(—53.13)
=-3+3=0
AP) =P, -P)=-1.0-0=-1

0% =, |Wil55in(126.87 -5, + 6) - 1,"| 5sin(-53.13)

= —1x1x5sin(126.87 —0+0)—1%> x 5sin(—53.13)
=—4+4=0
AQ;, =0, -0 =0.50-0=-0.5



The Newton-Raphson Method 2 Bus Example

Solution

The elements of Jacobian matrix

OP. -
852 =|V,|V1|5sin(126.87 — &5, + &)
o _ 0P,

Jy =1x1x5sin(126.87) = 4
Gl

2

op,

=5|V,|c0s(126.87 — 8, + &5,) + 2|V, |5 cos(—53.13)
|

J, = 5‘}1;2‘ =5x%x1c0s(126.87)+2x1x5c0s(—53.13) =3
2

9> _ |y, |Vi|5cos(126.87 — 5, + 5,)
o35,
J) = Z§2 =1x1x5co0s(126.87) =—3

2



The Newton-Raphson Method 2 Bus Example

Solution

The elements of Jacobian matrix

% = —5|V,|sin(126.87 — &, + &,) — 10V, |sin(—53.13)
2

Jo = 2‘%‘ — 5x1x5in(126.87) —10x1sin(—53.13) = 4
2

The set of linear equations in the first iteration becomes
‘—1.0} [4 3} AST
= -1
—0.5| =3 4| apy {4 3} {0.16 —0.12}

a4 37[-1.0] [ A6 -3 4| |02 0.16
-3 4] |-0.5] |AY




The Newton-Raphson Method 2 Bus Example

Solution

Solution of the matrix gives:
ASY =—-0.10
Al = 0.2 Sy = 0+(—0.10) = ~0.10 radian = —5.7296°
V)|=1+(-02)=0238
For the second iteration

2
P =V, |["|5c0s(126.87 —&5," + &) +[V,'| Scos(—53.13)

=0.8x1x5c0s(126.87 — (—5.7296))+ 0.8 x 5 cos(—53.13)
= -2.7075+1.92 = —0.7875

AP, =P, — P, =—1.0—(-0.7875) =—0.2125

2
O, =—1,'||V}|5sin(126.87 = &,' + 5,) —|V,'| 5sin(—53.13)

=—0.8x1x55in(126.87 — (—5.7296))+ 0.8 x 5sin(—53.13)
= -2.9444+2.56 = —0.3844

AQ! =0, — 0! =—0.50—(—0.3844) =—0.1156




The Newton-Raphson Method 2 Bus Example

Solution

The set of linear equations in the 2nd iteration becomes
—0.2125] [ 2.9444 1.4157| A5,
—~0.1156| |—2.7075 2.7195 | A|V7|

Solution of the matrix gives:

AS! =—0.0350 62 =-0.10+(—0.0350) = —0.135 radian
AV} =—-0.0773 |1;}|=0.8+(-0.0773) =0.7227

CONTINUE WITH THE 3RP ITERATION!
Good Luck......



Power Flow (PF) Studies
The general power flow problem involves evaluation of node (bus) voltages for
given injected powers at the buses. The injected powers essentially represent
the generations and loads at the buses. It 1s assumed that the network
configuration and the branch impedances are known which, of course, is true in
the case of an existing power system. To address future loads and generations,
various alternative configurations are evaluated to establish the best
configuration. The concept of accepting generations as injected power is quite
straightforward. However, it may cause some confusion in the case of loads.
Note that a load can be mathematically treated as negative injected power.
In fact, when both loads and generators are present at the same bus, we even
talk in terms of net injected power. In other words, the net injected power is the

generation minus the load at that bus.



Typical objectives of the power flow studies are given below:

Buses with voltage level violations i.e. voltage beyond £5% of rated value
Current and power flows 1n all branches

Equipment over load conditions

Power losses 1n the system

Transformer tap specifications to improve voltage levels

Capacitive compensation (reactive support)

It 1s obvious that power flow studies are an important aspect of power system

operation and planning. In the case of operation, pf studies are used to arrive at a

feasible and economic operating condition for given load and system

configurations. However, in the case of power system planning, the objective will

be to arrive at the equipment ratings and the best configuration for various future

load conditions and contingencies.



In practice, there is a strong incentive to operate power system as close to balanced
conditions as possible, or else we are essentially wasting the system capacity.
Balanced operation can generally be achieved by proper planning. The industrial
and utility power system networks can normally be treated as balanced systems.
However, there could be some unbalance present in the LV distribution networks. It
1s common to assume a balanced power system for power flow (pf) studies. The
solution of the pf problem is not so straight forward. The simples way to perform
power-flow calculations 1s by iteration. Whenever iterative methods are used, there
1s no guarantee that the method will converge and provide a solution. After the
advent of computers, various methods to solve pf problem have been developed and
researched extensively . Two methods have survived the test of time and they do
provide reliable power flow solutions.

* The first one 1s a simple and reliable method called the Gauss-Siedal methodsof



iteration using Y-bus. Though quite reliable, it is not very efficient for large
systems, as it requires a very large number (hundreds) of iterations.

* The second method, which 1s more complex to formulate and solve, 1s called

the fast decoupled (Newton Raphson) method.
The fast decoupled method uses the imaginary part of the Y-bus matrix for
iterations and 1s computationally very efficient. Typically, 1t provides the final
solution within a few iterations. If a convergence is not obtained with fast
decoupled method, it is reasonably safe to assume that the specified gen/load
conditions do not constitute a feasible operating condition 1.e. bus voltages may
be too high or too low.
The difficulty of solving a power flow problem is best illustrated by considering

the following numerical examples.



Given: V, = 14j0 pu and S, =4+j3 pu

To find: Source bus voltage and pf ans:(4+4.25)

Given: V, = 1+j0 pu and S, =4+;3 pu *

To find: Load bus voltage I, = [Szj (1)

Vy=n-Lz Q)

The main assumptions in the case of power flow
modeling 1s that the system 1s balanced.

For the purpose of developing the p.f. equation, the
power system network is generally treated as a black

box as shown beside.

Network model for p.f. problem



The black box essentially represents the positive
sequence equivalent network of the power system.
From the p.s. point of view, the black box essentially
contains all the lines, transformers and capacitors in
the p.s. However, in network theory, we normally say
that 1t contains linear passive elements. The nodes in
the network are brought out as shown 1n Fig. and
numbered as 1,2,...i,...n Network model for pf problem
The generation and load at the buses are indicated by S, and S, ,, respectively.
Hence, the net injected power at a given i bus can be written as:

S;=Sg-S;; for i=1ton

Or P.=P, —P,.for 1=1ton

Q. =Qg;—Q fori=1ton



We use the subscript ‘1’, to emphasize that they are the specified or known values at
the bus in the case of power flow problems. This is generally
true, but there are some exceptions. We will discuss the
exceptions later. We can recall that the power flow problem
essentially involves solving for the node voltages for given
injected powers. In other words, we need to solve for the
voltages, V. (for 1 =1 to n), at all nodes.
The complex injected power at a given node can also be
written in the following form: Network model for p.t. problem
S; =(P; +1Q)=Vi(Ip* fori=1ton 3)

Where, I. is the corresponding injected current at the bus and V. 1s the bus voltage.

We can write the above eq. in the following form: 7, = [‘; j fori=1ton (4)

i



We also have the network equation which relate injected currents and node voltages,

namely:
Ibus = [Ybus ]I/bus (5)
Where
]b: is the injected currents at the nodes (nx1)

Y, is the node admittance matrix (nxn)

vV,

bus

is the node voltages (nx1)

You should note the network inside the black box is essentially represented by the
node admittance (Y-bus) matrix. We also know how to establish the admittance
matrix for a given network. It is probably a good idea at this stage to compare
equations 4 and 5 with the equation used for iterations in the sample example,
namely, equation] and 2. You should note that the equation 4 and 5 are more

versatile, since they can be applied to any general network.



In fact, it is possible to use the same iterative procedure to solve the general power
flow problem. The steps can be written as below:

1. Assume initial voltages for at all nodes

2. Calculate the 1njected currents at all nodes using equation 4

3. Obtain new estimates of the node voltages using equation 5

4. Repeat steps 3 and 4, until convergence 1s obtained for all node voltages

In theory, the above procedure is OK. However, it 1s considered computationally
inefficient. Figure below gives a simple network showing the nodal currents,

voltages and powers. It 1s convenient to use branch admittances rather than
Iz(szzEzlz*)
N

® AN ® MN——o
A A A

§ E, E, E3§

I3(S;=E;l3)
53

impedances. Li(Si=E4l}")

14




Denoting the voltages of nodes k and 7 as £, and E;respectively, and the admittance
of the branch between them as y,. ,then the current flowing in this branch from node
k to node i is given by I, =ykl.(Ek —El.)

Let the nodes in the network be numbered 0,1,...,n, where 0 designates the
reference node. By KCL, the injected current /, must be equal to the sum of the

currents leaving node £, hence, [/, = Zn: 1, = i Vi (E L El.)
i=0 i=0

Since Ej =0, and if the system 1s linear, 7, = i VB, — i Vi E.
i=0#k i=1#k
If this equation 1s written for all the nodes except the reference, 1.e. for all busbar in

the case of a power system network, then a complete set of equations defining the

network is obtained in matrix formas, | 7, Y, Y, - Y,|E,
1, _ Y, Y, - Y, |£LE,
_[n_ _Ynl }fnZ T Kzn__En_




where ¥, = i_%: ,3/’“ = self-admittance of node £,
Y, =—y,, = mutual admittance between nodes k and i
in summation notation £z = g}fkiEi fori=1,....n
The nodal admittance matrix has a well defined structure, which makes it easy to
construct automatically. Tiney et.al were the first to exploit the sparsity feature of
Yug In greatly reducing numerical computations in LF studies and in minimizing
the memory required as only non-zero terms need be stored.
Its properties are as follows.
1)  Square of order n x n
11) Symmetrical, since y,; =y,
111) Complex
iv) Each off diagonal element y,.1s the negative of the branch admittance between
nodes k and i, and 1s frequently of value zero

v) Each diagonal element y,, 1s the sum of the admittance of the branches which

terminate on node k, including branches to ground.



vi) Because in all but the smallest practical networks very few nonzero mutual
admittances exist, matrix Y is highly sparse. In a system containing hundreds of
buses, the sparsity may be as high as 90%

The complete definition of power flow problem requires knowledge of four variables

of each k-bus 1n the system:

1) P,- Real or active power

11) Q.- reactive or quadrature power

11) V,- voltage magnitude

1v) 0.~ voltage phase angle

Only two are known a priori to solve the problem, and the aim of LF is to solve the

remaining two variables at a bus. We define three different bus conditions based on

the steady state assumptions of constant system frequency and constant voltage,

where there are controlled.



i) Voltage controlled bus.

The total injected active power P, 1s specified, and the voltage magnitude V, 1s
maintained at a specified value by reactive power injection. This type of bus
generally corresponds to either a generator where P, 1s fixed by turbine governor
setting and V) 1s fixed by automatic voltage regulators acting on the machine
excitation, or a bus where the voltage 1s fixed by supplying reactive power from
static shunt capacitors or rotating synchronous compensators 1.e. at substation

In practice, it is more convenient to specify the injected active power and voltage
magnitude at the generator buses, rather than injected active and reactive power.

In other words, the specified values are the active power, voltage magnitude, and
we will need to solve for the reactive power and voltage angle at the generator bus.
The active power of a generator 1s controlled by the governor and is directly related
to the governor setting.

Also, the voltage magnitude is controlled by the voltage regulator and 1s directly

related to voltage regulator setting.



Hence, the specification of active power and voltage magnitude is more convenient
from the point of view of generator operation. Such a specification 1s often referred
to as P-V bus 1n pf problems. Consequently the buses where injected powers are
specified can be referred to as P-Q buses.

In general, the generator buses are referred to as P-V buses and the load buses are

referred to P-Q buses. For the purpose of iterations, we use the eq.

M D N
V, = L ST
I Y V k; k" k

i l

(k_;ti )
However, we will need to use as estimated value for the injected reactive power for

the P-V bus, since the value of reactive power i1s no longer specified. We know that

injected power at a bus i1s related to the injected current and the bus voltage by the

followingeq. S, = P + jO, =V.I;



The injected current at a bus can be calculated using equation, I, = Z Y, V,

k=1
Combining the two above equations, we can write the equation for the estimated
value of the injected reactive power as given below: O, , . =— Im{Vl.* >y, Vk}

We can now write the modified version of voltage equation for P-V buses as below:

1 P JQ@S 7
Vi(est) = Y. = ZszV

(kiz)

Note that the above eq. 1s used only when the subscript ‘1’ corresponds to P-V
buses. Of course, we will still use the equation for P-Q buses. As before the latest

available voltage values are used on the RHS of equations Q. ; and V.,

est-1

1 B_]Qz 3
Vi:Yn V.* _ZYika

12 l

(ki)
Finally, the equation gives the new estimated value of the voltage V., in complex

form.



S Y
V. . : est—i Y. V
i(est) Y. |18 Z ik

i l

(k;tz)

However, we are really only interested in the voltage angle, since the voltage
magnitude has already been specified at the P-V bus. In other words, we just
ignore the magnitude obtained by above equation.

Mathematically, we can write the corresponding eq. as below:

V. =V .20, whereo, =angleof (Vi(est))

i(new) sp—i

The rest of the iteration process remains the same.

ii) Slack(swing) bus.

The injected powers 1n a pf problem essentially represent the loads and scheduled
generation values for a given system condition. In practice, it 1s not possible to
specify scheduled generation values at all the generators. The reason being that,

the total generation and load should satisfy the following equations



ZPG = Z})L +})Losses
ZQG = ZQL + QLosseS

In other words, we will need to know the total system losses, before generations at
all generator buses can be specified. A person familiar with the system may have
some 1dea of the system losses. To get the exact value of losses for a given system
condition, we will need to solve the power flow problem. In fact, calculation of
power losses 1s one of the objectives of pf calculations. In view of the above, the
injected power at one of the generation buses 1s not specified. Instead, the voltage
magnitude and angle are specified at that bus. Such a bus is called the swing bus or
the slack bus. Typically, the bus with the largest generation is specified as the swing
bus. We can use the swing bus voltage as the reference vector, which means that its
vectorial angle is zero. Hence, it is a common practice to specify the voltage
magnitude at the swing bus and set the angle to zero, while solving pf problems.

After solving the pf problem, it will be necessary to calculate the injected power at



the swing bus, and to ensure that the pf values are within the capability of the
generator at the swing bus. This bus arises because the system losses are not known
precisely in advance of the LF calculation. Therefore the total injected power cannot
be specified at every single bus. It 1s usual to choose one of the available voltage
controlled buses as slack, and to regard its active power as unknown. The slack bus
voltage 1s usually assigned as the system phase reference, and its complex voltage is
therefore specified. The analogy in a practical power system i1s the generating
station which has the responsibility of system frequency control. £ =1 6.
iii) PQ Bus

At this type of bus, the net powers P, and Q. are known (P, and Q. are known) and

P, and Qg are specified. The unknown are V, and o,

1



2n Power flow eqs

S =P+ jO, =V, I] 1i=1,2,....,n
I. = source current injected into the bus

P, — O, =V, i=12,..n
Ii — z Yika
k=1

_JQz — V*ZYIICV

v, =V le = )
ik — |Lik e’
P =V n 0, +5,—-6,) i=1,2,..,n
k=1
Q. = Zn:\VkHYik\sin(Hik +6,-0,) i=12,...n
k=1

4n variables P, Q,, [V, and 9,



SLFE can be solved for 2n variables if remaining 2n variables can be specified.
Fixed a priori two variables at each bus.

Non linear algebraic equation difficult to solve

Use iterative numerical techniques.

Depending upon which two variables are specified a priori, the buses are classified

into three categories

PQ bus P;, Q; Vi,0:?
PV bus P, [V 0.,0,?
Slack/Swing/Ref bus Vi,0.=0 P, Q,?
Why slack bus?

ic. diff (38, +5,->S.)
This 1s known 1n the end only.
Bus connected to the largest

GenR —— SLACK No. 1
f(x,y) =0 dim 2n



Where, x = dependent or state vector dim 2n (2n unspecified variables)

y = vector of independent variables (2n vari speci a priori)

y = {u} u = control variables

P | p = fixed parameters (uncontrollable)

U [V, | P,

For SLFE solution to have practical significance, all the state and control
variables must lie within specified practical limits. These limits, which are
dictated by specifications of power system hardware and operating constraints

are described below.

(i) Voltage magnitude must satisfy the inequality |V;| . <|V;|=\V;|

(11) O; — 5;(‘ <10; = Oy max System stability requirement

(111) Owing to physical limitations of P and Q generation sources,
Foilin <1P6il < 1Pl > 1Qil iy <196l <106l

PV- V maintained if controllable

Q source available



Transformer taps

Phase shifting transformer

Specify variables (2n) at all buses (y)

2n SLFE solved iteratively for 2n (remaining) variables (x)

Compute line flows & losses

Approximate LFS 0, =90° 6. =-90°

R=0; P, =0 sin(8, -6, )~ (6, - 5,)

The LF problem can now be fully defined as follows:

Assume a certain nominal bus load configuration. Specify P, +jQg; at all the PQ
buses; specify P, and IV at all the PV buses. Also specify IV, and o, (=0) at the
slack bus. Thus 2n variables of the vector y are specified. The 2n SLFE can now be
solved iteratively to determine the values of the 2n variables of the vector x
comprising voltages and angles at the PQ buses, reactive powers and angles at the
PV buses and active and reactive powers at the slack bus. The next step i1s to

compute line flows.



1'2 Zd
1'3 ZC 3
46
2'3 Zb a
2-4 Z, 1

1. Develop Bus Admittance Matrix

2. Estimation bus voltages

3. Update voltages until converge

g g ITERATION techniques

BUS ADMMITANCE MATRIX

Consider a simple power system: ylj — — =
Impedances are expressed in p.u. on a common z ij rij + J xij

MVA base.

Impedance are converted to admittance: 109



Convert impedance to admittance

Draw admittance diagram

110



Applying KCL at each bus

Bus 1

Bus 2

Bus 3

Bus 4

I =+ (N =1) + (M =15)

Iy = yyVs + ¥ (V= V) + s (V, = 75)

L=y (V=1 )+ sy (V= V) + yss (V= V)
I,=y,(V, V)

111



Rearranging,

I :(Y10+J/12+y13)V1_y12V2_J’13V3 Y=YVt VotVs
I, =—y,V +()’20 + )V +J’23)V2 — Vil » Yy =Yoo+ Yy + Vo3
Iy ==y = v,V +(y13 + V3 +J/34)V3 — ViV, Yy =YVi3+ Yy + Yy
I, =—y,Vs+y..V, Yy =V
Y,=Y, =—y,
L =YV + 10, + 1V + 1V,
Y=Y, ==V
L=YV+YV +Y.V.+Y V
2 T AV T Lyl T I3V T Lo by « Y,,=Y,=-y,
L,=Y.V+Y. V,+Y.V.+ Y.V
3 3171 T L3V T 433V 3 T L340y Y, =Y,.,=—y,
14 :Y41V1+Y42V2+Y43V3+Y44V4

112



1

hn+hh, + 0+ 00,

L =Y, + YoV, + Yy + 1,0,
L =YV, + Y.V, + LV, + LV,
L=Y, Vi + YV, + YV, + YV,
L Y Y, Y, Y,
L% Y % %,
]3 Y31 Y32 )/'33 Y;4
_]4_ _Y41 Y42 Y43 Y44 i

YUY LY X

or

[ =)Y, V;i=12,...n (6)
k=1

113
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h<

li

2i

o
.. B"<
h<

ROTR SRR,

Write equations for I, and I,

o N

114



Vio TVt i3
Yoo =Yoo+ Vo + Vo3

Y, Y, Y, Y, Y_o,3=y13+y23+y34
Yb :Yzl Yzz Yz3 Y24 = V34
Ty, v, v, Y, @: @
Yy Y, Y, Y,

B B Y, =Y ==Y

Y=Y, ==Y

Yy =Y =—y




Y=YtV Vi
Y, =Yoo+ Via+ Vo3
Yo=Y+ Y+ Yy

Yy, = Vi
_Y11 Y, 1 Y14_ —J8.5 J2.5 Jd 0
v T Yo Y Toy| | 25 =875 S 0
oy, Y, Y, Y, j5.0  j5.0 —j225 125
_Y41 Y, Y, Y44_ 0 0 J12.5° = j12.5

116



1 2 0.004 0.0533
2 3 0.02 0.25
3 4 0.02 0.25
2 4 0.01 0.15
4 5 0.006 0.08

Determine Y Admittance matrix of the system

0.22
0.22
0.11
0



The power system shown 1s operating at steady state. The reactance of each

transmission line is X = 20 ohm. The generators and transformers are rated as

follows:
— Gl: 20 MVA, 12 kV, X=1.20p.u.
- G2: 60 MVA, 13.8kV, X =1.40p.u.
— G3: 50 MVA, 13.2kV, X =1.40p.u.
— TI: 25 MVA, 12/69 kV, X =0.08 p.u.
— T2: 75 MVA, 13.8/69 kV, X=0.16 p.u.
— T3: 60 MVA, 69/13.2 kV, X=0.14 p.u.

— T4: 75 MVA, 69/13.8 kV, X=0.16 p.u.



Transmission line 1

Transmission line 2

1 AYL 1

Use a power base of 100 MVA and a voltage base of 12 kV in the circuit of

generator 1, form the bus admittance matrix Y

57 MVA, 0.6 pf lagging at 10.45KkYV.

.The three phase load absorbs

bus

119



yin

Ii :yloVi "'yz'l(Vi _V1)+yi2(Vi _Vz)"""+ym(Vi _Vn)
L=+ Yyt Yoty W=y =y Vo= =V,

I—VZyy Zyy Jj#i
=VY, + 2LV, j*i
j=1

120



P
| [ =L=JC
| Z
IV n n
L 1, =V, yU_ZyZJVJ
Jj=0 j=1

Power is given by the following equations.

§=S generated ~ Sload
S:=8ic—9Su

l

S1=86-81
$;=386—95

J#I

J#I

121



Basic equation for power-flow analysis is derived from the nodal analysis equation
for the power system:

For a four-bus p.s.

BRI
L| % Y Y %7
L Y Yo Yy Y|V
L) Y Y Y YV

For bus 2 in the four-bus p.s.

12 — Y21V1 + Yszz + Y23V3 + Y24V4

122



The loads on real p.s. are specified in terms of real and reactive power, not as
currents. Relationship between power and current at bus 1 can be expressed as:
S=VI =P+ jO
Current injected at bus 2 can be found as: V,l, =P, + jO,
It P+ jo,
2 v,
2 T B2
V,

Vol Yol + Yol + Yl <L )

_ ])2 —J Qz
1, = -
Substituting gives V,

.
R A N N
> 123




Solving for V, gi 1L | & —J
olving for Vs gives p, - _ [ > — /& —(1@1V1+1@3V3+1@4V4)}
ool Vs

Similar equations can be created for each load bus in the power system

The basic equation for pf studies are given in equations 4 & 5.

Main objective is to solve the same more efficiently.

Hence, we will be reorganising the equation to meet the objective.

Such a rearrangement will hopefully provide for computational efficiency and better
convergence. One such method 1s known as the Gauss-Seidel method.

Such a terminology has been given, since the method is based on the general
procedure suggested by Gauss to solve non-linear simultaneous equation. It was
later modified by Seidel, which resulted in a slightly faster convergence. In other
words, it resulted in fewer iterations. Expand the matrix equation given in eq.(5) to

obtain an expression for injected current at any given node as shown below:

[, =Y, Viii=12,...,n (6)
k=1



Substitute eq.6 into eq. 3, which results in the following eq:

n

(B-+le~)=Vi{Z(Kka)} for i=lton (7)

k=1
Now move the conjugate to LHS and express the summation in the expanded form.

The resulting eq. 1s as shown below:

(P+jOY =V YV, +.+Y V. +.+Y. V] fori=lton (8)

Eq. (8) 1s essentially a set of simultaneous eqs, where node voltages are the
unknown variables.

In fact, we have ‘n’ unknown values, namely, V,, V, ,... V.,... V and ‘n’ egs.

If the first term in the RHS of €q.8, namely Vl* , was not present, then it could have
been solved using the usual elimination methods.

However, the eq. 1s now a non-linear eq., since it contain products of unknown

variables. The only way it can be solved is by means of iteration.



There are ‘n’ egs. in eq(8), one eq. corresponding to each node in the system.

We will use the first eq. to get the new estimate for V,and the second eq. to obtain
the new estimate for V,, and so on.

Hence, we can write the general eq. for iteration for the voltage at i bus as shown

below:

MO L
W — il = N i
¥y v ,Z: "

i l

(k#0) fori=1ton (9)

The above eq. looks very complex, but it is essentially obtained by rearranging the
terms 1n equation (8).

In other words, by moving all the terms in the RHS to the LHS except for the term
Y, V.. Finally we can move Y;; also to LHS and swap the eq. around. The eq.(9) is
the general iteration eq. for the bus voltages. V.., provides a new estimate for the
bus voltages after each iteration. Note, however, that evaluation of RHS requires the
voltages at all buses, including the voltage at the bus where the new estimate is

being calculated. Obviously, voltages obtained at the previous iteration are used for



the calculations.

Initial voltage estimates of 1.~20° pu is normally used at all buses to start the
iterations. The method suggested by Gauss made use of the previous iteration
voltage values at all buses for calculating new voltage estimates. However, Seidel
suggested that the convergence is faster if the latest available voltage values are
used. That 1s, when calculating the new estimate for voltage at bus 3, the latest
estimates of the voltages at buses 1 & 2 (present iteration values) can be used, rather
than previous iteration values. Of course, at other buses we will have to use the
voltages from the previous iteration.

The above iterations are carried out for all buses, until the bus voltage at each bus

converges to their final values. The convergence of iterations is checked as below:

V.

i(new) o i( prev
Note that convergence must be checked for real and imaginary parts.

)gg fori=1ton

The symbol £1s referred to as the convergence factor.



Typical values of the convergence factor used in practice are 0.0001 to 0.00001 pu.
Such small values for voltage convergence are necessary to obtain power flow
convergence in the range of about 0.01 (1%) to 0.001(0.1%).

If higher convergence factors are used, substantial errors could occur in pf and

power loss calculations.

The advantages of the G-S method can be listed below:

1. The iteration eq. are quite simple and easy to program. In fact, with computing
tools, such as MATLAB, it is fairly straightforward to perform pf calculations
using iterative eqs. which have been developed.

2. Since Y-bus is a sparse matrix, the memory requirements can be reduced
substantially by storing only the non-zero elements of the matrix.

3. The iterations are numerically stable and typically a fairly reliable convergence

1s obtained, provided a feasible solution exists. This 1s due to the fact that the

Y-bus matrix has predominant diagonal element values.



The G-S method has some disadvantages, which becomes particularly significant
while solving larger power systems.

1. The number of iterations increases as the system size increases.

The number of iterations can be excessive for large systems. 1.e. 500-800 iterations
are quite common for a system with 50 buses. In fact, a few thousand iterations are
not uncommon in the case of large utility systems, where a few hundred buses are
quite common. Some empirical methods have been suggested to reduce the number
of iterations, by means of an acceleration factor. This does reduce the iterations
slightly, but it still requires fairly large number of iterations. Also, the value of the
acceleration factor depends on the system and needs experimentation.

2. The main reason of large number of iterations is that the convergence of the G-S
method 1s asymptotic. In other words, the convergence slows down as the values get
closer to the final values. Hence, in general, it is difficult to obtain higher precision
results.

3. This method may not converge for systems with negative impedance branchés:



e Calculate the bus admittance matrix Y
* Include the admittances of all transmission lines, transformers,

bus.

between lines, but exclude the admittances of the loads or
generators themselves. y

Select a slack bus.

* One of the busses in the power system should be chosen as the
slack bus. Its voltage will be assumed to be 1.0£0.

yelect 1nitial estimates 1or all bus voltages.

* The estimate should be reasonable as poor choice may result in

convergence to incorrect values. Usually we start with 1.0£0
(flat start)

— S

. . \
« Write voltage equations for every [l b
 other bus in the system V.= ” i ; 9 _ ZYika
« The voltage equation will have J " (ki)
 generic form or
J




Calculate and update estimate of the voltage at each load bus
in succession using the voltage equation

Compare the difference between the old voltage estimates and )
the estimates

o If the differences between the estimates less than specified
tolerance for all busses, we are done.

1\

Confirm that the resulting solution is reasonable. h
 Typical value of phase range 1s less than 45°.

« Larger ranges may indicate the system converged to an
incorrect solution.

« Change the 1nitial condition. Try again. )

' :I/izyij —Zy,-jVj J#

«(5) g J Write equations for I, and V
. q 2 2

| AR YEX (for 2" iteration) of a 5 bus

i system
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+ (k) k)~ = (k) ..
Pl.(k ”:ER{ f Vl.()zoyij—zlyijVj J} VESR

+ ~ x (k) )~ C (k) . .
o =—J{Vi VO3 - S, J} ji
B j=0 j=l1

Write equations for P, and Q, (for 2"¢ iteration) of a 5 bus system

1 2

@ | . | Load:
Line P=0.30 pu

Series impedance Q=0.20 pu
=0.1+j0.5
Shunt neglected

STEP 1

Calculate the bus admittance matrix

L _ : = 0.3846— j1.9231
0.10+ /0.50 132

yline —

line



Y, =0.3846— j1.9231
Y,, =0.3846—j1.9231 Yy =

bus

0.3846—j1.9231 —0.3846+ j1.9231
—0.3846+ j1.9231 0.3846— ;j1.9231

Y, =—0.3846+ j1.9231
Y, =—0.3846+ j1.9231

Determine the voltage at each bus for the specified load condition
STEP 2
Bus 1 : Slack bus. V,=1.0£0 pu

_{ 0.3846— j1.9231 —-0.3846+ j1.923 1}

bus — . .
STEP 3 —0.3846+ j1.9231 0.3846— j1.9231

Select initial values (V) of all bus voltages:
Bus 2 is a Load bus. Choose V,(¥=1.0£0 pu as initial estimate

Determine the voltage at each bus for the specified load condition

0.3846—;1.9231 —0.3846+ ;1.9231
—-0.3846+ j1.9231 0.3846— ;1.9231

bus



STEP 4
Write voltage equations for every other bus in the system
Real and reactive power at Bus 2:

S =8-S

l

P,=-0.3 pu; Q,=-0.2pu

Voltage equation for bus 2

w_ 115 -j0
V(k 1) — 2 - 2 Y.V
2 Yzz Vz(k) (21 1)

- 1 {—030+j02

2 = 03sa6— 1051 v ~[(~0.3846 + j1.9231)V1]}
. . )

" 1 0.3603./146.3
vy = (0)*
1.9612/—78.8 %

— [(1.96124101.3)140]}



vyt = 1 000521463 1 9612.4101.3)120]
1.9612/-788| ¥,

STEP 5: Calculate an updated estimate of the voltage at each load bus
Initial estimate V,'=1.0£0 pu

v, = : 0‘360%146'3 ~[(1.96122101.3)1.£0]
1.96122-78.8| |

= 1 036052146.3 ~[(1.9612.2101.3)1.£0]
1.9612/-78.8| 140 .

=7

Second estimate

o 1 0.3603./146.3
*1.96122£-78.8 vy

=7 135

—[(1.96124101.3)140]}



Third iteration

)3 1 {0.36034146.3

> T 1.9612/-78.8 y2
=9

- [(1.96124101.3)140]}

Calculate for Fourth and fifth iteration etc...

STEP 6: compare the differences between the old and new estimates

If the magnitude of the voltage 1s barely changing, we consider this value is close
enough to the correct answer. Iteration stops.

STEP 7: Confirm that the resulting solution 1s reasonable

V,=1.0£0 pu

V,=0.8315/-8.994pu <4@mmmmm assumed value for discussions

The phase angles differ by only 10°, ;o v, -v,)
2= 5
these result appear reasonable Z Line

1£0-0.8315£-8.994

| 0.10+ ;j0.50
line from Bus 1 to Bus 2 —0.4333/—-42.65

Calculate current flowing in the transmission
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V,=1.0£0 pu
V,=0.8315./-8.994 pu

I,, =0.4333/—42.65

Calculate power supplied by the transmission line to Bus 2

S, =V},
=(0.8315£-8.994)(0.4333£—42.65)
=0.2999+ j0.1997

This is almost equal to the power being consumed by the loads. Thus the
solution appears to be correct.

If the real and reactive power supplied by bus 2 i1s 0.3+;0.2, and

If the voltage on the slack bus is 1.0£0 pu,

Then the voltage at bus 2 will be V,=0.83152-8.994 pu (get this from your
calculation)

This voltage is correct only for the assumed conditions; if a different amount

of power were supplied, a different voltage V, will be calculated.



A simple three-bus power system with generation at buses 1 and 3. The voltage at
bus 1 1s V,=1.02520°. Voltage magnitude at bus 3 is fixed at 1.03 pu with real
power generation of 300 MW. A load consisting of 400 MW and 200 Mvar is taken
from bus 2. Line impedances are marked in per unit on a 100 MVA base. Line

resistances and line charging suceptances are neglected.

P,=300 MW

l

V,=1.02520 3 V5/=1.03

+j0.025




Using Gauss-Seidel method and initial estimates of V,(9=1.0+j0 and V,(®=1.03+j0
and keeping |V;|=1.03 pu, determine the phasor values of V, and V;. Stop after two
(2) iterations.

P,=300 MW

l

3 IV,|=1.03

V,=1.025£0°

+j0.025

+j0.025

—2

400 MW v ‘1‘ 200 Mvar



1. Calculate Line admittances P,=300 MW

YIZ = _j409 l
Y13 =-J20

40 V,=1.025£0° 3 |V,|=1.03
Yo3 =)

2. Expressed load and generation in per units +j0.025

: \ +j0.025

400 + j200 .

LR ——4.0- 720 pu 2

2 100 J P _l_

P = 300 39 pu A00MW™ 200 Mmvar
100

1. Bus 1 is taken as slack bus. Starting from an 1nitial estimate V, and V; are

computed from equation:




,P =1.0025+ ;0.05 v, —1.0+ 0.0

V., =1.03+ 0.0

Bus 3 1s Voltage Control Bus

What you know about voltage control bus?

P,=300 MW
P V], limitsofQ o, Q
= ° 3 |V |=1.03
Determine Q V,=1.02520 ’
+0.025

+j0.025

—2

i
" 400 MW
Q3(1) = _S{V(O) [V (J’13 + y23) ViV =y, v,V ]} 141



Viz + Va3
V.Y =1.03—;0.0152
Since |V, is held constant at 1.03 pu, only the imaginary part of V ;) is retained
,* =1.0001— ;0.0409
0. =1.3671

V., =1.0298+ ;0.0216

1.? =1.0298+ ;0.0216




Q3(1) =3 {V3(O)* [V30 (y13 T Vo3 )_ Vi3V — y23V2(1) ]}

Vis T Vo3

If after several iterations the bus voltages converge to V,=1.000571-j0.0366898 pu

V,;=1.029706+;0.0246 pu

Determine the line flows and line losses and P;=300 MW

the slack bus real and reactive power.

SLOSS12 — 0.0 -+ j7.77 V1=1.02

S o1z = 0.0+ j1.25 +j0.025

S, nrs = 0.0+ j18.42

S, =100 MW + j90.51 MVAR



A major advantage of the Gauss-Seidel iterative method is that it is relatively stable
and usually results in the right answer. The method however converges to a solution
relatively slow and requiring a lot of computer time. Simple tricks that can be
applied to speed up the convergence process:

* Applying updated bus voltage values immediately;

* Use of an acceleration factor

1. Applying updated bus voltage values immediately

Start using the new estimates of bus voltage as soon as they are calculated, (instead
of waiting to the beginning of the next iteration). An illustrative five-bus system has

the following bus power and voltage specifications:



[ 2— /6
—1+ ;3
0+ ;0
0+ ;0
| —1+ /3

Show calculation for one iteration to solve the five PFEs using Gauss-Seidel

method.

[ 2— /6
—1+ ;3
0+ ;0
0+ ;0
—1+ ;3

—1+ ;73
3—Jj9
—14+ ;3
0+ 50
—1+ ;3

—1+ 53
3—J9
—1+ ;3
0+ ;0
—1+ ;3

0O+ 50
—14+ ;3
2—j6
—1+ ;3
0O+ ;0

0+ ;0
—1+ ;3
2—j6
—1+ ;3
0+ ;0O

0O+ 50O
0+ ;0
—14+ ;3
2—j6
—1+ ;3

0+ ;0
0+ ;0
—1+ ;3
2—J6
—1+ ;3

—1+ ;3
—14+ ;3
0+ ;0

—14+ ;3
3—Jj6

—1+ ;3
—1+ ;3
0+ ;0

—1+ ;3
3—j6 |




From system data, V, = 1.02 £0,
Py, =1.0;
V, =1.02
S; = P; +jQ; = -0.25-0.1;
S, = P, +jQ, = -0.25-j0.1;
S; = P, +jQ,=-0.25—j0.1.

Let us assume the following initial estimates:
Vy =V, =V, =1.0£L0;5,=0
V2 =1.0220

Bus 2 is the only P-V bus. Let us calculate Q,!

O) = —Im(V (v, 7, + Yo, V2 + VoV + Vo V2 + Y, V2))
=0.1224



1 | P — O,
Vzl — |: > 0* = — Y;11/1 — Y23I/30 — Y;4V4O — Y;51/50:|
Y,, V,

=1.016+ ;0.0908=1.019.25.1°

We fix V,! to 1.02 £5.1°, the magnitude being set at the specified value with the
phase angle kept as the calculated value.

The voltages at the load buses after the first iteration are:

A

1 | A—jO
Vzl — % [ : 1/ 0% : _Y31V1 _Y32V21 _Y3,4V40 _Y3,5V50:|
33 3

=0.9804 + ;0.0129 =0.9805£0.75°

reso N )
V4lzy44|: 4V40* ==Y,V - 2 43V Y45VO:|

=0.9804 + ;j0.0129 =0.9805£0.75°




Vs =

| [2— 0. S, W
NG |

% Vo* _YslVl _Ysszl _Y53V31 _Y'54V41
55 5
=0.9812+ ;70.000005=0.98122—-0.003°

Voltage at each bus is multiplied by some constant. The multiplier is called an

acceleration factor (o), a is set at about 1.6 and cannot exceed 2.

vV ==L +aV,) =V +a(V) —vP)

,acc

For bus 1 during iteration k

vE o =A—aWVE vaVt =V v avc —vr)

acce



-

Line data

Base 100 MVA, 230 kV

—O

1-3
2-4
3-4

0.01008+j0.0504
0.00744+j0.03720
0.00744+j0.03720
0.01272+j0.06360

3.8152629-j19.078144
5.169561-j25.847809
5.167561-j25847809
3.023705-j15.118528

10.25
7.75
7.75
12.75

0.05125
0.03875
0.03875
0.06375

149



150



0.01008+j0.0504
1-3 0.00744+j0.03720
2-4 0.00744+j0.03720
3-4 0.01272+j0.06360

3.8152629-j19.078144
5.169561-j25.847809
5.167561-j25847809
3.023705-j15.118528

10.25 0.05125
7.75 0.03875
7.75 0.03875
12.75 0.06375

8.985190 -
j44.835953

2 -3.815629 +
j19.078144

3 -5.169561
+j25.847809

4 0

-3.815629 +
j19.078144

8.985190 -
J44.835953

0

-5.169561
+j25.847809

-5.169561
+j25.847809

0

8.193267 -
j40.863838

-3.023705 +
j15.118528

-5.169561
+j25.847809

-3.023705 +
j15.118528

8.193267 —
j40.863838
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LI B-jO §
V:l*l
’Y{Vi ’Z}

p_;
: {Q4 _(Y41V1 +Y42V2 +Y43V3)

(70 1O 4 r )

ol
v L[ R=j0
Yl 7
1
V,=
Yul Vi
1 Pz_jQz
Y, V2(0>*
1 [-1.7+ j1.0535
Pyl
Yi —1.7+ j1.0535+9.088581— j45.442909]
22
=0.983564— j0.032316

— * o (Y31V1 + Y32V2 + Y34V4)

—1.00(~3.815629+ j19.078144)—1.02(~5.169561+ j25.847809)}



Using an acceleration factor of 1.6 gives
V21,acc — VZO + a(VvZI T VZO)
—1+1.6](0.983564— j0.032316)—1]
=0.973703— j70.051706 per unit

Using V, ,..! in similar calculations for bus 3 gives first iteration value
V. oo =0.953949— j0.066708 per unit

Next proceed with Voltage bus 4

This 1s voltage control bus. What we know about voltage control buses?
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Compute Q,!
Use this value to calculate V!

Correct the magnitude of V! to be equal to 1.02 etc..

Y,V e + Yo P0))

,acc

O, =~ Im(V;* (v,

2,acc

1 | P —jO,
V4(1) — |: . 0* 2 — (Y42V21,acc + Y43V31,acc ):|
Y44 V4

Exercise
In a two bus system, bus 1 is a slac<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>