FACULTY OF MECHANICAL ENGINEERING UNIVERSITI TEKNOLOGI MALAYSIA

TEST 2

THERMODYNAMICS SKMM 2413 Session 2015/2016-1

2nd December 2015 (Wednesday) 1 hour and 45 minutes Answer All Three (3) Questions

QUESTION 1

- (a) Answer the following questions:
 - i. A fixed mass of an ideal gas is heated from 50 to 80°C at a constant pressure of (*i*) 1 bar and (*ii*) 3 bar. For which case of pressure do you think the energy required will be greater? Explain why?
 - ii. A fixed mass of an ideal gas is heated from 50 to 80°C at a constant volume of (*i*) 1 m³ and (*ii*) 3 m³. For which case of volume do you think the energy required will be greater? Explain why?

(4 marks)

- (b) Air is contained in a cylinder device fitted with a piston cylinder (Figure 1). The piston initially rests on a set of stops. Initial condition of the air is at 100 kPa and 27°C and occupies a volume of 0.4 m³. The air is now heated at constant volume to temperature T_2 and pressure of 300 kPa where this pressure is required to move the piston. Then, the heat is transferred to the air at constant pressure to a final temperature of 1200K. Assume air as an ideal gas, R = 0.287 kJ/kg.K and $c_v = 0.718$ kJ/kg.K. The changes in kinetic energy and potential energy are negligible.
 - i. sketch both processes on a single P-v diagram showing the direction of the processes and label the end states as 1, 2 and 3.
 - ii. calculate the temperature $T_2[K]$
 - iii. determine the mass of the air [kg]
 - iv. calculate the boundary work done during final process[kJ]
 - v. determine the amount of heat transferred to the air while the temperature increased to 1200 K[kJ]

(16 marks)

Figure 1

QUESTION 2

a) i) Explain why when the fluid flow through a turbine is considered as steady flow?

ii) What is the difference between a throttling valve and a turbine?

(4 marks)

- b) Steam with a mass flow rate of 0.25 kg/s enters an adiabatic throttling valve steadily at 1.4 MPa, 250 °C and leaves at 1.2 MPa. The steam is then flows steadily into an adiabatic turbine and then exhaust at 10 kPa. If the turbine produces 110 kW power and the potential and kinetic energy of the steam are negligible for both processes, determine:
 - i) the enthalpy at the inlet and outlet of throttling valve and the enthalpy at the outlet of turbine (kJ/kg),
 - ii) the temperature at the turbine outlet (°C) and the quality of the steam (if saturated).
 - iii) in the case of the turbine has a heat loss of 150 kW, calculate the temperature of the steam at the turbine outlet (°C) and the quality of the steam (if saturated).

(16 marks)

QUESTION 3

a) Write the four (4) processes involved to construct a heat engine based on Carnot cycle.

(4 marks)

b) A heat engine received 6000 kW of heat from a high temperature reservoir at 750°C and convert part of the heat as work output. The balance of this heat supplied is being rejected to a low temperature reservoir at 30°C. 35 kW of the work output is used to drive an electric generator and 5 kW to drive a refrigerator. The refrigerator absorbed 1560 kJ/min of heat from a cold space at -5°C and then rejects it at a surrounding of 30°C. Sketch the schematic diagram for the above system.

Determine

- i) the thermal efficiency of the heat engine (%),
- ii) the coefficient of performance of the refrigerator,
- iii) the total heat rejected to the 30°C heat reservoir (kJ/min),
- iv) the maximum thermal efficiency of the heat engine (%), and
- v) the minimum work input to the refrigerator if the same amount of heat absorbed from the cold space (kW).

(16 marks)

No. Kad Pengenalan/No. ISID:		Jangan tulis apa-
I.C. No./ISID No. No. Soalan Ouestion No.	Muka surat Page	apa di ruangan ini Do not write anything in this column
$a)$ $T_1 = 50^{\circ}(, T_3 = 80^{\circ}C$	d) $W_{23} = p_2(V_3 - V_2)$	-1
$P = C$ $P_1 = P_2 = 100 \text{ KB}$	$V_3 = m RT_3$	-1
P. = P2 = 300 Kga	P3	
$Q_{12} = (h_2 - h_1) = G_p(T_1 - T_1)$	= 0.4645 × 0.287× 1200	
Reporties what is the p	300	
Un is still the fame.	= 0.5332 m ³	
2	$W_{23} = 300(0.5332 - 0.4)$	
6) TI-50°C, TA- 80°C	= 39.96 KJ	-1 (4)
$V=C$, $V_1=V_2$		
$V_1 = V_2 = 1$ m ³	e) ZQ = Q12 + Q23	-1
Vi-V2 - 3m	0	
$Q_{12}: C_{V}(T_{1}-T_{1}) + \omega_{12}^{2}$	Q12 = MCV (T2-Ti) + W12	-1
$Q_{n=f}(T_{1}\xi T_{n})$	= 0.4645 × 0.718 (900-300)	
Repardless what is the v,	: 200.11 kJ	-1
Qn is shill the same 2		
	$Q_{23} = m G (T_3 - T_2)$	-1
0 0 0	$Q = C_V + K$ = 0.718 + 0.287	
R= 100KP Heating T2 T= 300K Heating P2 = 300Kp Aeating	= 0.718 + 0.287	
R V.C R RP.C R R	= 1.005 K J/Kg K	
$V_1 = 0.4m^3$ $V_1 = V_2$ $P_2 = P_3 = P_3 = 1200 K$, ,	
	Q23: 0-4645×1.005(1200-90	0)
$\begin{array}{c} g \\ p \\ p_{3} \\ p_{2} \\ \end{array}$	= 140.05 kJ	-1
Y312 T3	ōR	
p Th -2	$Q_{23} = m(v(T_3 - T_1) + W_{23})$	
-T.	= 0.4645×0.712(1200-900)	- 39.96
	- 140-01 KJ	
-		
b) P_2 = RY_1 $T_2 = T_1 P_2 - 1$ $T_2 = T_1 P_1$		
	ZQ= 200.11 + 140.05	
T3 : 300 x 300 = 900K	= 340.16 KJ.	-1 6
100 0	01 Q2	
c) m = RV,1	4 + 16 - 20	
RT1	4 16 20	
$\frac{1}{0.287 \times 300} = 0.4645 \text{ kg}$		· · · · · · · · · · · · · · · · · · ·
0.287×300		

UNIT CONTRACTOR UNIT	ZERSITI TEKNOLOGI MALAYSIA	
No. Kad Pengenalan/No. ISID: I.C. No./ISID No.		Jangan tulis apa-
No. Soalan	Muka surat	apa di ruangan ini Do not write anything
Question No.	$\mathcal{R}_{3} = 2487.9 - 191.81$	in this column
ii) - Throttle value no work 3		
- Turbine produced Wont - 2	= 0:9599	- 5
<u>(6)</u>		
) + m= 0.25+7/s	iii) SFEE : 2-3	
TV R=1.4MPG	$Q_{23} = 150 \text{ kW}$	
Τ τι= 250°C	$h_2 = h_3 + W_{23} + Q_{23}$	
$\frac{1}{2} P_2 = 1 \cdot 2 M P_0$		
		<u>_</u>
T $P_3 = TO + Pa$	$h_3 = h_2 - W_{23} - W_{23} - \dots$	T
Q12 = Q23 = O	wi wi	
	= 2927.9-110-150	
Dre: Spt = O	0.15 0.25	
	h, = 1887.9 kJ/kg	+
i) At 1400A10 TO = 195:04 °C	3 70	
i) At 1400 A1P. TS = 195.04 °C TI > TSAti Sihiv	At 10×12, hr Lh, Lhg -	<u>-</u> -
b 2000 0 x7/20 -1	13 3 33	
h2 · h, = 2927 · 9 kJ/kg	i satimisture	<u> </u>
h2 in = 20127 G ESTES	·· sadi husquive	
	TITIO	
SFEE 2-3:	13= 1sed @ 10 kpg	+
$h_2 = h_3 + W_{23}$	= 45.81°C	-7 101
$h_{2} = h_{2} - W_{23} - 1$		
$h_2 - w_{23}$	x3: p3-p13	1
ri i	her	
= 2927.9-110	10 3	
0.25	= 1887.9-191.81	
	2392.1	
$h_3 = 2487.9 \text{ ks/kg}^{-1}$	2542.1	
X		
ii) At 10kpa, hr <h3 <h83<="" td=""><td>= 0.7090</td><td>-1 2</td></h3>	= 0.7090	-1 2
· · · · · · · · · · · · · · · · · · ·		8
T3 = Tsat @ 10kpa -1		
= 45.81°C!	(25)	
#	1 II	
$\chi_3 = h_3 - h_{f3} - 1$		
<u>, , , , , , , , , , , , , , , , , , , </u>		-
193		

No. Kad Pengenalan/No. ISID: I.C. No./ISID No No. Soalan	Muka surat Page	Jangan tulis apa- apa di ruangan ini Do not write anything in this column
b) TH=1023H TH'- 203K	V) WRMin = QL	-1
₩=5KW 10H	COP	
(N) (HE) (R)		
4 04	COPRWAR = 1	
T= 303 K	TH - 1	
Wg=35 kW; Wp=5 kW	π'	
QH = 6000 KJ/min; Q'L = 1560 KJ/min		
· · · · · · · · · · · · · · · · · · ·	1303]-1	
i) 7th = What	268	
Qui	: 7.66	-1
i) 7th = What L RH What = Wig + Wig = 35+5 = 40 KW L		2
= 35+5	WRMin = 1560 x 1	
= 40 KW	60 7.66	
	- 3.39 KW	
M. = 40 ×60 ×100		-
6000		
: 40%	a)	
	1-2: Reversible isothermal	N
i) (0? : i) - i	expansion —	
WR	2-3: Reversible adiabatic	
: 1560	expansion	-1
5 × 60	3-4 : Feversible isotherm.	al
- 5.2	compression	_1
	4-1: Reversible adiaba	ti
ii) $\hat{Q}_{L} = \hat{Q}_{H} - \hat{W}_{ret} - 1$	compression	-1
$= 6000 - (40 \times 60)$		
= 3600 \c3/min-1		
$m - 1 - T_{1}$		
iv) 7 + = - TL - 1 + max TH		
$=\left(1-\frac{303}{1023}\right)\times100$		
- 70.38%		A 6 400-00 5
= 1 ,070 -		
		18.

.

ы