

Course Text:

1.Abd Wahid Md Raji *et al.* (2013), *The First Course of Calculus for Science and Engineering Students*. Penerbit UTM. (ISBN: 978–983–52–0862–1).

Supplementary Texts:

1.Fallow, Stanley J, Hagg, Gary M. (1990). *Calculus and its applications*. New York: McGraw–Hill (QA 303 F38 1990).
2.Mizrahi, Abe, Sullivan, Michael. (1986). *Calculus and analytical geometry*. California: Wadsworth Pub. (QA 303 M59 1986).
3.Varberg, Dale E, Fleming Walter. (1991). *Calculus with applications*. Eaglewood Cliffs, N.J.: Prentice Hall, 1991 (QA 303 V37 1991).

 $\mathbf{O}\mathbf{N}\mathbf{M}$

©NMI

Assessment

<i>NO.</i>	TYPE OF ASSESSMENT	NO OF ASSESSMENT	% EACH	% TOTAL	DATE/ TIME / VENUE
1.	Quizes	2 (15 min each)	5	10	
1.	Test 1	1 (1 hr 15 min)	15	15	Date: tbc Day: tbc Time: During class Venue: Will inform later
2.	Test 2	1 (1 hr 15 min)	20	20	Date: tbc Day: tbc Time: During class Venue: Will inform later
З.	Assignments	1	5	5	
5.	Final	1 (3 h)	50	50	

This course provides a solid foundation of basic calculus prior to pursuance of any mathematics at university level. It comprises of various topic such as Limits and continuity of functions, Differentiations, Integrations, Differential Equations and Numerical Methods. The intention is to equip students with the necessary tools required for further mathematics and

engineering courses.

I UTM

Weekly Schedule

Week	Contents	Notes
Week 1	<i>Limits</i> : Left and right limits. Limits at infinity (polynomial and rational functions). Computational of limits by using factorisation, by rationalization (not including trigonometry).	
Week 2	Continuity of functions at a point and on an interval.	
Week 3	Differentiation : using first principle. Derivatives of algebraic functions & exponential functions.	
Week 4	Derivatives of trigonometric functions, and reciprocal of trigonometric functions such as sec x, cot x, cosec x.	
Week 5	Rules of differentiation: Product Rule, Quotient Rule, Chain Rule, Implicit differentiation and Parametric differentiations.	
Week 6	Higher order differentiations. Errors and approximations. Rate of change.	
Week 7	Decreasing and increasing functions. Relative maximum and minimum points by using first derivative tests.	
Week 8	Points of inflection. Graph sketching using the critical points, vertical and horizontal asymptotes.	
	Mid Semester Break	

Weekly Schedule

Week	Contents	Notes
Week 9	<i>Integrations:</i> Anti-derivatives, the indefinite integral. Standard integrals. Integration techniques using substitutions.	
Week 10	Integration techniques using substitutions including trigonometric substitution. Integration by parts including tabular form.	
Week 11	Integration by partial fractions. Integration of exponential, logarithmic and trigonometric functions.	
Week 12	Area bounded by two curves. Volume of revolution about x-axis and about y-axis. Volume bounded by two curves.	
Week 13	Ordinary Differential Equation: Formations of differential equations. Solving first order differential equation: Separable equations.	
Week 14	Solving first order differential equation: Linear Equations.	
Week 15	Non-linear equations: Fixed point method and Newton Raphson Method.	
Week 16	Numerical integration: trapezium rule and Simpson rule.	

Limits are used to explain changes that arise for a particular function when the value of an independent variable approaches a certain value.

$$\lim_{x \to x_0} f(x) = f(x_0) = L$$

(C) N M |

Right Limit

STIMIL

If the value of f(x) approaches to a number L_1 as x approaches x_0 from the right, then we right

$$\lim_{x \to x_0^+} f(x) = L_1$$

and we say the "limit of f(x) as x approaches x_0 from the right equals L_1 "

I UTM

©NM

Left Limit

LIMITS

If the value of f(x) approaches to a number L_2 as x approaches x_0 from the left, then we right

$$\lim_{x \to x_0^-} f(x) = L_2$$

and we say the "limit of f(x) as x approaches x_0 from the left equals L_2 "

I UTM

Limit of a Function

LIMITS

If the limits from the left and the right sides of f(x) have the same value, L that is

$$\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) = L$$

Then $\lim_{x \to x_0} f(x)$ exist and it is written as

 $\lim_{x \to x_0} f(x) = L$

and we say the "limit of f(x) as x approaches x₀ equals L"

©NM

3

Definition

I UTM

The limit of f(x) at x_0 exists only when the limits from the left and the right exist and both are equal.

However if either the limit from the left or from the right does not exist, or if

$$\lim_{x \to x_0^-} f(x) \neq \lim_{x \to x_0^+} f(x)$$

Then $\lim_{x \to x_0} f(x)$ does not exist.

UTM

I UTM

The closer x gets to the value 0, the closer the value of f(x) comes to 1. This limit could have been determined by simply substituting x = 0 into f(x). Since

$$\lim_{x \to 0^{-}} (x^{2} + 1) = \lim_{x \to 0^{+}} (x^{2} + 1) = 1$$

thus $\lim_{x \to 0} (x^2 + 1) = 1$

 $(\mathbf{C})\mathbf{N}\mathbf{M}$

Find
$$\lim_{x \to 4} f(x)$$
 if $f(x) = \begin{cases} 2x & \text{if } x \le 4\\ 2x + 3 & \text{if } x > 4 \end{cases}$

Solution:

LIMITS

$$\lim_{x \to 4^{-}} f(x) = \lim_{x \to 4^{-}} 2x = 2(4) = 8$$
$$\lim_{x \to 4^{+}} f(x) = \lim_{x \to 4^{+}} 2x + 3 = 2(4) + 3 = 3$$

Since
$$\lim_{x \to 4^-} f(x) \neq \lim_{x \to 4^+} f(x)$$
, thus $\lim_{x \to 4} f(x)$

does not exist.

I UTM

11

UNIVERSITI TEKNOLOGI MALAYSIA

The independent variable "moves far away" from the origin along the x-axis. If x is allowed to increase indefinitely, we may write it as " $x \rightarrow +\infty$ " and we say "x approaches positive infinity". Whereas, if x is allowed to decrease indefinitely, we may write it as "x $\rightarrow -\infty$ " and we say "x approaches negative infinity". Let say the limit of f(x) as x approaches positive infinity is L, where L is a real number. This statement can be written as

$$\lim_{x \to +\infty} f(x) = L$$

The line y = L is a horizontal asymptote for y = f(x).

UTM

Find the
$$\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)$$

X	1	10	100	1000
<i>f(x)</i>	2	1.1	1.01	1.001

X	10,000	100,000	1,000,000
<i>f(x)</i>	1.0001	1.00001	1.000001

X	10,000,000	100,000,000	1,000,000,000
<i>f(x)</i>	1.0000001	1.00000001	1.000000001

I UTM

	(C)	N	IVI
 . 	e		
		100	

1 UTM

					0							
Sketch the graph $y = \frac{2}{x}$.										ρ		
x	x –1,000,000 –1				000	-1	0,000	-1	,000	-	-100	
<i>f(x)</i>	-0.00	00002	-0	-0.00002		-(0.0002	0002 -0.002		2 -0.02		
x	-10	-1	-0.1	-	0.01	-0	.001	-0.00	001	-0.0	00001	4
<i>f(x)</i>	-0.2	-2	-20	-	-200	-2	,000	-20,0	000	-20	0,000	Example
x	0.000	001	0.000	01	0.00	01	0.02	1 0.	1	1	10	сат
<i>f</i> (x)	200,0	000	20,00	00	2,00	00	200) 2	0	2	0.2	$\mathcal{F}_{\mathcal{X}}$
x	100	1,00	00	0 10,000			100,000		1,000,000		000	
<i>f</i> (x)	0.02	0.00	02	2 0.0002			0.000	002	6	0.000002		
												-

 \succ If the function f(x)increases without bound as X approaches a from the left and right side,

$$\lim_{x \to a^{-}} f(x) = +\infty \text{ and } \lim_{x \to a^{+}} f(x) = +\infty$$

then
$$\lim_{x \to a} f(x) = +\infty$$

UTM

 \succ If the function f(x)decreases without bound as X approaches a from the left and right side,

©NMI

I UTM

$$\lim_{x \to a^{-}} f(x) = -\infty \text{ and } \lim_{x \to a^{+}} f(x) = -\infty$$

then

LIMITS

$$\lim_{x \to a} f(x) = -\infty$$

 \succ If the function f (x) y_{\uparrow} without increases bound as x approaches a from the right side, and decreases without bound as x approaches a from the left side,

©NM

I UTM

then

$$\lim_{x \to a} f(x) \ does \ not \ exist$$

	FSPM 0024 CALCULUS	UNVERSITI TEKNOLOGI MALAYSA	NMI			
	To evaluate $\lim_{x \to 1} \frac{1}{(x-1)^2}$ right hand limits as x app	, we must take left and roaches 1.				
S	x → 1 ⁻	$x \rightarrow 1^+$				
LIMITS	f (0.9) = 100	f(1.1) = 100				
ЦЦ	f (0.99) = 10000	f(1.01) = 10000				
	f (0.9999) = 100000000	f(1.0001) = 100000000	Examp			
	We should conclude that	$\lim_{x \to 1} \frac{1}{(x-1)^2} = +\infty$				
			1			

I UTM

LIMITS

Evaluate a) $\lim_{x \to -\infty} \frac{2}{x^2}$ and $\lim_{x \to +\infty} \frac{2}{x^2}$ $y = 2/x^2$ b) $\lim_{x \to 0^{-}} \frac{2}{x^2}$ and $\lim_{x \to 0^{+}} \frac{2}{x^2}$ **→** X () Example 6 c) $\lim_{x \to -\infty} \frac{2}{x}$ and $\lim_{x \to +\infty} \frac{2}{x}$ y = 2/x() $\lim_{x \to 0^-} \frac{2}{x} and \lim_{x \to 0^+} \frac{2}{x}$ d)

©NMI

UTM

I UTM

LIMITS

©NMI

Exercíses

I UTM

Find
$$\lim_{x \to a^{-}} f(x)$$
, $\lim_{x \to a^{+}} f(x)$ and $\lim_{x \to a} f(x)$
a) $f(x) = \frac{1}{x^{2}}$; $a = 0$
b) $f(x) = \frac{1}{x - 1}$; $a = 1$
c) $f(x) = \frac{2x}{x - 3}$; $a = 3$
d) $f(x) = \frac{\sqrt{1 + 3x}}{1 - x}$; $a = 1$

By referring to the following figure which shows the graph of y = f(x), find a) $\lim_{x \to 1^-} f(x)$ b) $\lim_{x \to 1^+} f(x)$ Exercíses y = f(x)c) $\lim_{x \to 2} f(x)$ 3 Л 2 $d) \lim_{x \to 3} f(x)$

©NMI

I UTM

By referring to the following figure which shows the graph of y = g(x), find

c)
$$\lim_{x \to -2} g(x)$$

d) $\lim_{x \to -2} g(x)$

q(x)

e)
$$\lim_{x \to 2^+} g(x)$$

lim

$$f) \lim_{x \to 2} g(x)$$

: 2

©NMI

Exercises

I UTM

y = 1

y = g(x)

I UTM

1) Evaluate $\lim_{x \to 1} f(x)$ for the function below if exist. Ist. $f(x) = \begin{cases} x+2 & ; & x < -1 \\ x^2 & ; & -1 \le x \le 1 \\ 4-x^2 & ; & x > 1 \end{cases}$ $f(x) = \begin{cases} x - 1 & ; & x \le 3 \\ 3x - 7 & ; & x > 3 \\ 0 & , find \end{cases}$ 1) Given b) $\lim_{x \to 3^{-}} f(x)$ a) f(3) $d) \lim_{x \to 3} f(x)$ c) $\lim_{x \to 3^+} f(x)$

Exercíses

3) Evaluate $\lim_{x \to 1} f(x)$ for the function below if $\bigcap_{x \to 1} f(x)$

a)
$$f(x) = \begin{cases} 2 & ; & x \neq 1 \\ 5 & ; & x = 1 \end{cases}$$

b)
$$f(x) = \begin{cases} 4 - x^2 & ; x \le 1 \\ 2 + x^2 & ; x > 1 \end{cases}$$

c)
$$f(x) = \begin{cases} 2x & ; x \le 1 \\ 2x + 3 & ; x > 1 \end{cases}$$

©NMI

Exercises

I UTM 1) If f(x) = c, where c is a constant, then

$$\lim_{x \to a} f(x) = \lim_{x \to a} c = c$$

2) If f(x) = x, then

LIMITS

$$\lim_{x \to a} f(x) = \lim_{x \to a} x = a$$

3) If $f(x) = x^n$, where n is a positive integer (n > 0) then

$$\lim_{x \to a} f(x) = \lim_{x \to a} x^n = a^n$$

4) If c is a constant, then

$$\lim_{x \to a} c(f(x)) = c \lim_{x \to a} f(x)$$

 $(\mathbf{C})\mathbf{N}\mathbf{M}$

S

LIMIT

5) Iff $(x) = \sqrt[n]{x}$, where n is a positive integer (n>0)then $\lim_{x \to a} f(x) = \lim_{x \to a} \sqrt[n]{x} = \sqrt[n]{a}$ $\lim_{x \to a} f(x) \text{ and } \lim_{x \to a} g(x) \text{ exist, then}$ 6) $\lim_{x \to a} \left[f(x) \pm g(x) \right] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$ $\lim_{f^{x \to a}} f(x) \text{ and } \lim_{x \to a} g(x) \text{ exist,}$ $If^{x \to a}$ 7) $\lim_{x \to a} \left[f(x) \times g(x) \right] = \lim_{x \to a} f(x) \times \lim_{x \to a} g(x)$

8) If $\lim_{x \to a} f(x)$ and $\lim_{x \to a} g(x)$ exist, then

$$\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right] = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$

where $\lim_{x \to a} g(x) \neq 0$

©NMI

LIMITS

Evaluate the following limits.

- a) $\lim_{x \to 2} 8$ e) $\lim_{x \to -2} (x^5 + 2x 5)$
- b) $\lim_{x \to 2} x$ f) $\lim_{x \to -1} (x^5 5)(x + 1)$
- c) $\lim_{x \to -2} x^3$ d) $\lim_{x \to 10} 9x^2$ g) $\lim_{x \to -2} \sqrt{5x^2 - 4}$ h) $\lim_{x \to -3} \frac{x - 1}{x^2}$

©NMI

LIMITS

The limit of a rational function can be found by substitution when the denominator is different from zero. If f(x) and g(x) are polynomials, then

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{f(c)}{g(c)} ; where g(c) \neq 0$$

I UTM

(C) N M |

Factorization Method

If f(x) and g(x) are polynomials, then

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{f(c)}{g(c)}$$

will be $\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{0}{0}$ (indeterminate form)

if f(c) = 0 and g(c) = 0. We use factorization method to solve the limit.

(C) N M

FSPM 0024 CALCULUS

Evaluate the following

a)
$$\lim_{x \to 2} \frac{x^2 - 3x + 2}{x - 2}$$

b)
$$\lim_{x \to 4} \frac{x - 4}{\sqrt{x} - 2}$$

c)
$$\lim_{x \to 1} \frac{x^3 - 1}{x - 1}$$

LIMITS

d)
$$\lim_{x \to 0} \frac{x^2 + x}{x^2 - x}$$

e) $\lim_{x \to 2} \frac{x^3 - 8}{x^2 - 4}$
f) $\lim_{x \to 1} \frac{x^2 - 1}{x^2 - x}$

Exercíses

I UTM

Multiplication of Conjugates Method

If by direct substitution, the limit of a rational function involving surd is 0/0 (indeterminate form), then the method of multiplication of conjugate can be used.

(C)NM

Evaluate the following limits. $\lim_{x \to 2} \frac{x-2}{\sqrt{x+2}-2}$ d) $\lim_{x \to 1} \frac{3(x-1) + 4(x-1)^2}{2(x-1) + 5(x-1)^2}$ *a*)

b)
$$\lim_{x \to 2} \frac{x^2 - 3x + 2}{2 - \sqrt{x + 2}}$$
 e) $\lim_{x \to 0} \frac{\sqrt{1 + x} - \sqrt{1 - x}}{x}$
c) $\lim_{x \to 0} \frac{\sqrt{x + 9} - 3}{x}$ f) $\lim_{x \to 3} \frac{\sqrt{4 - x} - 1}{3 - \sqrt{2x + 3}}$

3

©NMI

Exercíses

FSPM 0024 CALCULUS

If x approaches
 positive infinity, f(x)
 approaches
 but
 never quite reaches
 a value of L, using
 limit notation, we
 state

IMITS

$$\lim_{x \to +\infty} f(x) = L$$

©NMI

UTM

 If x approaches negative infinity, f(x) approaches but never quite reaches
 a value of M, using
 limit notation, we
 state

$$\lim_{x\to-\infty}f(x)=M$$

©NMI

we carry out the following steps:

STEP 1:

LIMITS

Divide the numerator and denominator of f(x)with x^n , where n is the highest power of x in the denominator.

STEP 2:

Use the limits theorem.

a)
$$\lim_{x\to-\infty}(7x^5-9)$$

b)
$$\lim_{x \to +\infty} (3x - 1)$$

c)
$$\lim_{x \to +\infty} \sqrt{x^2 - 4}$$

d)
$$\lim_{x \to -\infty} \left(2 + \frac{1}{x}\right)$$

©NMI

Exercíses

CONTINUITY

In this section, we will discuss another concept called continuity, which is closely related to the concept of limits

Definition 4

A function f is said to be continuous at a point x = a if the following conditions are satisfied. (a) The function f is defined at x = a, that is f (a) exist. (b) $\lim_{x \to a} f(x)$ exist. (c) $\lim_{x \to a} f(x) = f(a)$

(C) N M |

From the following graphs, determine whether each of the limits exist or not.

©NMI

UTM

©NMI

UTM

Sketch the graph of the following functions and find the points of discontinuity.

a)
$$f(x) = \begin{cases} -x & , x < 0 \\ x^2 & , x > 0 \end{cases}$$

b)
$$g(x) = \begin{cases} 1 & , & x \neq 2 \\ 2 & , & x = 2 \end{cases}$$

LIMITS

c)
$$f(x) = \begin{cases} 2x & ; x \le 1 \\ 2x + 3 & ; x > 1 \end{cases}$$

Identify whether the following functions f(x) and g(x) are continuous or discontinuous at x = 1.

$$f(x) = \frac{x^2 - 1}{x - 1}; x \neq 1 \qquad g(x) = \begin{cases} \frac{x^2 - 1}{x - 1} & ; x \neq 1 \\ \frac{x - 1}{3} & ; x = 1 \end{cases}$$

©NMI

Exercíses

I UTM

►X

LIMITS

Given

LIMITS

$$f(x) = \begin{cases} 9x - 2 & , & x \le 1 \\ kx^2 & , & x > 1 \end{cases}$$

Sketch the graph of y = f(x) and find the value of the constant k so that f(x) is continuous at x = 1.

©NMI

Exercíses

If f and g are continuous at x = a, then the following functions are also continuous at x = a. a) $f \pm g$ *b) gf* c) fg*d*) *f*^{*n*} e) $\frac{f}{a}$, provided $g(a) \neq 0$

©NMI

Let f be a function defined in the interval [a, b]. Then the function f is said to be continuous in the interval [a, b] if

a) f is continuous in the interval (a,b),

b) $\lim_{x \to a^+} f(x) = f(a)$ and $\lim_{x \to b^-} f(x) = f(b)$

(C) N M |

If
$$f(x) = \sqrt{4 - x^2}$$
, sketch the graph of $y = f(x)$ and
prove that f is continuous in the interval $[-2, 2]$.
a)For $-2 < c < 2$
$$\lim_{x \to c} f(x) = \lim_{x \to c} \sqrt{4 - x^2} = \sqrt{4 - c^2} = f(c)$$
f is continuous at $x = c$.
b)
$$\lim_{x \to -2^+} f(x) = f(-2)?$$
$$\lim_{x \to 2^-} f(x) = f(2)?$$
If yes, f is continuous in
the interval $[-2, 2]$.

©NMI

I UTM

Test 1 Sem 2 20182019

a) $\lim_{x \to 0} \frac{\sqrt{3+x} - \sqrt{3}}{x}$.

 $\lim_{x \to \infty} \frac{3x^2 + 2x - 1}{7 - 2x^2}.$

YEAR QUESTIONS

PAST

b)

Find the limit for each of the following.

(3 marks)

©NMI

(3 marks)

Test 1 Sem 1 20192020

YEAR QUESTIONS

PAST

1 Evaluate the limit for each of the following.

i. $\lim_{x \to -1} 3x(2x+1)$. (1 mark)

ii.
$$\lim_{x \to \infty} \frac{2x^3 + x^2 + x + 1}{x^3 + 1}.$$
 (3 marks)

2 Show that the
$$\lim_{x \to 9} \frac{x-9}{\sqrt{x-3}} = 6.$$

(3 marks)

Final Sem 2 20182019

QUESTION 1)

a) A function f(x) is defined by

$$f(x) = \begin{cases} ax^2 + \frac{1}{2}, & x < -1, \\ 1 - bx, & -1 \le x < 2, \\ \sin\left(\frac{\pi}{2}x\right), & x \ge 2, \end{cases}$$

where a and b are constants. Find the values of a and b if f(x) is continuous at x = -1 and x = 2.

(5 marks)

I UTM

Final Sem 2 20182019

QUESTION 1

b) Find the limit of each of the following

i.
$$\lim_{x \to 4} \frac{x^2 - 3x - 4}{x^2 - 16}$$
.

ii.
$$\lim_{x \to \infty} \frac{4x - 1}{\sqrt{9x^2 + 1} + 2x}$$
.

(5 marks)

©NMI

(5 marks)

Final Sem 1 20192020

QUESTION 1)

a) A function f(x) is defined by

$$f(x) = \begin{cases} x^2 - \alpha^2, & x < 4, \\ \alpha x + 20, & x \ge 4, \end{cases}$$

where α is a constant. Determine the value of α so that f(x) is continuous for any value of x. Hence sketch the graph of f(x).

(6 marks)

Final Sem 1 20192020

QUESTION 1

b) Show for each of the following

i.
$$\lim_{x \to 4} \frac{x^2 - 16}{\sqrt{x} - 2} = 32.$$

ii.
$$\lim_{x \to 0} \frac{4 - \sqrt{16 + x}}{x} = -\frac{1}{8}$$

(4 marks)

©NMI

(5 marks)

