Dr Syarifah Zyurina Nordin MJIIT UTM Kuala Lumpur

Contact No: 019-6674112 Email: szyurina@utm.my

Course Text:

1.Abd Wahid Md Raji et al. (2013), The First Course of Calculus for Science and Engineering Students. Penerbit UTM. (ISBN: 978-983-52-0862-1).

Supplementary Texts:

1.Fallow, Stanley J, Hagg, Gary M. (1990). Calculus and its applications. New York: McGraw-Hill (QA 303 F38 1990). 2.Mizrahi, Abe, Sullivan, Michael. (1986). Calculus and analytical geometry. California: Wadsworth Pub. (QA 303 M59 1986). 3.Varberg, Dale E, Fleming Walter. (1991). Calculus with applications. Eaglewood Cliffs, N.J.: Prentice Hall, 1991 (QA 303 V37 1991).

Assessment

NO.	TYPE OF ASSESSMENT	NO OF ASSESSMENT	$\begin{gathered} \% \\ E A C H \end{gathered}$	$\begin{gathered} \% \\ \text { TOTAL } \end{gathered}$	DATE/ TIME / VENUE
1.	Quizes	$\begin{gathered} 2 \\ (15 \text { min each }) \end{gathered}$	5	10	
1.	Test 1	$\begin{gathered} 1 \\ (1 \mathrm{hr} \\ 15 \mathrm{~min}) \end{gathered}$	15	15	Date: tbc Day: tbc Time: During class Venue: Will inform later
2.	Test 2	$\begin{gathered} 1 \\ (1 \mathrm{hr} 15 \mathrm{~min}) \end{gathered}$	20	20	Date: $\boldsymbol{t b c}$ Day: tbc Time: During class Venue: Will inform later
3.	Assignments	1	5	5	
5.	Final	$\begin{gathered} 1 \\ (3 \mathrm{~h}) \end{gathered}$	50	50	

This course provides a solid foundation of basic calculus prior to pursuance of any mathematics at university level. It comprises of various topic such as Limits and continuity of functions, Differentiations, Integrations, Differential Equations and Numerical Methods. The intention is to equip students with the necessary tools required for further mathematics and engineering courses.

Weekly Schedule

Week	Contents	Notes
Week 1	Limits: Left and right limits. Limits at infinity (polynomial and rational functions). Computational of limits by using factorisation, by rationalization (not including trigonometry).	
Week 2	Continuity of functions at a point and on an interval.	
Week 3	Differentiation: using first principle. Derivatives of algebraic functions \& exponential functions.	
Week 4	Derivatives of trigonometric functions, and reciprocal of trigonometric functions such as $\sec x, \cot x, \operatorname{cosec} x$.	
Week 5	Rules of differentiation: Product Rule, Quotient Rule, Chain Rule, Implicit differentiation and Parametric differentiations.	
Week 6	Higher order differentiations. Errors and approximations. Rate of change.	
Week 7	Decreasing and increasing functions. Relative maximum and minimum points by using first derivative tests.	
Week 8	Points of inflection. Graph sketching using the critical points, vertical and horizontal asymptotes.	

Mid Semester Break

Weekly Schedule

| Week | Contents | Notes |
| :---: | :--- | :--- | :--- |
| Week 9 | Integrations: Anti-derivatives, the indefinite integral. Standard
 integrals. Integration techniques using substitutions. | |
| Week 10 | Integration techniques using substitutions including trigonometric
 substitution. Integration by parts including tabular form. | |
| Week 11 | Integration by partial fractions. Integration of exponential,
 logarithmic and trigonometric functions. | |
| Week 12 | Area bounded by two curves. Volume of revolution about x-axis and
 about y-axis. Volume bounded by two curves. | |
| Week 13 | Ordinary Differential Equation: Formations of differential
 equations. Solving first order differential equation: Separable
 equations. | |
| Week 14 | Solving first order differential equation: Linear Equations. | |
| Week 15 | Non-linear equations: Fixed point method and Newton Raphson
 Method. | |
| Week 16 | Numerical integration: trapezium rule and Simpson rule. | |

Limits are used to explain changes that arise for a particular function when the value of an independent variable approaches a certain value.

$$
\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)=L
$$

Right Limit

If the value of $f(x)$ approaches to a number L_{1} as x approaches x_{0} from the right, then we right

$$
\lim _{x \rightarrow x_{0}^{+}} f(x)=L_{1}
$$

and we say the "limit of $f(x)$ as x approaches x_{0}
from the right equals $L_{1}{ }^{\prime \prime}$

Left Limit

If the value of $f(x)$ approaches to a number L_{2} as x approaches x_{0} from the left, then we right

$$
\lim _{x \rightarrow x_{0}^{-}} f(x)=L_{2}
$$

and we say the "limit of $f(x)$ as x approaches x_{0}
from the left equals $L_{2}{ }^{\prime \prime}$

Figure (a) and (b) illustrate the Definition 1 and Definition 2, in cases when the two limits are different.

Limit of a Function

If the limits from the left and the right sides of $f(x)$ have the same value, L that is

$$
\lim _{x \rightarrow x_{0}^{-}} f(x)=\lim _{x \rightarrow x_{0}^{+}} f(x)=L
$$

Then $\lim _{x \rightarrow x_{0}} f(x)$ exist and it is written as

$$
\lim _{x \rightarrow x_{0}} f(x)=L
$$

The limit of $f(x)$ at x_{0} exists only when the limits from the left and the right exist and both are equal.

However if either the limit from the left or from the right does not exist, or if

$$
\lim _{x \rightarrow x_{0}^{-}} f(x) \neq \lim _{x \rightarrow x_{0}^{+}} f(x)
$$

Then $\lim _{x \rightarrow x_{0}} f(x)$ does not exist.

Find the $\lim _{x \rightarrow 0}\left(x^{2}+1\right)$

\boldsymbol{x}	$\mathbf{- 1}$	$\mathbf{- 0 . 5}$	$\mathbf{- 0 . 2 5}$
$f(x)$	2	1.25	1.0625
\boldsymbol{x}	$\mathbf{- 0 . 0 0 1}$	$\mathbf{0}$	$\mathbf{0 . 0 0 1}$
$f(x)$	1.000001	1	1.000001
\boldsymbol{x}	$\mathbf{0 . 2 5}$	$\mathbf{0 . 5}$	$\mathbf{1}$
$f(x)$	1.0625	1.25	2

The closer x gets to the value 0 , the closer the value of $f(x)$ comes to 1 . This limit could have been determined by simply substituting $x=0$ into $f(x)$. Since

$$
\lim _{x \rightarrow 0^{-}}\left(x^{2}+1\right)=\lim _{x \rightarrow 0^{+}}\left(x^{2}+1\right)=1
$$

thus $\lim _{x \rightarrow 0}\left(x^{2}+1\right)=1$

Find $\lim _{x \rightarrow 4} f(x)$ if $f(x)=\left\{\begin{array}{cc}2 x & \text { if } x \leq 4 \\ 2 x+3 & \text { if } x>4\end{array}\right.$

Solution:

$\lim _{x \rightarrow 4^{-}} f(x)=\lim _{x \rightarrow 4^{-}} 2 x=2(4)=8$
$\lim _{x \rightarrow 4^{+}} f(x)=\lim _{x \rightarrow 4^{+}} 2 x+3=2(4)+3=11$
Since $\lim _{x \rightarrow 4^{-}} f(x) \neq \lim _{x \rightarrow 4^{+}} f(x)$, thus $\lim _{x \rightarrow 4} f(x)$ does not exist.

The independent variable "moves far away" from the origin along the x-axis. If x is allowed to increase indefinitely, we may write it as " $x \rightarrow+\infty$ " and we say " x approaches positive infinity". Whereas, if x is allowed to decrease indefinitely, we may write it as " $x \rightarrow-\infty$ " and we say "x approaches negative infinity".
Let say the limit of $f(x)$ as x approaches positive infinity is L, where L is a real number. This statement can be written as

$$
\lim _{x \rightarrow+\infty} f(x)=L
$$

The line $y=L$ is a horizontal asymptote for $y=f(x)$.

Find the $\lim _{x \rightarrow+\infty}\left(1+\frac{1}{x}\right)$

\boldsymbol{x}	$\mathbf{1}$	$\mathbf{1 0}$	$\mathbf{1 0 0}$	$\mathbf{1 0 0 0}$
$f(x)$	2	1.1	1.01	1.001

\boldsymbol{x}	$\mathbf{1 0 , 0 0 0}$	$\mathbf{1 0 0 , 0 0 0}$	$\mathbf{1 , 0 0 0 , 0 0 0}$
$f(x)$	1.0001	1.00001	1.000001

\boldsymbol{x}	$\mathbf{1 0 , 0 0 0}, \mathbf{0 0 0}$	$\mathbf{1 0 0 , 0 0 0 , 0 0 0}$	$\mathbf{1 , 0 0 0 , 0 0 0 , 0 0 0}$
$f(x)$	1.0000001	1.00000001	1.000000001

Sketch the graph $y=\frac{2}{x}$.

x	$\mathbf{- 1 , 0 0 0 , 0 0 0}$	$\mathbf{- 1 0 0 , 0 0 0}$	$\mathbf{- 1 0 , 0 0 0}$	$\mathbf{- 1 , 0 0 0}$	$\mathbf{- 1 0 0}$
$f(x)$	-0.000002	-0.00002	-0.0002	-0.002	-0.02

| \boldsymbol{x} | $\mathbf{- 1 0}$ | $\mathbf{- 1}$ | $\mathbf{- 0 . 1}$ | $\mathbf{- 0 . 0 1}$ | $\mathbf{- 0 . 0 0 1}$ | $\mathbf{- 0 . 0 0 0 1}$ | $\mathbf{- 0 . 0 0 0 0 1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(x)$ | -0.2 | -2 | -20 | -200 | $-2,000$ | $-20,000$ | $-200,000$ |
| \boldsymbol{x} | $\mathbf{0 . 0 0 0 0 1}$ | $\mathbf{0 . 0 0 0 1}$ | $\mathbf{0 . 0 0 1}$ | $\mathbf{0 . 0 1}$ | $\mathbf{0 . 1}$ | $\mathbf{1}$ | $\mathbf{1 0}$ |
| $f(x)$ | 200,000 | 20,000 | 2,000 | 200 | 20 | 2 | 0.2 |

\boldsymbol{x}	$\mathbf{1 0 0}$	$\mathbf{1 , 0 0 0}$	$\mathbf{1 0 , 0 0 0}$	$\mathbf{1 0 0 , 0 0 0}$	$\mathbf{1 , 0 0 0 , 0 0 0}$
$f(x)$	0.02	0.002	0.0002	0.00002	0.000002

$>$ If the function $f(x)$ increases without bound as X approaches a from the left and right side,

$$
\lim _{x \rightarrow a^{-}} f(x)=+\infty \text { and } \lim _{x \rightarrow a^{+}} f(x)=+\infty
$$

then

$$
\lim _{x \rightarrow a} f(x)=+\infty
$$

$>$ If the function $f(x)$ decreases without bound as x approaches a from the left and right side,

$$
\lim _{x \rightarrow a^{-}} f(x)=-\infty \text { and } \lim _{x \rightarrow a^{+}} f(x)=-\infty
$$

then

$$
\lim _{x \rightarrow a} f(x)=-\infty
$$

$>$ If the function $f(x)$ y \uparrow increases without bound as x approaches a from the right side, and decreases without bound as x approaches a from the left side,

$$
\lim _{x \rightarrow a^{-}} f(x)=-\infty \text { and } \lim _{x \rightarrow a^{+}} f(x)=+\infty
$$

then

$$
\lim _{x \rightarrow a} f(x) \text { does not exist }
$$

To evaluate $\lim _{x \rightarrow 1} \frac{1}{(x-1)^{2}}$ we must take left and right hand limits as x approaches 1 .

$x \rightarrow 1^{-}$	$x \rightarrow 1^{+}$
$f(0.9)=100$	$f(1.1)=100$
$f(0.99)=10000$	$f(1.01)=10000$
$f(0.9999)=100000000$	$f(1.0001)=100000000$
We should conclude that $\lim _{x \rightarrow 1} \frac{1}{(x-1)^{2}}=+\infty$	

Evaluate
a) $\lim _{x \rightarrow-\infty} \frac{2}{x^{2}}$ and $\lim _{x \rightarrow+\infty} \frac{2}{x^{2}}$
b) $\lim _{x \rightarrow 0^{-}} \frac{2}{x^{2}}$ and $\lim _{x \rightarrow 0^{+}} \frac{2}{x^{2}}$
c) $\lim _{x \rightarrow-\infty} \frac{2}{x}$ and $\lim _{x \rightarrow+\infty} \frac{2}{x}$
d) $\lim _{x \rightarrow 0^{-}} \frac{2}{x}$ and $\lim _{x \rightarrow 0^{+}} \frac{2}{x}$

Find $\lim _{x \rightarrow a^{-}} f(x), \lim _{x \rightarrow a^{+}} f(x)$ and $\lim _{x \rightarrow a} f(x)$

$$
\begin{aligned}
& \text { a) } f(x)=(3-\sqrt{x}) ; a=0 \\
& \text { b) } f(x)=\sqrt{4-x} ; a=4 \\
& \text { c) } f(x)=\sqrt{x^{2}-4} ; a=2
\end{aligned}
$$

Find $\lim _{x \rightarrow a^{-}} f(x), \lim _{x \rightarrow a^{+}} f(x)$ and $\lim _{x \rightarrow a} f(x)$

$$
\begin{aligned}
& \text { a) } f(x)=\frac{1}{x^{2}} ; a=0 \\
& \text { b) } f(x)=\frac{1}{x-1} ; a=1 \\
& \text { c) } f(x)=\frac{2 x}{x-3} ; a=3 \\
& \text { d) } f(x)=\frac{\sqrt{1+3 x}}{1-x} ; a=1
\end{aligned}
$$

By referring to the following figure which shows the graph of $y=f(x)$, find
a) $\lim _{x \rightarrow 1^{-}} f(x)$
b) $\lim _{x \rightarrow 1^{+}} f(x)$
c) $\lim _{x \rightarrow 2} f(x)$

d) $\lim _{x \rightarrow 3} f(x)$

By referring to the following figure which shows the graph of $y=g(x)$, find
a) $\lim _{x \rightarrow-2^{+}} g(x)$
b) $\lim _{x \rightarrow-2^{-}} g(x)$
c) $\lim _{x \rightarrow-2} g(x)$
d) $\lim _{x \rightarrow 2^{-}} g(x)$
e) $\lim _{x \rightarrow 2^{+}} g(x)$

f) $\lim _{x \rightarrow 2} g(x)$
©NMI

By referring to the following figure which shows the graph of $y=g(x)$, find

c) $\lim _{x \rightarrow-2} g(x)$
d) $\lim _{x \rightarrow 2^{-}} g(x)$
e) $\lim _{x \rightarrow 2^{+}} g(x)$
f) $\lim _{x \rightarrow 2} g(x)$

1) Evaluate $\lim _{x \rightarrow 1} f(x)$ for the function below if exist.

$$
f(x)=\left\{\begin{array}{ccc}
x+2 & ; & x<-1 \\
x^{2} & ; & -1 \leq x \leq 1 \\
4-x^{2} & ; & x>1
\end{array}\right.
$$

$$
f(x)=\left\{\begin{array}{cc}
x-1 & ; \quad x \leq 3 \\
3 x-7 & ; \quad x>3
\end{array}\right.
$$

1) Given $\quad 3 x-7, x$, find
a) $f(3)$
b) $\lim _{x \rightarrow 3^{-}} f(x)$
c) $\lim _{x \rightarrow 3^{+}} f(x)$
d) $\lim _{x \rightarrow 3} f(x)$
2) Evaluate $\lim _{x \rightarrow 1} f(x) \quad$ for the function below if $ص$ exist.
a) $f(x)= \begin{cases}2 & ; \quad x \neq 1 \\ 5 & ; \quad x=1\end{cases}$
b) $f(x)= \begin{cases}4-x^{2} & ; \quad x \leq 1 \\ 2+x^{2} & ; \quad x>1\end{cases}$
c) $f(x)=\left\{\begin{array}{cc}2 x & ; \quad x \leq 1 \\ 2 x+3 & ; \quad x>1\end{array}\right.$
©NMI

Properties of Limits

1) If $f(x)=c$, where c is a constant, then

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} c=c
$$

2) If $f(x)=x$, then

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} x=a
$$

3) If $f(x)=x^{n}$, where n is a positive integer $(n>0)$ then

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} x^{n}=a^{n}
$$

4) If c is a constant, then

$$
\lim _{x \rightarrow a} c(f(x))=c \lim _{x \rightarrow a} f(x)
$$

Properties of Limits (cont)

5) $\operatorname{Iff}(x)=\sqrt[n]{x}$, where n is a positive integer $(n>0)$ then

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} \sqrt[n]{x}=\sqrt[n]{a}
$$

$\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ exist, then
6) $I f^{f}$

$$
\lim _{x \rightarrow a}[f(x) \pm g(x)]=\lim _{x \rightarrow a} f(x) \pm \lim _{x \rightarrow a} g(x)
$$

$\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ exist,
7) $I f^{x \rightarrow a}$

$$
\lim _{x \rightarrow a}[f(x) \times g(x)]=\lim _{x \rightarrow a} f(x) \times \lim _{x \rightarrow a} g(x)
$$

Properties of Limits (cont)

8) If $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ exist, then

$$
\lim _{x \rightarrow a}\left[\frac{f(x)}{g(x)}\right]=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}
$$

where $\lim _{x \rightarrow a} g(x) \neq 0$

Evaluate the following limits.
a) $\lim _{x \rightarrow 2} 8$
b) $\lim _{x \rightarrow 2} x$
c) $\lim _{x \rightarrow-2} x^{3}$
d) $\lim _{x \rightarrow 10} 9 x^{2}$
e) $\lim _{x \rightarrow-2}\left(x^{5}+2 x-5\right)$
f) $\lim _{x \rightarrow-1}\left(x^{5}-5\right)(x+1)$
g) $\lim _{x \rightarrow-2} \sqrt{5 x^{2}-4}$
h) $\lim _{x \rightarrow-3} \frac{x-1}{x^{2}}$

Direct Substitution Method

The limits of certain functions may be evaluated by substituting $x=a$ in $f(x)$. Thus we get $\lim _{x \rightarrow a} f(x)=f(a)$
a) $\lim _{x \rightarrow 5} x$
b) $\lim _{x \rightarrow 2} 3 x^{2}-4$
c) $\lim _{x \rightarrow 4} \sqrt{x-2}$
d) $\lim _{x \rightarrow-3} \frac{2 x+1}{x^{2}-3 x+1}$
e) $\lim _{x \rightarrow-1} 2 e^{x+1}$
f) $\lim _{x \rightarrow 2}[\ln (x-1)+5]$
g) $\lim _{x \rightarrow 3}|x-2|$
h) $\lim _{x \rightarrow 0}\left(x^{3}+1\right) \sqrt{x+4}$

Limit of a Rational Function

The limit of a rational function can be found by substitution when the denominator is different from zero. If $f(x)$ and $g(x)$ are polynomials, then

$$
\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{f(c)}{g(c)} ; \text { where } g(c) \neq 0
$$

Factorization Method

If $f(x)$ and $g(x)$ are polynomials, then

$$
\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{f(c)}{g(c)}
$$

will be $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{0}{0}$ (indeterminate form)
if $f(c)=0$ and $g(c)=0$. We use factorization method to solve the limit.

Evaluate the following
a) $\lim _{x \rightarrow 2} \frac{x^{2}-3 x+2}{x-2}$
d) $\lim _{x \rightarrow 0} \frac{x^{2}+x}{x^{2}-x}$
b) $\lim _{x \rightarrow 4} \frac{x-4}{\sqrt{x}-2}$
e) $\lim _{x \rightarrow 2} \frac{x^{3}-8}{x^{2}-4}$
c) $\lim _{x \rightarrow 1} \frac{x^{3}-1}{x-1}$
f) $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x^{2}-x}$

Multiplication of Conjugates Method

If by direct substitution, the limit of a rational function involving surd is 0/0 (indeterminate form), then the method of multiplication of conjugate can be used.

Evaluate the following limits.
a) $\lim _{x \rightarrow 2} \frac{x-2}{\sqrt{x+2}-2}$
d) $\lim _{x \rightarrow 1} \frac{3(x-1)+4(x-1)^{2}}{2(x-1)+5(x-1)^{2}}$
b) $\lim _{x \rightarrow 2} \frac{x^{2}-3 x+2}{2-\sqrt{x+2}}$
e) $\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-\sqrt{1-x}}{x}$
c) $\lim _{x \rightarrow 0} \frac{\sqrt{x+9}-3}{x}$
f) $\lim _{x \rightarrow 3} \frac{\sqrt{4-x}-1}{3-\sqrt{2 x+3}}$
$>$ If x approaches positive infinity, $f(x)$ approaches but never quite reaches a value of L, using
 limit notation, we state

$$
\lim _{x \rightarrow+\infty} f(x)=L
$$

$>$ If x approaches negative infinity, $\quad y=f(x)$ $f(x)$ approaches but never quite reaches a value of M, using limit notation, we state

$$
\lim _{x \rightarrow-\infty} f(x)=M
$$

If $f(x)$ is a rational function, to calculate

$$
\lim _{x \rightarrow-\infty} f(x) \text { or } \lim _{x \rightarrow+\infty} f(x)
$$

we carry out the following steps:
STEP 1:
Divide the numerator and denominator of $f(x)$ with x^{n}, where n is the highest power of x in the denominator.
STEP 2:
Use the limits theorem.

Evaluate the following limits.
a) $\lim _{x \rightarrow-\infty}\left(7 x^{5}-9\right)$
b) $\lim _{x \rightarrow+\infty}(3 x-1)$
c) $\lim _{x \rightarrow+\infty} \sqrt{x^{2}-4}$
d) $\lim _{x \rightarrow-\infty}\left(2+\frac{1}{x}\right)$

Evaluate the following limits.
a) $\lim _{x \rightarrow+\infty} \frac{3 x-5}{6 x+8} \quad$ e) $\lim _{x \rightarrow-\infty} \frac{x+2}{x^{2}-2 x+1}$
b) $\lim _{x \rightarrow-\infty} \frac{x-4 x^{2}}{5-6 x^{3}}$
f) $\lim _{y \rightarrow-\infty} \frac{2+y}{\sqrt{6 y^{2}-7}}$
c) $\lim _{y \rightarrow+\infty} \sqrt[3]{\frac{3 y-5}{6 y+8}}$
g) $\lim _{y \rightarrow \infty} \frac{y^{2}-y}{y^{2}+y}$
d) $\lim _{t \rightarrow-\infty} \frac{\sqrt{3 t^{4}+t}}{t^{2}-8}$

CONTINUITY

In this section, we will discuss another concept called continuity, which is closely related to the concept of limits

Definition 4

A function f is said to be continuous at a point $x=a$ if the following conditions are satisfied.
(a) The function f is defined at $x=a$, that is $f(a)$ exist.
(b) $\lim _{x \rightarrow a} f(x)$ exist.
(c) $\lim _{x \rightarrow a} f(x)=f(a)$

From the following graphs, determine whether each of the limits exist or not.

a) $\lim _{x \rightarrow 1} f(x)$

b) $\lim _{x \rightarrow 1} g(x)$
c) $\lim _{x \rightarrow 0} h(x)$

Find the point of discontinuity, if they exist, for the following functions.
a) $f(x)=x^{2}$

c) $f(x)=\frac{1}{x}$
©NMI

Sketch the graph of the following functions and find the points of discontinuity.

$$
\begin{aligned}
& \text { a) } f(x)=\left\{\begin{array}{lll}
-x & , & x<0 \\
x^{2} & , & x>0
\end{array}\right. \\
& \text { b) } g(x)= \begin{cases}1, & x \neq 2 \\
2, & x=2\end{cases} \\
& \text { c) } f(x)=\left\{\begin{array}{ccc}
2 x & ; & x \leq 1 \\
2 x+3 & ; & x>1
\end{array}\right.
\end{aligned}
$$

Identify whether the following functions $f(x)$ and $g(x)$ are continuous or discontinuous at $x=1$.

$$
f(x)=\frac{x^{2}-1}{x-1} ; x \neq 1 \quad g(x)=\left\{\begin{array}{cc}
\frac{x^{2}-1}{x-1} & ; \quad x \neq 1 \\
3 & ; \quad x=1
\end{array}\right.
$$

Given

$$
f(x)=\left\{\begin{array}{cc}
9 x-2 & , \quad x \leq 1 \\
k x^{2} & , \quad x>1
\end{array}\right.
$$

Sketch the graph of $y=f(x)$ and find the value of the constant k so that $f(x)$ is continuous at $x=1$.

CONTINUITY RULLES

Iff and g are continuous at $x=a$, then the
following functions are also continuous at $x=a$.
a) $f \pm g$
b) $g f$
c) $f g$
d) f^{n}
e) $\frac{f}{g}$, provided $g(a) \neq 0$

CONTINUITY IN AN INTERVAL

Let f be a function defined in the interval $[a, b]$.
Then the function f is said to be continuous in the interval $[a, b]$ if
a) fis continuous in the interval (a, b),
b) $\lim _{x \rightarrow a^{+}} f(x)=f(a)$ and $\lim _{x \rightarrow b^{-}} f(x)=f(b)$

If $f(x)=\sqrt{4-x^{2}}$, sketch the graph of $y=f(x)$ and prove that f is continuous in the interval $[-2,2]$.
a)For $-2<c<2$
$\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} \sqrt{4-x^{2}}=\sqrt{4-c^{2}}=f(c)$
f is continuous at $x=c$.
b) $\lim _{x \rightarrow-2^{+}} f(x)=f(-2)$?
$\lim _{x \rightarrow 2^{-}} f(x)=f(2)$?
If yes, f is continuous in the interval $[-2,2]$.

Test 1 Sem 220182019

Find the limit for each of the following.
a) $\lim _{x \rightarrow 0} \frac{\sqrt{3+x}-\sqrt{3}}{x}$.
(3 marks)
b) $\lim _{x \rightarrow \infty} \frac{3 x^{2}+2 x-1}{7-2 x^{2}}$.

Test 1 Sem 120192020

1 Evaluate the limit for each of the following.
i. $\lim _{x \rightarrow-1} 3 x(2 x+1)$.
(1 mark)
ii. $\lim _{x \rightarrow \infty} \frac{2 x^{3}+x^{2}+x+1}{x^{3}+1}$.
(3 marks)
2 Show that the $\lim _{x \rightarrow 9} \frac{x-9}{\sqrt{x}-3}=6$.
(3 marks)

Final Sem 220182019 QUESTION 1)
a) A function $f(x)$ is defined by

$$
f(x)= \begin{cases}a x^{2}+\frac{1}{2}, & x<-1, \\ 1-b x, & -1 \leq x<2, \\ \sin \left(\frac{\pi}{2} x\right), & x \geq 2,\end{cases}
$$

where a and b are constants. Find the values of a and b if $f(x)$ is continuous at $x=-1$ and $x=2$.

Final Sem 220182019

 QUESTION 1b) Find the limit of each of the following
i. $\lim _{x \rightarrow 4} \frac{x^{2}-3 x-4}{x^{2}-16}$.
(5 marks)
ii. $\lim _{x \rightarrow \infty} \frac{4 x-1}{\sqrt{9 x^{2}+1}+2 x}$.
(5 marks)

Final Sem 120192020

QUESTION 1)

a) A function $f(x)$ is defined by

$$
f(x)= \begin{cases}x^{2}-\alpha^{2}, & x<4, \\ \alpha x+20, & x \geq 4,\end{cases}
$$

where α is a constant. Determine the value of α so that $f(x)$ is continuous for any value of x. Hence sketch the graph of $f(x)$.
(6 marks)

Final Sem 120192020
QUESTION 1
b) Show for each of the following

$$
\text { i. } \lim _{x \rightarrow 4} \frac{x^{2}-16}{\sqrt{x}-2}=32 \text {. }
$$

ii. $\lim _{x \rightarrow 0} \frac{4-\sqrt{16+x}}{x}=-\frac{1}{8}$.
(4 marks)
(5 marks)

