FACULTY OF MECHANICAL ENGINEERING UNIVERSITI TEKNOLOGI MALAYSIA

Test 2
SKMM 2413 (Thermodynamics)
Sem 2014/15-01
Answer all questions
2 hours

Question 1

(a) Starting from the definition of enthalpy, prove that the enthalpy of an ideal gas is a function of temperature only as follows:

$$
h=h(T)
$$

where h is enthalpy and T is temperature.
(b) An ideal gas initially at $900^{\circ} \mathrm{C}$ and 650 kPa with a volume of $0.500 \mathrm{~m}^{3}$ is contained in a pistoncylinder device with stops, as shown in Fig. 1 below. The ideal gas undergoes an isothermal expansion process until the piston reaches the stops, and the pressure drops to 250 kPa . Then, the piston is not allowed to move until the temperature of the ideal gas drops to $27^{\circ} \mathrm{C}$. For the ideal gas, $R=0.287 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$ and $c_{v}=0.776 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$. The changes in kinetic energy and potential energy are negligible. Sketch the processes on a Pressure versus Volume ($\boldsymbol{P} \boldsymbol{-} \boldsymbol{V}$) diagram and determine
(i) the mass of the ideal gas (kg).
(ii) the volume occupied by the ideal gas at the final state $\left(\mathrm{m}^{3}\right)$.
(iii) the total change in internal energy of the ideal gas for the combined processes ($\mathrm{kJ)}$).
(iv) the total boundary work done for the combined processes ($\mathrm{kJ)}$.
(v) the net amount of heat transferred for the combined processes (kJ).

Figure 1

Question 2

(a) Steam enters the shell side of the condenser of a steam power plant at 10 kPa and a quality of 95 percent with a mass flow rate of $20,000 \mathrm{~kg} / \mathrm{h}$. Cooling water at a constant pressure of 200 kPa enters the tubes side of the condenser at $25^{\circ} \mathrm{C}$ with a mass flow rate of $295 \mathrm{~kg} / \mathrm{s}$ and leaves at $35^{\circ} \mathrm{C}$. The condenser is not well insulated resulting in some heat losses to the surroundings. If the steam is to leave the condenser as saturated liquid at 10 kPa , determine,
i. the rate of heat transfer to the cooling water, kJ / s;
ii. the rate of heat loss to the surroundings, kJ / s.
(b) If the steam pressure in the condenser is raised higher than 10 kPa , briefly describe how this alteration will affect the rate of heat loss to the surroundings.

Question 3

(a) Hot combustion gases enter a turbine operating at steady state and expand adiabatically to a lower temperature. Would you expect the power output to be greater in a reversible expansion or an actual expansion? Please explain your answer briefly.
(b) Refrigerant R134a enters a compressor operating at steady state and is compressed adiabatically to a higher pressure. Would you expect the power input to the compressor to be greater in a reversible compression or an actual compression? Please explain your answer briefly.
(c) A combined cycle power plant consists of a gas power plant and a steam power plant. The gas power plant receives 200 MW of heat from a hot thermal reservoir at a temperature of $800^{\circ} \mathrm{C}$ and rejects heat to an intermediate thermal reservoir at $500^{\circ} \mathrm{C}$. The heat rejected by the gas power plant to the intermediate thermal reservoir is used as a heat source for the steam power plant. The steam power plant receives heat from the intermediate thermal reservoir and rejects heat to a cold thermal reservoir at a temperature of $30^{\circ} \mathrm{C}$. Draw the schematic diagram of the combined cycle power plant and determine,
(i) the maximum efficiency of the gas power plant (\%)
(ii) the maximum efficiency of the steam power plant (\%)
(iii) the total maximum theoretical power that can be produced by the combined cycle power plant (MW)
(iv) the actual thermal efficiency (\%) of the steam power plant and the actual heat rejected (MW) by the steam power plant if the actual power produced by the steam power plant is 80 MW .
(16 marks)

PROPERTY TABLE FOR WATER

Saturated water-Temperature table

Temp., $T^{\circ} \mathrm{C}$	Sat. press., $P_{\text {sat }} \mathrm{kPa}$	Specific volume,$\mathrm{m}^{3} / \mathrm{kg}$		Internal energy,\qquad			Enthalpy, $\mathrm{kJ} / \mathrm{kg}$			Entropy, $\mathrm{kJ} / \mathrm{kg} \cdot \mathrm{K}$		
		Sat. liquid, v_{f}	Sat. vapor, v_{g}	Sat. liquid, u_{f}	Evap., $u_{f g}$	Sat. vapor, u_{g}	Sat. liquid, h_{f}	Evap., $h_{f g}$	Sat. vapor, h_{g}	Sat. liquid, s_{f}	Evap., $s_{f g}$	Sat. vapor, s_{g}
25	3.1698	0.001003	43.340	104.83	2304.3	2409.1	104.83	2441.7	2546.5	0.3672	8.1895	8.5567
30	4.2469	0.001004	32.879	125.73	2290.2	2415.9	125.74	2429.8	2555.6	0.4368	8.0152	8.4520
35	5.6291	0.001006	25.205	146.63	2276.0	2422.7	146.64	2417.9	2564.6	0.5051	7.8466	8.3517
40	7.3851	0.001008	19.515	167.53	2261.9	2429.4	167.53	2406.0	2573.5	0.5724	7.6832	8.2556

Press., PkPa	Sat. temp., $T_{\text {sat }}{ }^{\circ} \mathrm{C}$	Specific volume, $\mathrm{m}^{3} / \mathrm{kg}$		Internal energy, $\mathrm{kJ} / \mathrm{kg}$			Enthalpy, $\mathrm{kJ} / \mathrm{kg}$			Entropy, $\mathrm{kJ} / \mathrm{kg} \cdot \mathrm{K}$		
		Sat. liquid, v_{f}	Sat. vapor, v_{g}	Sat. liquid, u_{f}	Evap., $u_{f g}$	Sat. vapor, u_{g}	Sat. liquid, h_{f}	Evap., $h_{f g}$	Sat. vapor, h_{g}	Sat. liquid, s_{f}	Evap., $s_{f g}$	Sat. vapor, S_{g}
4.0	28.96	0.001004	34.791	121.39	2293.1	2414.5	121.39	2432.3	2553.7	0.4224	8.0510	8.4734
5.0	32.87	0.001005	28.185	137.75	2282.1	2419.8	137.75	2423.0	2560.7	0.4762	7.9176	8.3938
7.5	40.29	0.001008	19.233	168.74	2261.1	2429.8	168.75	2405.3	2574.0	0.5763	7.6738	8.2501
10	45.81	0.001010	14.670	191.79	2245.4	2437.2	191.81	2392.1	2583.9	0.6492	7.4996	8.1488
15	53.97	0.001014	10.020	225.93	2222.1	2448.0	225.94	2372.3	2598.3	0.7549	7.2522	8.0071

ING SCHEME FOR QUESTION 1

The definition of enthalpy: is given by

$$
h=a+P u \ldots E_{q} \cdot(1) 10
$$

ideal gas equation of state $P_{V}=R_{T}$
Then, from the (i) ${ }^{R}$, Eq-(1)becomes

$$
h-u=R T
$$

$h=u+R T$
Since R is constant and $U \notin(T)$, the enthalpy of an ideal gas is a function of temperature only, that is

$$
h=h(T)
$$

Q2. (b) (i) The mass of the ideal gas

$$
\begin{aligned}
P V & =m R T \Theta \\
m & =\frac{P U}{R T} \\
& =\frac{(650 \mathrm{kga})\left(0.50 \mathrm{~cm}^{3}\right)}{(0.287 \mathrm{~kJ} / \mathrm{kg} \mathrm{k})(900+273 \mathrm{k})} \\
& =0.965 \mathrm{~kg}
\end{aligned}
$$

(ii) $V_{\text {final }}=V_{2}$

Determination of $V_{2}^{(1)}$
$P V=M R T=C$ because of iso thermal process.

$$
\begin{aligned}
& P_{1} V_{1}=P_{2} V_{2} \\
&(650 \mathrm{kpa})\left(0.500 \mathrm{~m}^{3} 3\right.=(250 \mathrm{kP}) V_{2} \\
& V_{2}=1.30 \mathrm{~m}^{3}
\end{aligned}
$$

DUsystem $=U_{3}-U_{1}$ [KNince the changes in kinetic and potential energy aral]

$$
\begin{aligned}
& =m C v\left(T_{3}-T_{1}\right) \\
& =(0.9651 \mathrm{~kg} 3 \mathrm{j})(00=776 \mathrm{~kJ} / \mathrm{kgg})(300-1173 \mathrm{k}) \\
& \approx-654 \mathrm{~kJ}
\end{aligned}
$$

(iv) Total boundary work done

$$
\begin{align*}
& W_{b}^{\text {Since }}=P_{1} V_{1} V_{1} \ln \frac{V_{2}}{V_{1}} \\
& =(650 \mathrm{kPa})\left(0.50 \mathrm{~m}^{3}\right) \ln \frac{1.3 \mathrm{~m}^{3}}{0.50 \mathrm{~m}^{3}} \tag{v}
\end{align*}
$$

(v) The amount of heat transferred during the processes

$$
E_{\text {ind }} E_{\text {out }}=\Delta E_{\text {system }}(O)
$$

Let we assume Win (Cheat transformed to the system)

$$
\begin{array}{rlrl}
Q_{\text {in }}-W_{b}=\Delta U 0 & \text { or } & -Q_{\text {out }}-W_{b} & =D U \\
Q_{\text {in }}-311 k J & =-654 k J & -Q_{\text {out }} & =\Delta u+1 \\
& =-654 \\
Q_{\text {in }} & =-343 \mathrm{~kJ} & & -Q_{\text {out }}=-34 \\
& & \therefore Q_{\text {out }}=34
\end{array}
$$

$\therefore Q_{\text {out }}=343 \mathrm{~kJ}$ *amount of heat transferred from the system (ideal gas)
P-V diagram * before bi)
(vi)

Question ~ 1 st Law open System
a)

i) $\dot{Q}_{c \omega}=$?

Perform the energy balance analyas on the $C W$.

$$
\begin{aligned}
& \dot{E}_{\text {in }}=E_{\text {out }}^{0} ; \Delta k e \cong \Delta P Q \cong 0 ; \dot{W}_{\text {in }}=\dot{W}_{\text {out }}=0 ; \dot{Q}_{\text {out }}=0
\end{aligned}
$$

$$
\dot{Q}_{c w, \text { in }}=\dot{m}_{c w}\left(h_{4}-h_{3}\right)
$$

State (3)

$$
\begin{aligned}
& P_{3}=200 \mathrm{kpa} \\
& T_{3}=25^{\circ} \mathrm{C} ; P_{3}>P_{\text {sat } 295^{\circ} \mathrm{C}}
\end{aligned}
$$ compressed liquid

$$
h_{3} \cong h_{\rho @ 25^{\circ} \mathrm{C} \cong}^{\cong} 104.83 \frac{\mathrm{~kJ}}{\mathrm{~kg}}
$$

State (4)

$$
\overline{p_{4}=200} \mathrm{rpa}
$$

$$
\begin{equation*}
T_{4}=35^{\circ} \mathrm{C} ; P_{4}>P_{\text {sat } 8} 35^{\circ} \mathrm{C} \tag{2}
\end{equation*}
$$

compressed liquid

$$
h_{4} \cong h_{\rho @ 35^{\circ} \mathrm{C} \cong 146.64 \frac{\mathrm{~kJ}}{\mathrm{~kg}} .{ }^{6} .}
$$

$$
\begin{align*}
\therefore \dot{Q}_{\text {cw, in }} & =295 \times(146.64-104.83)\left(\frac{\mathrm{kg}}{\mathrm{~s}} \times \frac{\mathrm{kJ}}{\mathrm{~kg}}\right) \\
& =12333.95 \mathrm{kw} *(2) \tag{2}
\end{align*}
$$

ii) \dot{Q} sur $=$?

Perform the energy balance analysis on the STEAM:

$$
\begin{align*}
& \dot{E}_{\text {out }}=\dot{E}_{\text {in }} ; \Delta K e \cong \Delta p e \cong 0 ; \dot{W}_{\text {in }}=\dot{W}_{\text {out }}=0 ; \dot{Q}_{\text {in }}=0 \tag{1}\\
& \therefore \dot{Q}_{\text {sur } 10 u t}+\dot{Q}_{c w, o u t}+\dot{m}_{s} h_{2}=\dot{m}_{s} h_{1} \\
& \dot{Q}_{\text {sure, out }}=\dot{m}_{s}\left(h_{1}-h_{2}\right)-\dot{Q}_{c w} \text { (2) } \\
& \text { State (1) } \\
& x_{1}=0.95 \\
& P_{1}=10 \mathrm{kpa} \\
& \text { mixture } \\
& \text { State (2) } \\
& \text { sat liquid } \\
& P_{2}=10 \mathrm{kPa} \\
& h_{2}=h_{f}=191.81 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \text { (1) } \\
& \therefore Q_{\text {sure, out }}=20000 \frac{\mathrm{~kg}}{\mathrm{~h}} \times \frac{1 \mathrm{~h}}{3600 \mathrm{~s}}(2464.31-191.81) \frac{\mathrm{kJ}}{\mathrm{~kg}} \\
& -12333.95 \\
& =291.05 \mathrm{KW} \tag{2}
\end{align*}
$$

b) As the steam pressure is raised, it's latent heat decreases. Hence the amount of heat loss to the surroundings is less as the heat being transferred to the cooling water remains the same as before.
a) greater is a revesible expansion

- Wrthaut any irreverinbities, wark prodring devica will prodnce makimum werk.
b) Greater in an actual coupresinan. - An artaral conprevsion involves ivreversibilities, thes the cumpresson requises mote work coupole te the reverisble coupression.
c)

i)

$$
\begin{align*}
\eta_{\text {maxa }} & =1-\frac{T_{i}}{T_{B}} \\
& =1-\frac{500+273}{800+273} \\
& =0.280 \quad(28.0 \%)
\end{align*}
$$

ii)

$$
\begin{aligned}
\lambda_{\text {maxs }} & =1-\frac{T_{L}}{T_{i}} \\
& =1-\frac{30+273}{500+273} \\
& =0.608\left(60.8^{\circ} \%\right)^{7}
\end{aligned}
$$

iii) $0.28=\frac{W_{G}}{Q_{H G}}$

$$
\begin{aligned}
\dot{W}_{G} & =0.28(200) \\
& =56 \mathrm{MW}
\end{aligned}
$$

$$
\begin{align*}
\bar{\Phi}_{H_{S}}=\dot{Q}_{1-G} & =200-56 \tag{1}\\
& =144 \text { WW } \\
\therefore 0.608 & =\frac{\dot{W}_{S}}{\dot{Q}_{H S}} \tag{2}\\
W_{S} & =0.608(144)=87.55 \\
\text { Tatal Power } & =56+87.55 \\
& =143.55 \mathrm{MW}_{\mathrm{H}}
\end{align*}
$$

iv)

$$
\begin{align*}
\eta_{s}= & \frac{\dot{N}_{s}}{\dot{q}_{H_{c}}}=\frac{80}{144} \tag{2}\\
& =0.556(55.6 \%) \tag{2}\\
\dot{Q}_{H_{S A}} & =\dot{Q}_{H_{S}}-\dot{N}_{s_{A}} \\
& =144-80 \\
& =64 \mathrm{MW}
\end{align*}
$$

