FACULTY OF MECHANICAL ENGINEERING
 UNIVERSITI TEKNOLOGI MALAYSIA

TEST 2

THERMODYNAMICS SKMM 2413

Session 2015/2016-1

2nd December 2015 (Wednesday)
 1 hour and 45 minutes
 Answer All Three (3) Questions

QUESTION 1

(a) Answer the following questions:
i. A fixed mass of an ideal gas is heated from 50 to $80^{\circ} \mathrm{C}$ at a constant pressure of (i) 1 bar and (ii) 3 bar. For which case of pressure do you think the energy required will be greater? Explain why?
ii. A fixed mass of an ideal gas is heated from 50 to $80^{\circ} \mathrm{C}$ at a constant volume of (i) $1 \mathrm{~m}^{3}$ and (ii) 3 m^{3}. For which case of volume do you think the energy required will be greater? Explain why?
(b) Air is contained in a cylinder device fitted with a piston cylinder (Figure 1). The piston initially rests on a set of stops. Initial condition of the air is at 100 kPa and $27^{\circ} \mathrm{C}$ and occupies a volume of $0.4 \mathrm{~m}^{3}$. The air is now heated at constant volume to temperature T_{2} and pressure of 300 kPa where this pressure is required to move the piston. Then, the heat is transferred to the air at constant pressure to a final temperature of 1200 K . Assume air as an ideal gas, $R=0.287 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$ and $c_{\nu}=0.718 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$. The changes in kinetic energy and potential energy are negligible.
i. sketch both processes on a single $P-v$ diagram showing the direction of the processes and label the end states as 1, 2 and 3.
ii. calculate the temperature $T_{2}[\mathrm{~K}]$
iii. determine the mass of the air $[\mathrm{kg}]$
iv. calculate the boundary work done during final process[kJ]
v. determine the amount of heat transferred to the air while the temperature increased to $1200 \mathrm{~K}[\mathrm{~kJ}$]

Figure 1

QUESTION 2

a) i) Explain why when the fluid flow through a turbine is considered as steady flow?
ii) What is the difference between a throttling valve and a turbine?
b) Steam with a mass flow rate of $0.25 \mathrm{~kg} / \mathrm{s}$ enters an adiabatic throttling valve steadily at 1.4 MPa , $250^{\circ} \mathrm{C}$ and leaves at 1.2 MPa . The steam is then flows steadily into an adiabatic turbine and then exhaust at 10 kPa . If the turbine produces 110 kW power and the potential and kinetic energy of the steam are negligible for both processes, determine:
i) the enthalpy at the inlet and outlet of throttling valve and the enthalpy at the outlet of turbine ($\mathrm{kJ} / \mathrm{kg}$),
ii) the temperature at the turbine outlet $\left({ }^{\circ} \mathrm{C}\right)$ and the quality of the steam (if saturated).
iii) in the case of the turbine has a heat loss of 150 kW , calculate the temperature of the steam at the turbine outlet $\left({ }^{\circ} \mathrm{C}\right)$ and the quality of the steam (if saturated).
(16 marks)

QUESTION 3

a) Write the four (4) processes involved to construct a heat engine based on Carnot cycle.
b) A heat engine received 6000 kW of heat from a high temperature reservoir at $750^{\circ} \mathrm{C}$ and convert part of the heat as work output. The balance of this heat supplied is being rejected to a low temperature reservoir at $30^{\circ} \mathrm{C} .35 \mathrm{~kW}$ of the work output is used to drive an electric generator and 5 kW to drive a refrigerator. The refrigerator absorbed $1560 \mathrm{~kJ} / \mathrm{min}$ of heat from a cold space at $-5^{\circ} \mathrm{C}$ and then rejects it at a surrounding of $30^{\circ} \mathrm{C}$. Sketch the schematic diagram for the above system.

Determine
i) the thermal efficiency of the heat engine (\%),
ii) the coefficient of performance of the refrigerator,
iii) the total heat rejected to the $30^{\circ} \mathrm{C}$ heat reservoir $(\mathrm{kJ} / \mathrm{min})$,
iv) the maximum thermal efficiency of the heat engine (\%), and
v) the minimum work input to the refrigerator if the same amount of heat absorbed from the cold space (kW).

No. Kad Pengenalan/No. ISID: I.C. No./ISID No.

Question No.
Q1 a)

$$
\begin{aligned}
& T_{1}=50^{\circ} \mathrm{C}, T_{2}=80^{\circ} \mathrm{C} \\
& P=C, P_{1}=P_{2}=100 \mathrm{kPa} \\
& P_{1}=P_{2}=300 \mathrm{kPa} \\
& Q_{12}=\left(h_{2}-h_{1}\right)=G\left(T_{2}-T_{1}\right)
\end{aligned}
$$

Regordless wlat is the p,
Q_{12} is fill the fame.
b)

$$
\begin{aligned}
& T_{1}=50^{\circ} \mathrm{C}, T_{2}=80^{\circ} \mathrm{C} \\
& V=C, V_{1}=V_{2} \\
& V_{1}=V_{2}=1 \mathrm{~m}^{3} \\
& V_{1}=V_{2}=3 n^{3}
\end{aligned}
$$

$$
Q_{12}=C_{2}\left(T_{2}-T_{1}\right)+6 R_{12}^{0}
$$

$$
Q_{12}=f\left(T_{1} ; T_{2}\right)
$$

Regardless whet is the V, Q_{12} is still the same. -2
Q_{2}

b) $\frac{P_{1} W_{2}}{T_{2}}=\frac{P_{1} Y_{1}}{T_{1}}, T_{2}=\frac{T_{1} P_{2}}{\bar{P}_{1}}-1$
$T_{2}=300 \times \frac{300}{100}=900 \mathrm{~K}=1$

$$
\text { c) } \begin{aligned}
m & =\frac{P_{1} v_{1}}{R T_{1}}-1 \\
& =\frac{100 \times 0.4}{0.287 \times 300}=0.4645 \mathrm{~kg}
\end{aligned}
$$

d)

$$
\begin{aligned}
& W_{23}=P_{2}\left(V_{3}-V_{2}\right) \\
& V_{3}=\frac{m R T_{3}}{P_{3}}
\end{aligned}
$$

$$
=\frac{0.4645 \times 0.287 \times 1200}{300}
$$

$$
=0.5332 \mathrm{~m}^{3} \ldots 1
$$

$$
w_{23}=300(0.5332-0.4)
$$

$$
\begin{equation*}
=39.96 \mathrm{~kJ} \tag{4}
\end{equation*}
$$

e)

$$
\begin{array}{rl|l}
\Sigma Q & =Q_{12}+Q_{23} \ldots & 1 \\
Q_{12} & =m C_{V}\left(T_{2}-T_{1}\right)+w /{ }^{0} & -1 \\
& =0.4645 \times 0.718(900-300) & \\
& =200.11 \mathrm{~kJ} \quad 1
\end{array}
$$

$$
Q_{23}=m C_{p}\left(T_{3}-T_{2}\right)
$$

$$
c_{p}=c_{v}+R
$$

$$
=0.718+0.287
$$

$$
=1.005 \mathrm{~kJ} / \mathrm{kg} \mathrm{~K}
$$

$$
Q_{23}=0.4645 \times 1.005(1200-900)
$$

$$
\begin{aligned}
& =140.05 \mathrm{~kJ} \\
Q_{23} & =m C_{v}\left(T_{3}-T_{2}\right)+w_{23} \\
& =0.4645 \times 0.718(1200-900)+39.96 \\
& =140.01 \mathrm{~kJ}
\end{aligned}
$$

$$
\begin{array}{rl|l}
\Sigma Q & =200.11+140.05 & \\
& =340.16 \mathrm{~kJ} . & 1
\end{array}
$$

a) i) when $\tau \dot{m}_{\text {in }}=\Sigma$ miout $_{\text {a }}-2$
ii) - Throttle value no work -2

- Turbine produced wout-2
b)

$$
\Delta K_{E}=\Delta P_{E}=0
$$

i) At $1400 \mathrm{Mp}, T_{5}=195 \cdot \mathrm{CA}^{\circ} \mathrm{C}$

$$
\begin{aligned}
& T_{1}>T_{\text {sat }}: \text { s. } h_{\mathrm{v}}-1 \\
& h_{1}=2927.9 \mathrm{~kJ} / \mathrm{kg}-1 \\
& h_{2}=h_{1}=2927.9 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

SFEE 2-3:

$$
\begin{aligned}
h_{2} & =h_{3}+w_{23} \\
h_{3} & =h_{2}-w_{23}-\frac{1}{\dot{m}} \\
& =h_{2}-\frac{\dot{w}_{23}}{\dot{m}} \\
& =2927.9-\frac{110}{0.25} \\
h_{3} & =2487.9 \mathrm{~kJ} / \mathrm{kg}-\frac{1}{6}
\end{aligned}
$$

ii) At $10 \mathrm{kPa}, \quad h_{f_{3}}<h_{3}<h_{8_{3}}$
\therefore sat-mixture \qquad
$T_{3}=T_{\text {sat }}$ @ $10 \mathrm{kpa}-1$ $=45.81^{\circ} \mathrm{C} \longrightarrow 1$ $x_{3}=\frac{h_{3}-h_{f 3}}{h_{1 g_{3}}}-1$

$$
\begin{aligned}
& { }^{1}{ }^{*} \quad \dot{m}=0.25 \mathrm{~kg} / \mathrm{s} \\
& \text { TV } \quad P_{1}=1.4 \mathrm{MPa} \\
& T \quad \begin{array}{l}
T_{1}=250^{\circ} \mathrm{C} \\
\hline 2 \quad P_{2}=1.2 \mathrm{MPa}
\end{array} \\
& \left\{\begin{array}{c}
T_{2}=1.2 M P_{a} \\
P_{3}=10 k P_{a} \\
Q_{12}=Q_{23}=0 \\
\frac{1}{3} \quad \dot{W}_{23}=110 \mathrm{~kW}
\end{array}\right.
\end{aligned}
$$

$$
\text { (iii) } \begin{aligned}
& \text { SFEE: } 2.3 \\
& Q_{23}=150 \mathrm{~kW} \\
& h_{2}=h_{3}+w_{23}+Q_{23} \\
& h_{3}=h_{2}-\frac{w_{23}-\frac{Q_{23}}{w}}{w} \\
&=2927.9-\frac{110}{0.25}-\frac{150}{0.25}
\end{aligned}
$$

$$
\text { At } 10 \mathrm{kPa}, h_{f_{3}}<h_{3}<h_{g_{3}}
$$

$$
\therefore \text { sat.mixture } 1
$$

$$
\begin{array}{rl|l}
T_{3} & =T_{\text {sat }} @ 10 \mathrm{kPa} \cdots \\
& =45.81{ }^{\circ} \mathrm{C}-1 \\
\end{array}
$$

$$
x_{3}: \frac{h_{3}-h_{f 3}}{h_{f_{3}}} \ldots-1
$$

$$
=\frac{1887.9-191.81}{2392.1}
$$

$$
\begin{equation*}
=0.7090 \tag{2}
\end{equation*}
$$

(6) UTM

No. Kab Pengenalan No. ISID
No. Solan...... Q3 Question No.
b)

$\dot{w}_{g}=35 \mathrm{~kW} ; \dot{w}_{R}=5 \mathrm{~kW}$
$\dot{Q}_{H}=6000 \mathrm{~kJ} / \mathrm{min} ; \dot{Q}_{L}^{\prime}=1560 \mathrm{~kJ} / \mathrm{min}$
i)

$$
\begin{aligned}
\eta_{\text {th }} & =\frac{\dot{w}_{\text {Net }}}{\dot{Q}_{H}}-1 \\
\dot{w}_{\text {net }} & =\dot{\vec{w}}_{g}+\dot{w}_{R} \\
& =35+5 \\
& =40 \mathrm{~kW}-1
\end{aligned}
$$

$$
\begin{aligned}
\eta_{+h} & =\frac{40 \times 60 \times 100}{6000} \\
& =40 \%
\end{aligned}
$$

ii)

$$
\begin{aligned}
\text { COP }_{R} & =\frac{\dot{Q}_{L}^{\prime}}{W_{R}}-1 \\
& =\frac{1560}{5 \times 60} \\
& =5.2-1
\end{aligned}
$$

iii)

$$
\begin{aligned}
\dot{Q}_{1} & =\dot{Q}_{1}-\dot{W}_{n e} t-1 \\
& =6000-(40 \times 60) \\
& =3600 \mathrm{~kJ} / \mathrm{min}-1
\end{aligned}
$$

iv)

$$
\begin{aligned}
\eta_{t h_{\text {max }}} & =1-\frac{T_{L}}{T_{H}}-1 \\
& =\left(1-\frac{303}{1023}\right) \times 100 \\
& =70.38 \%-1
\end{aligned}
$$

a)

1-2: Revertible isothermal
2-3: Reversible adiabatic. 1
expansion
Reversible isothermal
3-4 : Reversible isothermal compression - 1
4-1 : Reversible adiabatic compression

