3.1 Approximate Value and Error
3.2 Rates of Change
3.3 Gradient of Curve at a Point
3.4 Maximum and Minimum
3.5 Curve Sketching

Approximate
 Value and

Error

Approximate Value and Error

If $y=f(x)$ is a differentiable function, the first derivative $d y / d x$ or $f^{\prime}(x)$ is given by

$$
f^{\prime}(x)=\lim _{\delta x \rightarrow 0} \frac{f(x+\delta x)-f(x)}{\delta x}
$$

Observed that $\frac{f(x+\delta x)-f(x)}{\delta x}$ does not equal
to $f^{\prime}(x)$, but when δx is very small, the value
$\frac{f(x+\delta x)-f(x)}{\delta x}$ is an approximation of $f^{\prime}(x)$.

Approximate Value and Error

This can be written as

$$
\begin{align*}
\frac{f(x+\delta x)-f(x)}{\delta x} & \approx f^{\prime}(x) \\
f(x+\delta x)-f(x) & \approx f^{\prime}(x) \delta x \tag{1}\\
\delta f(x) & \approx f^{\prime}(x) \delta x \tag{2}
\end{align*}
$$

where

$$
\delta f(x)=f(x+\delta x)-f(x)
$$

Approximate Value and Error

Formula (1) and (2) can be used to
find the approximate value of $f(x+\delta x)$
by using the exact value of $f(x), f^{\prime}(x)$
and δx. A small increment of $f(x)$ is
obtained from a small increment of x. ASASI SAINS
Approximate Value and Error

1) Find the approximate value of
a) $\sqrt[3]{8.03}$
b) $\sqrt[3]{63}$
c) $\sqrt[4]{82.6}$
2) The radius of a circle is measured with a possible error 2%. Find the possible percentage error in calculating the area of a circle

Approximate Value and Error

3) A closed cylinder has a height of 16 cm , radius $r \mathrm{~cm}$ and the sum of surface area A cm^{2}. Prove thatha

$$
\frac{d A}{d r}=4 \pi(r+8)
$$

Find the approximate area if the radius increases from 4 cm to 4.02 cm .
4) Show that $x=2$ can be chosen as an initial approximation of the equation $x^{3}-2 x-5=0$. Hence, find a better approximation.
(C)NMI

The Geometrical Meaning of Differentíation

5) GivenV $=\frac{4}{3} \pi r^{3}$ and r is decreasing from 16 to 15.8. Use differentiation to determine the decrement in V.
6) An inverted circular cone has a radius of 10 cm and a height of 15 cm . When water level in the cone is $x \mathrm{~cm}$, the volume of the water is Vcm3. Show that

$$
V=\frac{4}{27} \pi x^{3}
$$

If the water is flowing out of cone, find the approximate change in V, when x is decreasing from 4 cm to 3.95 cm .

Rates

of

Change

Rates of Change

If y is a function of x, then $d y / d x$ is the rate of change of y with respect to x. In application, rates of change must be accompanied by appropriate units. In general, the units for a rate of change of y with respect to x are obtained by dividing the units of y by the units of x. Examples: -If y represents a displacement in meters (m) and t represents time in seconds (s), then dy/dt is the rate of change in y with respect to time t with units of meters per second ($m s^{-1}$).
-If p represents a pressure in atmosphere (atm) and V represents volume in liter (L), the $d p / d V$ is the rate of change in p with respect to volume V with units of atmospheres per liter (atm L^{-1})

Rates of Change

1) The area of an ink blot at time t is $A \mathrm{~cm}^{2}$, where $A=3 t^{2}+t$. Determine the rate of change of the blot area when $t=5$.
2) The radius, r cm of a spherical balloon at time t seconds is given by

$$
r=3+\frac{1}{1+t}
$$

a) What is the initial radius of the sphere?
b) Determine the rate of change in the radius when $t=2$. Is the radius decreasing or increasing?

Rates of Change

3) The length of the rope, $l \mathrm{~cm}$ at t seconds is given by

$$
l=\frac{1}{4} t^{4}-4 t+10
$$

Determine the time t when
a) the length of the rope increases at the rate of change $4 \mathrm{cms}^{-1}$.
b) the length of the rope decreases at the rate of change $3 \mathrm{cms}^{-1}$.

Rates of Change

4) The radius, r cm of a circle at time t is given by $r=t^{2}+3$. Form an equation that relates the area, $A \mathrm{~cm}^{2}$ to t. Determine the rate of change of the area when $t=1$.
(Give your answer in terms of π).

Constant Rate of Change

Let r cm be the radius of a circle at t seconds given by $r=12-2 t$, where $0 \leq t \leq 6$. Thus the rate of change of r with respect to t is $d r / d t=-2$ (a constant value), also known as a constant rate of change. It means that for every value of $t, 0 \leq t \leq 6$, $d r / d t$ is always the same. Hence, the constant rate of change is given by

$$
\frac{d r}{d t}=\frac{\text { changing value of } r}{\text { changing value of } t}
$$

Constant Rate of Change

1) The radius, r cm of a circle increases at a constant rate of $0.5 \mathrm{cms}^{-1}$. If the initial radius is 3.5 cm , find the radius of the circle after 10 seconds.

Related Rates

The problem involving the rate of change of several related quantities is called the related rate of change problem. In general if y is a function of x, the problems involving the rates of change of y and x can be solved by using the chain rule

$$
\frac{d y}{d t}=\frac{d y}{d u} \cdot \frac{d u}{d t}
$$

Related Rates

1) Given that $y=(2 x+7)^{1 / 2}$ and y is increasing at a rate of 5 unit s^{-1}. Find the rate of change in x when
a) $x=0.3$
b) $y=3$
2) The radius of a circle is increasing at the rate of 5 cm per minute. Find
a) the rate of change of the area of the circle when its radius is 12 cm .
b) the radius of the circle when its area is increasing at a rate of $50 \pi \mathrm{~cm}^{2}$ per minute.

Related Rates

3) A hemispherical bowl has a radius of 10 cm and the depth of water in the bowl is h cm . The formula of the volume of water is $V=1 / 3 \pi h^{2}(30-h)$. Water is poured into the bowl at the rate of $2 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$. [Volume hemispherical bowl, $V=2 / 3 \pi r^{3}$].
a) If the radius of the water surface is $r \mathrm{~cm}$, state r in terms of h.
b) When $h=4 \mathrm{~cm}$, determine the rates of change in the height and the radius of the water surface.

Gradient

of Curve

At A Point

Gradient of Curve at \mathcal{A} Point

Tangent and Normal Lines

The line that touches the curve at A

Gradient of Curve at \mathcal{A} Point

The gradient of curve at a point can be defined as the gradient of tangent line at the point of the curve. Let the straight line (red line) be a tangent to the curve at A, where A is a point moving along the curve $y=f(x)$. The gradient of the tangent to
 the curve changes according to the point on the curve. These gradients can be obtained by substituting the coordinate points in $d y / d x$ or $f^{\prime}(x)$.

Equation of Tangent to a Curve

The tangent to the curve $y=f(x)$ at any point A can be defined as a straight line (dotted blue line) which touches the curve at point A. To find the equation of the tangent to the curve at A, we need to find the gradient of the tangent to curve at that point.

Equation of Tangent to a Curve

Gradient or Slope

Given m_{1} and m_{2} are the gradients of Line 1 and Line 2 respectively.

The lines are parallel if $m_{1}=m_{2}$
The gradient of the curve at A is the same as the gradient of the tangent to the curve at A.

Equation of Tangent to a Curve

Gradient or Slope

At the point $A(x, y)$ on the curve $y=f(x)$, the equation of the TANGENT is

$$
y-y_{1}=m_{T}\left(x-x_{1}\right)
$$

where

$$
m_{T}=\frac{d y}{d x}
$$

Equation of Tangent to a Curve

a) Find the gradient of the curve $y=x^{3}+8 x-5$ at $(0,-5)$ and $(2,19)$.
b) Find the gradient of the tangent to the following curve at the given point.
i. $y=x^{2}-4 x+4$ at the point where $y=1$
ii. $y=x^{3}$ at the point $(2,8)$
iii. $y=x^{3}+2 x^{2}-x$ at the point where $x=-2$

Equation of Tangent to a Curve
c) Find the equation of a tangent to the parabola $y=x^{2}-5 x+3$ at $x=3$.
d) Find the the equation of a tangent to the ellipse $3 x^{2}+4 y^{2}=48$ at $(2,3)$.
e) Find the equation of the tangent for the curve $y=x^{2}+2 x+3$ which parallel to the line $y=$ $4 x+1$.
f) The gradient of the curve $y=a x^{2}+b x$ at (1, 3) is 4. Find the values of a and b.

Equation of $\mathcal{N o r m a l}$ to a Curve

The normal line equation to the curve y
$=f(x)$ at any point A
can be defined as a straight line (straight line) that is perpendicular to the tangent (dotted line). If the gradient of the tangent to the curve $y=$ $f(x)$ at A is m, then the gradient of the normal at A is $-1 / m$.

Equation of $\mathcal{N o r m a l}$ to a Curve

Gradient of the \mathcal{N} ormal

Given m_{1} and m_{2} are the gradients of Line 1 and Line 2 respectively.

The lines are perpendicular if $m_{1} \bullet m_{2}=-1$. Notes:

$\underset{\text { the tangent }}{\text { gradient of }} \times \underset{\text { gradient of }}{\text { the normal }}=-1$ the tangent

If the gradient of the tangent is m, then the gradient of the normal line is $-1 / m$.

Equation of $\mathcal{N o r m a l}$ to a Curve

Gradient of the \mathcal{N} ormal

At the point $A(x, y)$ on the curve $y=$ $f(x)$, the equation of the NORMAL is

$$
y-y_{1}=m_{N}\left(x-x_{1}\right)
$$

where

$$
m_{N}=-\frac{1}{m_{T}}
$$

Equation of $\mathcal{N o r m a l}$ to a Curve

a) Find the normal of the curve $y=x^{3}+8 x-5$ at $(0,-5)$ and $(2,19)$.
b) Find the normal to the following curve at the given point.
i. $y=x^{2}-4 x+4$ at the point where $y=1$
ii. $y=x^{3}$ at the point $(2,8)$
iii. $y=x^{3}+2 x^{2}-x$ at the point where $x=-2$

Equation of $\mathcal{N o r m a l}$ to a Curve

c) Find the equation of a normal to the parabola $y=x^{2}-5 x+3$ at $x=3$.
d) Find the the equation of a normal to the ellipse $3 x^{2}+4 y^{2}=48$ at $(2,3)$.
e) Find the equation of the normal to the curve $y=x^{2}-5 x+1$ which perpendicular to the line $y=x-7$

Maximum

and

Minimum

Maximum and Minimum

$$
f\left(x_{1}\right)<f\left(x_{2}\right)
$$

Increasing function

$$
f\left(x_{1}\right)>f\left(x_{2}\right)
$$

Decreasing function

Maximum and Minimum

Critical Point and Critical \mathcal{N} umber

A point $\left(x_{0}, y_{0}\right)$ is a critical point and $x=x_{0}$ is its critical number of $f(x)$, if
$f^{\prime}(x)=0$ of if $f^{\prime}\left(x_{0}\right)$ does not exist for
the interval $a<x_{0}<b$.

Maximum and Minímum
Local Maximum and $\mathcal{M i n i m u m ~ V a f u e s ~}$
The number $f\left(x_{0}\right)$ is a
-local maximum value of $f(x)$ if $f\left(x_{0}\right)$
$\geq f(x)$ when x is near x_{0}.
-local minimum value of $f(x)$ if $f\left(x_{0}\right)$
$\leq f(x)$ when x is near x_{0}

Maximum and Minimum

OFirst Derivative Test

Given that $y=f(x)$ is a continuous function

- If $f^{\prime}\left(x_{0}\right)=0$, or if $f^{\prime}\left(x_{0}\right)$ does not exist (not defined), x_{0} is a critical number.
- A critical point is a local minimum point if $f^{\prime}(x)$ changes sign from negative to positive as x is increasing through $x=x_{0}$.

The curve is concave.

ASASI SAINS SEM 2 2019/2020
OFirst Derivative Test

- A critical point is a local maximum point if $f^{\prime}(x)$ changes sign from positive to negative as x is increasing through $x=x_{0}$. The curve is
 convex.

OFirst Derivative Test

- A critical point is neither a local maximum nor a local minimum if $f^{\prime}(x)$ does not change sign as x is increasing through $x=x_{0}$.

Maximum and Minimum Value in the Interval

Find the local maximum and minimum
points (if any) of the functions below:
at $f(x)=x^{2}-4 x-1$
b) $f(x)=x^{3}-9 x^{2}+15 x-5$
c) $f(x)=x^{3}-3 x+2$

The local maximum and minimum points of
$f(x)=x^{2}-4 x-1 \quad \Rightarrow \quad f^{\prime}(x)=2 x-4=2(x-2)$
Values of x
Signs of $f^{\prime}(x)$
Slope Sketching
Shape of the graph

1.5	2	2.5
-	0	+
y	\rightarrow	λ
Concave		

The local maximum and minimum points of
$f(x)=x^{3}-9 x^{2}+15 x-5$
$=f^{\prime}(x)=3 x^{2}-18 x+15=3(x-1)(x-5)$

Values of x	$\mathbf{0 . 5}$	$\mathbf{1}$	$\mathbf{1 . 5}$
Signs of $f^{\prime}(x)$	+	$\mathbf{0}$	-
Slope Sketching	$\boldsymbol{\pi}$	$\mathbf{\rightarrow}$	\mathbf{y}
Shape of the graph	Convex		

$$
f(x)=x^{3}-9 x^{2}+15 x-5
$$

$$
\Rightarrow \quad f^{\prime}(x)=3 x^{2}-18 x+15=3(x-1)(x-5)
$$

Values of x	$\mathbf{4 . 5}$	$\mathbf{5}$	$\mathbf{5 . 5}$
Signs of $f^{\prime}(x)$	-	$\mathbf{0}$	+
Slope Sketching	\mathbf{y}	$\mathbf{\rightarrow}$	$\boldsymbol{\pi}$
Shape of the graph	Concave		

The local maximum and minimum points of
$f(x)=x^{3}-3 x+2 \quad \Rightarrow \quad f^{\prime}(x)=3 x^{2}-3=3\left(x^{2}-1\right)$
Values of x
Signs of $f^{\prime}(x)$
Slope Sketching
Shape of the graph

Convex

The local maximum and minimum points of
$f(x)=x^{3}-3 x+2 \quad \Rightarrow \quad f^{\prime}(x)=3 x^{2}-3=3\left(x^{2}-1\right)$
Values of x
Signs of $f^{\prime}(x)$
Slope Sketching
Shape of the graph

Concave

Maximum and Minimum

Second Derivative Test

Assuming that $y=f(x)$ has a critical number $x=x_{0}$

1. If $f^{\prime \prime}\left(x_{0}\right)<0$, the graph is convex and $f(x)$ has a local maximum value at $x=x_{0}$.
2. If $f^{\prime \prime}\left(x_{0}\right)>0$, the graph is concave and $f(x)$ has a local minimum value at $x=x_{0}$.
3. If $f^{\prime \prime}\left(x_{0}\right)=0$, or does not exist, the second derivative test fails. We have to see the first derivative test to determine the property of the extreme points at $x=x_{0}$.

Maximum and Minimum

Find the local maximum and minimum points (if any) of the functions below:
a) $f(x)=1 / 3 x^{3}-3 x^{2}+8 x+1$
bot $f(x)=1-x^{4}$

Maximum and Minimum

The local maximum and minimum points of
$f(x)=1 / 3 x^{3}-3 x^{2}+8 x+1$
$\Rightarrow f^{\prime}(x)=x^{2}-6 x+8=(x-2)(x-4)$
$\Rightarrow f^{\prime \prime}(x)=2 x-6=2(x-3)$

Values of x	$\mathbf{1 . 5}$	$\mathbf{2}$	$\mathbf{2 . 5}$
Signs of $f^{\prime}(x)$	$\mathbf{+}$	$\mathbf{0}$	-
Slope Sketching	$\boldsymbol{\lambda}$	$\boldsymbol{\rightarrow}$	\mathbf{y}
Signs of $f^{\prime \prime}(x)$	-	-	-
Shape of the graph	Convex		

Maximum and Minímum

The local maximum and minimum points of
$f(x)=1 / 3 x^{3}-3 x^{2}+8 x+1$
$\Rightarrow f^{\prime}(x)=x^{2}-6 x+8=(x-2)(x-4)$
$\Rightarrow f^{\prime \prime}(x)=2 x-6=2(x-3)$

Values of x	$\mathbf{3 . 5}$	$\mathbf{4}$	$\mathbf{4 . 5}$
Signs of $f^{\prime}(x)$	-	$\mathbf{0}$	+
Slope Sketching	\mathbf{y}	$\mathbf{+}$	$\boldsymbol{\lambda}$
Signs of $f^{\prime \prime}(x)$	+	+	+
Shape of the graph	Concave		

Ans: $f^{\prime \prime}(x)>0$; local minimum point $\left(4,6 \frac{1}{3}\right)$ innovative • entrepreneurial • global I WWW.utm.my ${ }^{48}$

The local maximum and minimum points of

$f(x)=1-x^{4}$
$\Rightarrow f^{\prime}(x)=-4 x^{3}$
$\Rightarrow f^{\prime \prime}(x)=-12 x^{2}$

Values of x	$\mathbf{0 . 5}$	$\mathbf{0}$	$\mathbf{0 . 5}$
Signs of $f^{\prime}(x)$	$\mathbf{+}$	$\mathbf{0}$	-
Slope Sketching	$\boldsymbol{\pi}$	$\mathbf{7}$	\mathbf{y}
Signs of $f^{\prime \prime}(x)$	-	$\mathbf{0}$	-
Shape of the graph	Convex		

Ans: $f^{\prime \prime}(x)=0 ;$ local maximum point $(0,1)$

Point of Inflection

ฐ A point which separates a convex and a concave sections of a continuous
function is called a point of inflection.

Point of Inflection

- $f\left(x_{0}\right)=0$.
$f^{\prime}\left(x_{0}\right)=0$.
$f^{\prime \prime}\left(x_{0}\right)=0$.
Thus, $\left(x_{0}, a\right)$ is a point of inflection and it is also a critical point.

Maximum and Minimum

Point of Inflection

- $f\left(x_{0}\right)=a$.
$f^{\prime}\left(x_{0}\right) \neq 0$.
$f^{\prime \prime}\left(x_{0}\right)=0$.
Since $f^{\prime}\left(x_{0}\right) \neq 0$,
therefore $\left(x_{0}, \alpha\right)$ is a point of inflection but not a critical point.

Maximum and Minimum

Point of Inflection

- $f\left(x_{0}\right)=a$.
$f^{\prime}\left(x_{0}\right)$ does not exist. $f^{\prime \prime}\left(x_{0}\right)$ does not exist. $x=x_{0}$ is a critical number, Since the curves changes from being concave to convex at $x=x_{0}$, therefore $\left(x_{0}, a\right)$ is a point of inflection. However, it is neither a local maximum nor a local minimum.

Maximum and Minímum

Point of Inflection Sign fi' $\left(x_{0}\right)$

Let $y=f(x)$ be a continuous function. and if the value of $f^{\prime \prime}(x)$ changes sign when passing through $x=x_{0}$, then the point $\left(x_{0}, f\left(x_{0}\right)\right)$ on the curve is a point of inflection.

Maximum and Minimum

Determine the local maximum and minimum points of the function below:
at $f(x)=(x-1)^{3}$
a) $f(x)=x^{4}-4 x^{3}$

Maximum and Minímum

The local maximum and minimum points of
$f(x)=(x-1)^{3}$
$\Rightarrow f^{\prime}(x)=3(x-1)^{2} \rightarrow f^{\prime}(x)=0$ for critical point
$\Rightarrow f^{\prime \prime}(x)=6(x-1) \rightarrow f^{\prime \prime}(1)=0$ for inflection point
Values of x
Signs of $f^{\prime}(x)$
Slope Sketching
Signs of $f^{\prime \prime}(x)$
Shape of the graph

0.5	1	1.5
+	0	+
λ	\rightarrow	λ
-	0	+
Convex		Concave

Maximum and Minimum

The local maximum and minimum points of
$f(x)=x^{4}-4 x^{3}$
$\Rightarrow f^{\prime}(x)=4 x^{3}-12 x^{2} \rightarrow f^{\prime}(x)=0$ for critical point
$\Rightarrow f^{\prime \prime}(x)=12 x^{2}-24 x \rightarrow f^{\prime \prime}(x)=0$ for inflection point

Values of x	$\mathbf{- 0 . 5}$	$\mathbf{0}$	$\mathbf{0 . 5}$
Signs of $f^{\prime}(x)$	-	$\mathbf{0}$	-
Slope Sketching	\mathbf{y}	$\mathbf{-}$	\mathbf{y}
Signs of $f^{\prime \prime}(x)$	+	$\mathbf{0}$	-
Shape of the graph	Concave		Convex

Maximum and Minímum

The local maximum and minimum points of
$f(x)=x^{4}-4 x^{3}$
$\Rightarrow f^{\prime}(x)=4 x^{3}-12 x^{2} \rightarrow f^{\prime}(x)=0$ for critical point
$\Rightarrow f^{\prime \prime}(x)=12 x^{2}-24 x \rightarrow f^{\prime \prime}(x)=0$ for inflection point
Values of x
Signs of $f^{\prime}(x)$
Slope Sketching
Signs of $f^{\prime \prime}(x)$
Shape of the graph

2.5	3	3.5
-	0	+
\boldsymbol{y}	\rightarrow	λ
+	+	+
Concave		Concave

$$
\begin{aligned}
& f(x)=x^{4}-4 x^{3} \\
& \Rightarrow f^{\prime}(x)=4 x^{3}-12 x^{2} \rightarrow f^{\prime}(x)=0 \text { for critical point } \\
& \Rightarrow f^{\prime \prime}(x)=12 x^{2}-24 x \rightarrow f^{\prime \prime}(x)=0 \text { for inflection point }
\end{aligned}
$$

Values of x	-0.5	0	0.5	1.5	2	2.5	3	3.5
Signs of $f^{\prime}(x)$	-	0	-	-	-	-	0	+
Slope Sketching	v	\rightarrow	v	v	Y	v	\rightarrow	7
$\begin{aligned} & \text { Signs of } \\ & f^{\prime \prime}(x) \end{aligned}$	+	0	-	-	0	+	+	+
Shape of the graph	Conc ave		Conv ex	Conv ex		Conc ave		Conc ave

Maximum and Minimum

\mathcal{A} bsolute $\mathcal{M a x i m u m}$ and $\mathcal{M i n i m u m ~ V a l u e s ~}$
Let $x=x_{0}$ be a number in the domain D of a function $f(x)$. Then $f\left(x_{0}\right)$ is the - absolute maximum value of $f(x)$ if $f\left(x_{0}\right)$ $\geq f(x)$ for all x in D. - absolute minimum value of $f(x)$ if $f\left(x_{0}\right)$ $\leq f(x)$ for all x in D.
The maximum and minimum values of $f(x)$ are called extreme values of $f(x)$.

Maximum and Minímum

Find the absolute maximum and minimum of the function $f(x)=2 x^{3}-x^{2}+2$ for $-2 \leq x \leq 1$. Hence, sketch the graph . $\Rightarrow f^{\prime}(x)=6 x^{2}-2 x=2 x(3 x-1)=>$ critical numbers

Values of x	End point	Critical number	Critical number	End point	$\begin{gathered} y \\ (0,2) \end{gathered}$	$\underbrace{\left(\frac{1}{3}, \frac{53}{27}\right)}(1,3)$
	-2	0	1/3	1		
$f(x)$	-18			3		
$\begin{aligned} & \text { Abso } \\ & \text { Abso } \end{aligned}$	$\begin{aligned} & \operatorname{maxi} \\ & \operatorname{mini} \end{aligned}$	$\begin{aligned} & \text { vum of } f \\ & \text { um of } f \end{aligned}$	(x) is \qquad x) is \qquad		$\begin{array}{ll} -1 & 0 \\ & \\ y=2 x \end{array}$	$\begin{array}{\|c} \hline \\ 2 x^{3}-x^{2}+2 \end{array}$

1. A garden is to be laid out in a rectangular area and protected by a chicken wire fence. What is the largest possible area of the garden if only 100 running meter of chicken wire is available for the fence?
\rightarrow 2. An open box is to be made from a 16 cm by 30 cm piece of cardboard by cutting out squares of equal size from the four corners and bending up the sides. What size should the squares be to obtain a box with the largest volume?
2. Find the radius and height of the right circular cylinder of largest volume that can be inscribed in a right circular cone with radius 6 inches and height 10 inches.
$l=$ length of the rectangle (m)
$w=$ width of the rectangle (m)

w
$A=$ area of the rectangle $\left(m^{2}\right)=l w$
Given that
perimeter of the rectangle $=100=2 l+2 w$
$\Rightarrow w=50-l$
Substitute (2) in (1)
$\Rightarrow A=l(50-l)=50 l-l^{2}=>$ identify domain
Domain for length, l is

Maximum and Minimum

Differentiate the area, A

$$
\frac{d A}{d l}=50-2 l \Rightarrow(\text { identify critical points })
$$

Values of x	End point	Critical number	End point
	0	25	50

Width, $w=$ \qquad

The corresponding value of w is \qquad , so the rectangle of perimeter 100 meter with greatest area is a square with sides of length \qquad .
$x=$ length (in cm) of the sides of the squares to be cut out
$V=$ volume (in cubic cm) of the resulting box
$=(16-2 x)(30-2 x) x$
$=480 x-92 x^{2}+4 x^{3}$
\Rightarrow identify domain
Domain for length, x is

Maximum and Minimum

Differentiate the volume V

$$
\begin{aligned}
& \frac{d V}{d r}=480-184 x+12 x^{2} \quad=> \\
= & 4(x-12)(3 x-10)
\end{aligned}
$$

Values of x	Endpoint	Critical number	Endpoint
	0	$10 / 3$	8
Volume, V	0		

length, $x=$ \qquad
The greatest possible volume $V \approx 726 \mathrm{~cm}^{3}$ occurs when we cut out squares whose sides have length $10 / 3 \mathrm{~cm}$.

$$
\text { Ans: } 0 \leq r \leq 6
$$

Maximum and Minimum

$r=$ radius (in inches) of the cylinder
$h=$ height (in inches) of the cylinder
$V=$ volume (in cubic inches) of the cylinder
$V=$ Volume of the inscribed cylinder

$$
\begin{equation*}
=\pi r^{2} h \tag{1}
\end{equation*}
$$

Using similar triangles

$$
\begin{equation*}
\frac{10-h}{r}=\frac{10}{6} \Rightarrow h=10-\frac{5}{3} r \tag{2}
\end{equation*}
$$

Substitute (2) in (1)

$$
V=\pi r^{2}\left(10-\frac{5}{3} r\right) \quad=>\text { identify domain }
$$

Domain for radius, r is \qquad
Differentiate the volume V

$$
\frac{d V}{d r}=\pi\left(20 r-5 r^{2}\right) \quad=>(\text { identify critical points) }
$$

Values of r	Endpoint	Critical number	Endpoint
	0	4	6
Volume, V	0		

height, $h=$ \qquad
The inscribed cylinder of largest volume has radius, $r=$
\qquad and height, $h=$ \qquad .

Maximum and Minimum

A closed cylindrical can is to hold 1 liter ($1000 \mathrm{~cm}^{3}$) of liquid. How should we choose the height and radius to minimize the amount of material needed to manufacture the can? Hint: no absolute bound (use second derivative)

$$
\text { Ans: } h=2 r ; r=\frac{10}{\sqrt[3]{2 \pi}} \approx 5.4
$$

Curve

Sketching

Curve
 Sketching of Polynomial Function

Curve Sketching of Polynomial function

These are the several steps to be followed in sketching the graph of polynomial function $y=f(x)$.

Step 1 Find any obvious point when $x=0$ or $y=0$.
Step 2 Find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.
Step 3 Put $f^{\prime}(x)=0$, then solve the equation to find the critical numbers of x. Find $f(x)$ for each critical number and plot these critical points.
Step 4 Use the Second Derivative Test to find any local maximum and minimum points.
For maximum: $f^{\prime}(x)=0, f^{\prime \prime}(x)<0$.
For minimum: $f^{\prime}(x)=0, f^{\prime \prime}(x)>0$.
If $f^{\prime \prime}(x)=0$, use the First Derivative Test to determine the local maximum and minimum point.

Curve Sketching of Polynomial function

Step 5 Determine the values of x for $f^{\prime \prime}(x)=0$. Use these values of x to divide x-axis into intervals. Test the concavity of the point in the interval.
If $f^{\prime \prime}(x)>0$, graph is concave.
If $f^{\prime \prime}(x)<0$, graph is convex.
Step 6 Use the information in Step 5 to find any points of inflection and plot the points.
Step 7 Determine any horizontal, vertical or oblique asymptotes.
Step 8 List all the points in the table and use this information to determine a suitable scale of the graph. Draw a curve at each local maximum and minimum points. Sketch the graph starting from the points of inflection. Plot any additional points if necessary.

Curve Sketching of Polynomial function

Draw the graph of the function $f(x)=x^{3}-12 x+3$

Step 1	When $x=0, f(0)=3$
Step 2	$f^{\prime}(x)=3 x^{2}-12, f^{\prime \prime}(x)=6 x$.
Step 3	The critical numbers are obtained when $f^{\prime}(x)=0$, that is $f^{\prime}(x)=3 x^{2}-12=3\left(x^{2}-4\right)=0$. The critical numbers are -2 and 2. Therefore the critical points are $(-2,19)$ and $(2,-13)$.
Step 4	Use the Second Derivative to determine whether the critical points are local maximum or minimum points. $f^{\prime \prime}(-2)=6(-2)=-12<0$. \rightarrow $f^{\prime \prime}(2)=6 e$ \rightarrow We obtain a local maximum at $x=12>0$.

Curve Sketching of Polynomial function

Step 5 Let $f^{\prime \prime}(x)=0$ that is $f^{\prime \prime}(x)=6 x=0$. At $x=0$, perhaps it is a critical number.

Test using a point a where $x<0, f^{\prime \prime}(-1)<0$.
\rightarrow The graph is convex for $x<0$.
Test using a point a where $x>0, f^{\prime \prime}(1)>0$.
\rightarrow The graph is concave for $x>0$.
Step 6 At $x=0$, the graph has a point of inflection because $f(0)$ exists, $f^{\prime \prime}(0)=0$ and concavity changes $f(0)=(0)^{3}-12(0)+3=3$
Write all the information in the following graph

Curve Sketching of Polynomial function

Step 7	Since $f(x)$ is a polynomial so there are no asymptotes.
Step 8	Draw $x-a x i s: ~$ $x=-4$ to $x=4$ $y-a x i s: ~$ x
Plot several additional points to determine the shape of the graph	

| Maximum | |
| :---: | :---: | :---: |
| $(-2,19)$ | 20 |
| convex | |
| Inflection | |
| Minimum | |
| $(2,-13)$ | |

Curve Sketching of Polynomial function

Values of x	-4	-3	-2	-1	0	1	2	3	4
$f(x)$	-13	12	19	14	3	-8	-13	-6	19

Graph

> Sketching of Rational Functions

Graph Sketching of Rational functions

Vertical and Horizontal Asymptotes
If $f(x)$ approaches positive or negative infinity when x is approaching x_{0}, and if

$$
\lim _{x \rightarrow x_{0}^{-}} f(x)= \pm \infty \quad \text { or } \lim _{x \rightarrow x_{0}^{+}} f(x)= \pm \infty
$$

Then the line $x=x_{0}$ is called a vertical asymptote of $f(x)$.

If $f(x)$ approaches values of a when x is $\quad x \rightarrow+\infty$ or $x \rightarrow-\infty$, then the line $y=a$ is called a horizontal asymptote of $f(x)$.

Graph Sketching of Rational functions

Find the vertical and horizontal asymptotes of the function.

$$
f(x)=\frac{x-1}{x-2}
$$

Vertical solution: Equate the denominator to zero.

$$
x-2=0 \Rightarrow x=2
$$

Then $f(x)$ is not continuous at $x=2$. To find the vertical asymptote, need to check $\lim _{x \rightarrow 2} f(x)$

$$
\lim _{x \rightarrow 2^{-}} \frac{x-1}{x-2}=-\infty \text { and } \lim _{x \rightarrow 2^{+}} \frac{x-1}{x-2}=+\infty
$$

Graph Sketching of Rational functions

Horizontal solution:

To find the horizontal asymptote, need to check $\lim _{x \rightarrow \infty} f(x)$. Therefore

$$
\begin{gathered}
\lim _{x \rightarrow \infty} \frac{x-1}{x-2}=\lim _{x \rightarrow \infty} \frac{1-1 / x}{1-2 / x}=1 \\
\text { Horizontal }=-=- \\
\text { Asymptote } \\
\text { at } y=1
\end{gathered}
$$

\qquad
-

Graph Sketching of Rational functions

OGlique Asymptote

A straight line $y=m x+c$, where m and c are constant, is an oblique asymptote of $f(x)$ if and only if

$$
\lim _{x \rightarrow+\infty} f(x)=m x+c
$$

The values m and c can be obtained from

$$
\begin{aligned}
m & =\lim _{x \rightarrow+\infty} \frac{f(x)}{x} \\
c & =\lim _{x \rightarrow+\infty}\{f(x)-m x\}
\end{aligned}
$$

Also true for $x \rightarrow-\infty$.

Maximum and Minímum

Final Sem 120182019

a) The derivative of a function $y=f(x)$ is given as

$$
\frac{d y}{d x}=\frac{x^{2}-4 x-5}{x-2} .
$$

i. Find all the critical values of the function.
(4 marks)
ii. Use First Derivative Test to determine which critical values will give maximum or minimum points.

(4 marks)

Maximum and Minímum

Final Sem 120182019

b) An empty cone of radius 6 cm and height 12 cm is being filled with water. At certain instant, the radius of water is $r \mathrm{~cm}$ and height $h \mathrm{~cm}$.
i. Show that the volume of water is

$$
V=\frac{\pi}{12} h^{3}
$$

(3 marks)
ii. If the volume flow rate of water is $20 \mathrm{~cm}^{3} s^{-1}$, find the rate of water level is rising when $h=2 \mathrm{~cm}$.
(4 marks)

