Test 1 Warming-Up Question-Pure Substance and Ideal Gas

Question 1

Using the property tables for water, determine the specified property data at the indicated states. In each case, locate the state by hand on sketches of the $\boldsymbol{T} \boldsymbol{v}$ and $\boldsymbol{P} \boldsymbol{- v}$ diagrams.
a) At $\mathrm{P}=300 \mathrm{kPa}, \mathrm{T}=240^{\circ} \mathrm{C}$, find $v\left(\mathrm{~m}^{3} / \mathrm{kg}\right)$ and $\mathrm{u}(\mathrm{kJ} / \mathrm{kg})$.
b) At $\mathrm{P}=3 \mathrm{bar}, \mathrm{v}=0.5 \mathrm{~m}^{3} / \mathrm{kg}$, find $\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$ and $\mathrm{u}(\mathrm{kJ} / \mathrm{kg})$.
c) At $\mathrm{T}=400^{\circ} \mathrm{C}, \mathrm{P}=1 \mathrm{MPa}$, find $v\left(\mathrm{~m}^{3} / \mathrm{kg}\right)$ and $\mathrm{h}(\mathrm{kJ} / \mathrm{kg})$.
d) $\operatorname{At~T}=325^{\circ} \mathrm{C}, \mathrm{v}=0.03 \mathrm{~m}^{3} / \mathrm{kg}$, find $\mathrm{P}(\mathrm{kPa})$ and $\mathrm{u}(\mathrm{kJ} / \mathrm{kg})$.
e) At $\mathrm{P}=100 \mathrm{kPa}, \mathrm{x}=60 \%$, find $\mathrm{P}(\mathrm{kPa})$ and $v\left(\mathrm{~m}^{3} / \mathrm{kg}\right)$ and $\mathrm{h}(\mathrm{kJ} / \mathrm{kg})$.
f) At T $=100^{\circ} \mathrm{C}, \mathrm{P}=150 \mathrm{kPa}$, find $v\left(\mathrm{~m}^{3} / \mathrm{kg}\right)$ and $\mathrm{h}(\mathrm{kJ} / \mathrm{kg})$.
g) At $\mathrm{P}=4 \mathrm{MPa}, \mathrm{T}=160^{\circ} \mathrm{C}$, find $v\left(\mathrm{~m}^{3} / \mathrm{kg}\right)$ and $\mathrm{u}(\mathrm{kJ} / \mathrm{kg})$.
h) At $\mathrm{T}=350^{\circ} \mathrm{C}, \mathrm{u}=1642.4 \mathrm{~kJ} / \mathrm{kg}$, find $v\left(\mathrm{~m}^{3} / \mathrm{kg}\right)$ and $\mathrm{h}(\mathrm{kJ} / \mathrm{kg})$.
i) $\operatorname{At} \mathrm{P}=350 \mathrm{kPa}, \mathrm{h}=2732.0 \mathrm{~kJ} / \mathrm{kg}$, find $\mathrm{v}\left(\mathrm{m}^{3} / \mathrm{kg}\right)$ and $\mathrm{u}(\mathrm{kJ} / \mathrm{kg})$.

Question 2

A rigid tank contains 0.5 kg oxygen gas $\left(\mathrm{O}_{2}\right)$ initially at 3000 kPa and 200 K . The gas is cooled and the pressure drops to 2000 kPa . Determine
i) the gas constant ($\mathrm{kJ} / \mathrm{kg} . \mathrm{K}$),
ii) the number of mole (kmol),
iii) the volume of the tank (liter) and
iv) the final temperature (K).
v) Sketch the process on a $\boldsymbol{T}-\boldsymbol{V}$ property diagram and label clearly the $\boldsymbol{P} \boldsymbol{-} \boldsymbol{V} \boldsymbol{-} \boldsymbol{T}$ lines.

Take for oxygen gas, $\mathrm{R}_{\mathrm{u}}=8.31443 \mathrm{~kJ} / \mathrm{kmol} . \mathrm{K}, \mathrm{M}=32 \mathrm{~kg} / \mathrm{kmol}$. Note: 1000 liter $=1 \mathrm{~m}^{3}$.

Question 3

A piston-cylinder device initially contains $0.4 \mathrm{~m}^{3}$ of air at 100 kPa and $80^{\circ} \mathrm{C}$. The air is now compressed to $0.1 \mathrm{~m}^{3}$ in such a way that the temperature inside the cylinder remains constant. Determine
i) the mass (kg),
ii) the molar mass $(\mathrm{kg} / \mathrm{kmol})$,
iii) number of mole (kmol), and
iv) the final pressure (kPa).
v) Sktech the process on a $\boldsymbol{P} \boldsymbol{-} \boldsymbol{V}$ diagram and label clearly the $\boldsymbol{P} \boldsymbol{-} \boldsymbol{V} \boldsymbol{- \boldsymbol { T }}$ lines.

Take for air, $\mathrm{R}=0.2871 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}, \mathrm{R}_{\mathrm{u}}=8.31443 \mathrm{~kJ} / \mathrm{kmol} . \mathrm{K}$

