CHAPTER 2
DIFFERENTIATION
2.1 The Geometrical Meaning of Differentiation
2.2 Differentiation of Simple Algebraic Functions
2.3 Differentiation Rules
2.4 Higher Order Differentiation
2.5 Differentiation of Trigonometric Functions
2.6 Differentiation of Logarithmic Functions
2.7 Differentiation of Exponential Functions
2.8 Differentiation of Implicit Functions
2.9 Differentiation of Parametric Functions

The Geometrical

Meaning of

Differentiation

The Geometrical Meaning of Differentiation

Definition 2.1: The Derivative

Let $y=f(x)$ be a function. The derivative of a function f with respect to x, denoted by f^{\prime}, is defined by

$$
f^{\prime}(x)=\lim _{\delta x \rightarrow 0} \frac{f(x+\delta x)-f(x)}{\delta x}
$$

provided the limit exists.
Note that the domain of f'is a subset of the domain of f in which the limit exists. The domain of f'may be smaller than the domain of f. If f'exists, then we say that f is differentiable at x.

Definition 2.2: Gradient of the Tangent

If $P\left(x_{0}, y_{0}\right)$ is a point on a curve $y=f(x)$, then the gradient of the tangent to the curve at P is defined as

$$
m=\lim _{\delta x \rightarrow 0} \frac{f\left(x_{0}+\delta x\right)-f\left(x_{0}\right)}{\delta x}
$$

provided the limit exists.

The Geometrical Meaning of Differentiation

The First Principle

Step 1 Given $y=f(x)$. Write the expression $f(x+\delta x)$.
Step 2 Obtain the expression difference between $f(x+\delta x)$ and $f(x)$, that is

$$
f(x+\delta x)-f(x)
$$

Step 3 Simplify the expression

$$
\frac{f(x+\delta x)-f(x)}{\delta x}
$$

Step 4 Find the limit

$$
\lim _{\delta x \rightarrow 0} \frac{f(x+\delta x)-f(x)}{\delta x}
$$

If $y=f(x)$, then $\frac{d y}{d x}=f^{\prime}(x)=\lim _{h \rightarrow 0}\left[\frac{f(x+h)-f(x)}{h}\right]$ when the
limit is exist. If the limit exist, function f is said to be differentiable with respect to x. The process of finding the differential coefficient of the function is called differentiation. The following notation is sometimes used and known as the first principle.

$$
f^{\prime}(x)=\lim _{h \rightarrow 0}\left[\frac{f(x+h)-f(x)}{h}\right]
$$

By using differentiation from the First Principle, find the derivatives of the following
a) $y=9$
b) $y=x^{2}+1$
c) $y=\sqrt{x+1}$
d) $y=\frac{1}{x}$
e) $y=4 x+2 x^{2}$
f) $y=\frac{1}{\sqrt{x-1}}$
a) Show that $f(x)=|x|$ is not differentiable at $x=0$.
b) By using differentiation from the First

Principle, find $f(x)$ if $f(x)=x^{1 / 3}$. Show that $f(x)$ is not differentiable at $x=0$. Sketch its graph.

If $f(x)$ is differentiable at $x=x_{0}$, then $f(x)$ is

$$
f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}}\left[\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}\right]
$$

Find $f^{\prime}(a)$ for the given value of a from first principle.
a) $f(x)=3 x^{2}-12 \quad x_{0}=2$
b) $f(x)=\sqrt{x+1}$
$x_{0}=3$
c) $f(x)=\frac{1}{\sqrt{x+1}} \quad x_{0}=8$

Differentiation of

Simple Algebraic

Functions

$$
\text { If } y=c, \text { where } c \text { is constant, then }
$$

$$
\frac{d y}{d x}=0
$$

Differentíation of Simple \mathcal{A} Igebraic Functions

Differentiate the following functions with respect to x.
a) $y=3$
b) $y=7 / 8$
c) $y=\pi$
d) $y=\sqrt{ } e$

The Power Rule for Positive Integers

If $y=x^{n}$ and n is a positive integer, then

$$
\frac{d y}{d x}=n x^{n-1}
$$

Differentíation of Simple \mathcal{A} Igebraic Functions

Differentiate the following functions with respect to x.
a) $y=x^{10}$
b) $y=x^{99}$
c) $y=x^{15}$
d) $y=x^{20}$

Differentiation
 Rules

Differentiation Rules

The Derivative Constant Multiple Rule

If $y=c u$, where u is a differentiable function of x and c is a constant, then

$$
\frac{d y}{d x}=c \frac{d u}{d x}
$$

Differentíation Rules

Differentiate the following functions with respect to x.
a) $y=7 x^{6}$
b) $y=100 x^{2}$
c) $y=1 / 3 x^{15}$
d) $y=-2 x^{10}$

Differentíation Rules

The Derivative Sum Rule

Let u and v be differentiable functions with respect to x. If $y=u+v$, then

$$
\frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{d x}
$$

Differentíation Rules

Differentiate the following functions with respect to x.

$$
\begin{array}{ll}
\text { a) } y=x^{6}+x+3 & \text { c) } y=x^{10}-5 x^{7}+4 x^{5} \\
\text { b) } y=\left(2 x^{2}-x\right)^{2} & \text { d) } y=-2(x-3)^{10}
\end{array}
$$

Differentiation Rules

The Derivative Product Rule

Let u and v be differentiable functions with respect to x. If $y=u v$, then

$$
\frac{d y}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}
$$

Differentíation Rules

Differentiate the following functions with respect to x.
a) $y=(x+1)(x+3)^{4}$
b) $y=\left(x^{2}-x\right)^{2}(x+4)^{2}$
c) $y=x^{2}\left(5 x^{4}+4\right)^{2}$
d) $y=(1-x)^{2}(x+5)^{3}$

Differentiation Rules

The Derivative Quotient Rufe

Let u and v be differentiable functions
with respect to x. If $y=\frac{u}{v}$ and $v \neq 0$, then

$$
\frac{d y}{d x}=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}
$$

Differentíation Rules

@
Differentiate the following functions with respect to x.
a) $y=\frac{5 x^{3}+x^{2}}{x^{4}+2} \quad$ c) $y=\frac{1}{x}$
b) $y=\frac{7-3 x^{2}}{3-x} \quad$ d) $y=\frac{1}{x^{3}-2 x+5}$

Differentiation Rules

The Power Rule for Integers

If $y=x^{n}$ and n is any integer, then
$\frac{d y}{d x}=n x^{n-1}$

Differentíation Rules

Differentiate the following functions with respect to x.
a) $y=x^{-2}$
b) $y=\frac{1}{x^{9}}$
c) $y=(x+4)^{-3}$
d) $y=\frac{1}{\left(x^{2}-3\right)^{9}}$

Differentíation Rules

The Chain Rule

If g is differentiable at x and f is differentiable at $g(x)$, then the composite function $f \circ g$ is differentiable at x. In other words, if $y=f(g(x))$ and $u=g(x)$

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}
$$

Differentíation Rules

Differentiate the following functions with respect to x.
a) $y=\left(x^{5}-5\right)^{2}$
b) $y=(8 x+5)^{12}\left(x^{3}+7\right)^{13}$
c) $y=\left(\frac{x-5}{2 x+1}\right)^{3}$
d) $y=\sqrt{\frac{1-2 x}{1+2 x}}$

Differentíation Rules

Find $d y / d x$ for the following functions. Hence, find the value(s) of x when $d y / d x=0$.
a) $y=(2 x+3)(3 x-2)$
b) $y=\left(\frac{16}{x}-x\right)^{2}$
c) $y=(7 x-2)^{2}$

Differentíation Rules

$$
\begin{array}{c|l}
\boldsymbol{f}(\boldsymbol{x}) & \boldsymbol{f}^{\prime}(\boldsymbol{x}) \\
\hline y=c u & \frac{d y}{d x}=c \frac{d u}{d x} \\
\hline y=u \pm & \frac{d y}{d x}=\frac{d u}{d x} \pm \frac{d v}{d x} \\
v & \frac{d y}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x} \\
y=u v & \frac{d y}{d x}=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}
\end{array}
$$

Higher

Order

Differentiation

Occasionally, it is useful to differentiate the derivative of a function. In this context, we shall refer to f^{\prime} as the first derivative of f and to the derivative of f ' as the second derivative of f. We could denote the second derivative by $\left(f^{\prime}\right)^{\prime}$, but for simplicity we write $f^{\prime \prime}$. Other higherorder derivatives are defined and denoted by $f^{\prime \prime \prime}$. In general, for $n>3$, the $n^{\text {th }}$ derivative of f is denoted by $f^{(n)}$, for example, $f^{(4)}$ or $f^{(5)}$.

Higher Order Differentíation

First derivative	y^{\prime}	$f^{\prime}(x)$	$\frac{d y}{d x}$	or	$\frac{d}{d x}[f(x)]$
Second derivative	$y^{\prime \prime}$	$f^{\prime \prime}(x)$	$\frac{d}{d x}\left[\frac{d y}{d x}\right]=\frac{d^{2} y}{d x^{2}}$	or	$\frac{d^{2}}{d x^{2}}[f(x)]$
Third derivative	$y^{\prime \prime \prime}$	$f^{\prime \prime \prime}(x)$	$\frac{d}{d x}\left[\frac{d^{2} y}{d x^{2}}\right]=\frac{d^{3} y}{d x^{3}}$	or	$\frac{d^{3}}{d x^{3}}[f(x)]$
\vdots	\vdots	\vdots	\vdots	or	\vdots
n-th	$\mathrm{y}^{(n)}$	$f^{(n)}(x)$	$\frac{d^{n} y}{d x^{n}}$	or	$\frac{d^{n}}{d x^{n}}[f(x)]$

a) If $f(x)=4 x^{4}-2 x^{3}+3$, find its first five derivatives.
b) Find y^{\prime} and $y^{\prime \prime}$ for the following:
i. $\quad y=7 x^{4}-5 x^{3}-2 x$
ii. $y=\left(x^{3}+5\right)(3 x+2)$
iii. $y=\frac{x^{2}}{x-2} \quad$ iv. $y=\frac{1}{(x+1)^{2}(x+2)}$
a) Show that $y=x^{3}+3 x+1$ satisfies the equation $y^{\prime \prime \prime}+x y^{\prime \prime}-2 y^{\prime}=0$.
b) If $y=5 x^{6}-2 x^{4}$, find $\left.\frac{d^{2} y}{d x^{2}}\right|_{x=1}$
c) Verify that $y=A x+B x^{2}$ (A and B are constants) satisfy the equation

$$
x^{2} \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+2 y=0
$$

Differentiation of

Trigonometric
Functions

$$
\frac{d}{d x}(\sin x)=\cos x
$$

$$
\frac{d}{d x}(\cot x)=-\operatorname{cosec}^{2} x
$$

$$
\frac{d}{d x}(\sec x)=\sec x \tan x
$$

$$
\frac{d}{d x}(\tan x)=\sec ^{2} x
$$

$$
\frac{d}{d x}(\operatorname{cosec} x)=-\operatorname{cosec} x \cot x
$$

$$
\frac{d}{d x}(\sin u)=\cos u \frac{d u}{d x}
$$

$\frac{d}{d x}(\cos u)=-\sin u \frac{d u}{d x}$

$$
\frac{d}{d x}(\cot u)=-\operatorname{cosec}^{2} u \frac{d u}{d x}
$$

$$
\frac{d}{d x}(\sec u)=\sec u \tan u \frac{d u}{d x}
$$

$$
\frac{d}{d x}(\tan u)=\sec ^{2} u \frac{d u}{d x}
$$

$$
\frac{d}{d x}(\operatorname{cosec} u)=-\operatorname{cosec} u \cot u \frac{d u}{d x}
$$

Differentiate the following functions with respect to x.
a) $y=\sin (2 x)$
e) $y=\cos \sqrt{x^{2}+3}$
b) $y=\cos (x+3)$
f) $y=\cos ^{2} \sqrt{x^{3}-1}$
c) $y=\sin ^{3}(3 x+1)$
g) $y=\tan \left(x^{2}-1\right)$
d) $y=\sin \sqrt{2 x+3}$
h) $y=\tan ^{2}\left(x^{2}+2\right)$

Differentiate the following functions with respect to x.
a) $y=3 \sin \left(6 x^{2}-12 x\right)$

$$
\text { b) } y=\sin \left(x^{2}\right) \cos x
$$

c) $y=5 x \operatorname{cosec}(4 x)$

$$
\text { d) } y=\cot (5 x+6)
$$

Differentiation of

Logarithmic

Functions

Differentíation of Logarithmic Functions

If $f(x)=\log _{a} x$ is continuous for $x>0$, and a is any base, then

$$
\frac{d y}{d x}=\frac{1}{x} \log _{a} e, x>0
$$

$$
\text { If } a=e \text {, then } \log _{e} x=\ln x \text {. Therefore }
$$

$$
\frac{d y}{d x}=\frac{1}{x}, x>0
$$

Differentíation of Logarithmic Functions

If $u(x)$ is a function of x

$$
\frac{d}{d x}\left(\log _{a} u\right)=\frac{1}{u} \log _{a} e \frac{d u}{d x}, u>0
$$

$$
\frac{d}{d x}|\ln u|=\frac{1}{u} \frac{d u}{d x}, \quad u \neq 0
$$

Differentíation of Logarithmic Functions

Differentiate the following functions with respect to x.
a) $y=\ln (3 x)$

$$
\text { b) } y=\ln \left(x^{2}-2\right)
$$

c) $y=\ln \sqrt{3 x-1}$

$$
\text { d) } y=\ln (\sin 2 x)
$$

e) $y=\ln \left(x^{3}+x\right)$

$$
\text { f) } y=\ln \left(2 \cos ^{5} x\right)
$$

Differentiation of

Exponential

Functions

If $y=a^{x}$, use the following steps:
Step 1: Take logarithm with base e for both sides of the expression

$$
\begin{aligned}
\ln y & =\ln a^{x} \\
& =x \ln a
\end{aligned}
$$

Step 2: Differentiate the expression with respect to x

$$
\frac{1}{y} \frac{d y}{d x}=\ln a \Rightarrow \frac{d y}{d x}=a^{x} \ln a
$$

Differentíation of Exponential functions

$$
\text { If } y=e^{x} \text {, use the following steps: }
$$

$$
\frac{d y}{d x}=e^{x}
$$

Differentíation of Exponentíal functions

$$
\frac{d}{d x}\left(a^{x}\right)=a^{x} \ln a
$$

$$
\frac{d}{d x}\left[e^{x}\right]=e^{x}
$$

If $u(x)$ is a function of x

$$
\frac{d}{d x}\left(a^{u}\right)=a^{u} \ln a \frac{d u}{d x}
$$

$$
\frac{d}{d x}\left[e^{u}\right]=e^{u} \frac{d u}{d x}
$$

Differentiation of Exponential Functions

Differentiate the following functions with respect to x.
a) $y=5^{x}$
b) $y=2^{x+5}$
g) $y=e^{\sin (2 x+3)}$
c) $y=3^{(2 x-1)}$
h) $y=e^{2 x}-e^{-2 x}$
d) $y=10^{\sin (3 x+5)}$
i) $y=e^{\sec x+\tan x}$

1) If $y=e^{x} \sin 3 x$, find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$. Hence show that

$$
\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+10 y=0
$$

1) Find the derivatives of the following expressions.
a) $\frac{e^{3 x}}{(x+1)^{2}}$

$$
\text { b) }(4 x-1) e^{-2 x^{2}}
$$

Differentiation of

Implicit
Functions

Differentíation of Implicit functions

If y and x are related in a function, and explicitly and implicitly defined, then

$$
\frac{d y}{d x}=\frac{1}{\frac{d x}{d y}}
$$

1) Find the derivatives for $3 x^{2}-x y+3 y=$ 7
a) by writing y in terms of x.
b) by using implicit differentiation.
2) Find the first derivatives for a) $3 y^{2}-2 x^{2}=2 x y$ b) $x^{2} \sin y+2 x=y^{2}$

Differentiation of Implicit functions

Find $\frac{d y}{d x}$ for the following functions.

$$
\begin{aligned}
& \begin{array}{ll}
\text { a) } y=\frac{x^{2}(x+2)}{x-3} & \text { b) } x^{3}-x y+y^{2}=7 \\
\text { c) } x^{2} y+e^{2 x} y^{2}-2 x=0 \\
\text { e) } y=\frac{3 x}{\sqrt{(x+1)(x+2)}}
\end{array}
\end{aligned}
$$

$$
\text { 1) } I f_{y}=\frac{\sqrt[3]{x+1}}{(x+2) \sqrt{x+3}} \text {, find } \frac{d y}{d x}
$$

2) If $y=x^{-\frac{1}{2}} \cos x$, show that

$$
x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\left(x^{2}-\frac{1}{4}\right) y=0
$$

Differentiation of

Parametric

Functions

Differentiation of Parametric Functions

$$
\text { If } y=f(t) \text { and } x=g(t) \text { then }
$$

$$
\begin{aligned}
\frac{d y}{d x}=\frac{d y}{d t} \times \frac{d t}{d x} & =\frac{d y}{d t} \times \frac{1}{d x / d t} \\
& =f^{\prime}(t) \times \frac{1}{g^{\prime}(t)} \\
\frac{d y}{d x} & =\frac{f^{\prime}(t)}{g^{\prime}(t)}
\end{aligned}
$$

Differentiation of Parametric Functions

1) Find $\frac{d y}{d x}$
a) $y=t^{3}+t, \quad x=t^{2}$
b) $y=4-4 t-4 t^{2}, \quad x=2 t$
2) Evaluate $\frac{d y}{d x}$
a) $x=t^{2}-2 t, \quad y=t^{3}-3 t, \quad t=4$
b) $x=\frac{3 t}{1+t^{3}}, \quad y=\frac{3 t^{2}}{1+t^{3}}, \quad t=2$

Differentíation of Parametric Functions

1) The parametric equations of a curve is given by $x=e^{t}$ and $y=\sin t$.
Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ in terms of t.
2) Given $y=\frac{t^{2}+4}{t}, x=\frac{t-3}{t}$, find
a) $\frac{d y}{d x}$ if $t=1 \quad$ b) $\frac{d^{2} y}{d x^{2}}$ if $t=1$
