# SEKOLAH KEJURUTERAAN MEKANIKAL UNIVERSITI TEKNOLOGI MALAYSIA

### SKMM 2413 THERMODYNAMICS TEST 2

### **QUESTION 1**

a) An ideal gas undertaken an expansion process according PV = constant law. Prove that the boundary work,  $W_{12}$ , for such process is given by

$$W_{12} = P_l V_l \ln \frac{V_2}{V_l}$$

where P = pressure (kPa) and V = volume (m<sup>3</sup>)

- b) Air initially at 800 kPa, 600 K and 0.25 m<sup>3</sup> contain in a piston-cylinder assembly undergoes a thermodynamics cycle as follows
  - 1-2: expansion process according to polytropic law,  $PV^n$  = constant, (where n = 1) until the volume increased to 0.5 m<sup>3</sup>;
  - 2-3: isobaric compression until initial volume is achieved; and
  - 3-1: isochoric(isometric) process to initial pressure.
  - i) Determine the pressure (kPa), temperature (K) and volume (m<sup>3</sup>) for state 2 and 3.
  - ii) Sketch the cycle on a P V diagram and label all the pressure, temperature and volume.
  - iii)Calculate the boundary work (kJ) for each process.
  - iv)Evaluate the heat transfer (kJ) involved for each process.
  - v) Determine the change of internal energy (kJ) for each process.
  - vi)Show that the change of internal energy (kJ) for the entire cycle is positive, negative or zero.

| Table | Q1: | Pro | perties | of | air |
|-------|-----|-----|---------|----|-----|
|-------|-----|-----|---------|----|-----|

| Property | R         | Ср        | Cv        | k      |
|----------|-----------|-----------|-----------|--------|
|          | (kJ/kg.K) | (kJ/kg.K) | (kJ/kg.K) |        |
| Value    | 0.2870    | 1.005     | 0.718     | 1.4000 |

(20 marks)

#### **QUESTION 2**

a) Steam flows steadily into a well-insulated turbine with a mass flow rate of 6 kg/s and a negligible velocity at 600 kPa and 550°C. The steam leaves the turbine through a 1.12 m diameter opening at 10 kPa with a velocity of 18 m/s. If the changes of kinetic and potential energies were neglected, determine the power output produced (*MW*).

(16 marks)

 b) If the turbine was not insulated, what would be the effect on the power output? Discuss briefly.

(4 marks)

#### **QUESTION 3**

a) i) State the four processes that make up the Carnot cycle?
ii) 'It might be possible to develop an updated heat-engine that could be more efficient than a Carnot heat engine operating between the same temperature limits.' Is the statement true or false? Why?

(4 marks)

b) An inventor claims to have developed a refrigeration system that removes heat from the closed region at -12°C and transfers it to the surrounding air at 25°C while maintaining a COP of 7.0. Is this claim reasonable or not? Justify your answer with calculation.

(6 marks)

- c) A steam power plant receives heat from a furnace at a rate of 280 GJ/h. Heat losses to the surrounding air from the steam as it passes through the pipes and other components are estimated to be about 8 GJ/h. If the waste heat is transferred to the cooling water at a rate of 145 GJ/h, determine
  - (i) the net power output (MW), and
  - (ii) the thermal efficiency of this power plant (%).

(12 marks)

| TABLE A-5                       |                                                |                                                          |                                                     |                                                |                                                |                                                |                                                |                                                |                                                |                                                |                                                |                                                |
|---------------------------------|------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|
| Saturat                         | Saturated water—Pressure table                 |                                                          |                                                     |                                                |                                                |                                                |                                                |                                                |                                                |                                                |                                                |                                                |
|                                 |                                                | <i>Specif</i>                                            | <i>fic volume,</i><br>n <sup>3</sup> /kg            | Internal energy,<br>kJ/kg                      |                                                | Enthalpy,<br>kJ/kg                             |                                                |                                                | <i>Entropy,</i><br>kJ/kg · К                   |                                                |                                                |                                                |
| Press.,<br><i>P</i> kPa         | Sat.<br>temp.,<br><i>T</i> <sub>sat</sub> °C   | Sat <b>.</b><br>Iiquid,<br>v <sub>f</sub>                | Sat.<br>vapor,<br>v <sub>g</sub>                    | Sat.<br>Iiquid,<br><i>u<sub>f</sub></i>        | Evap.,<br>u <sub>fg</sub>                      | Sat <b>.</b><br>vapor,<br><i>u<sub>g</sub></i> | Sat.<br>Iiquid,<br><i>h<sub>f</sub></i>        | Evap.,<br>h <sub>fg</sub>                      | Sat.<br>vapor,<br><i>h<sub>g</sub></i>         | Sat.<br>Iiquid,<br><i>s<sub>f</sub></i>        | Evap.,<br>s <sub>fg</sub>                      | Sat.<br>vapor,<br><i>s<sub>g</sub></i>         |
| 4.0<br>5.0<br>7.5<br>10<br>15   | 28.96<br>32.87<br>40.29<br>45.81<br>53.97      | 0.001004<br>0.001005<br>0.001008<br>0.001010<br>0.001014 | 34.791<br>28.185<br>19.233<br>14.670<br>10.020      | 121.39<br>137.75<br>168.74<br>191.79<br>225.93 | 2293.1<br>2282.1<br>2261.1<br>2245.4<br>2222.1 | 2414.5<br>2419.8<br>2429.8<br>2437.2<br>2448.0 | 121.39<br>137.75<br>168.75<br>191.81<br>225.94 | 2432.3<br>2423.0<br>2405.3<br>2392.1<br>2372.3 | 2553.7<br>2560.7<br>2574.0<br>2583.9<br>2598.3 | 0.4224<br>0.4762<br>0.5763<br>0.6492<br>0.7549 | 8.0510<br>7.9176<br>7.6738<br>7.4996<br>7.2522 | 8.4734<br>8.3938<br>8.2501<br>8.1488<br>8.0071 |
| 450<br>500<br>550<br>600<br>650 | 147.90<br>151.83<br>155.46<br>158.83<br>161.98 | 0.001088<br>0.001093<br>0.001097<br>0.001101<br>0.001104 | 0.41392<br>0.37483<br>0.34261<br>0.31560<br>0.29260 | 622.65<br>639.54<br>655.16<br>669.72<br>683.37 | 1934.5<br>1921.2<br>1908.8<br>1897.1<br>1886.1 | 2557.1<br>2560.7<br>2563.9<br>2566.8<br>2569.4 | 623.14<br>640.09<br>655.77<br>670.38<br>684.08 | 2120.3<br>2108.0<br>2096.6<br>2085.8<br>2075.5 | 2743.4<br>2748.1<br>2752.4<br>2756.2<br>2759.6 | 1.8205<br>1.8604<br>1.8970<br>1.9308<br>1.9623 | 5.0356<br>4.9603<br>4.8916<br>4.8285<br>4.7699 | 6.8561<br>6.8207<br>6.7886<br>6.7593<br>6.7322 |

### ATTACHMENT

## TABLE A-6

| Superheated water |                    |       |       |         |                    |       |       |           |                    |       |       |           |
|-------------------|--------------------|-------|-------|---------|--------------------|-------|-------|-----------|--------------------|-------|-------|-----------|
| T                 | v                  | u     | h     | s       | v                  | u     | h     | s         | v                  | u     | h     | s         |
| °C                | m <sup>3</sup> /kg | kJ/kg | kJ/kg | kJ/kg⋅K | m <sup>3</sup> /kg | kJ/kg | kJ/kg | kJ/kg · K | m <sup>3</sup> /kg | kJ/kg | kJ/kg | kJ/kg · K |

|      |                         |        |        |                         | 1       |        |        |                         |                |        |        |
|------|-------------------------|--------|--------|-------------------------|---------|--------|--------|-------------------------|----------------|--------|--------|
|      | P = 0.50 MPa (151.83°C) |        |        | P = 0.60 MPa (158.83°C) |         |        |        | P = 0.80 MPa (170.41°C) |                |        |        |
| Sat. | 0.37483                 | 2560.7 | 2748.1 | 6.8207                  | 0.31560 | 2566.8 | 2756.2 | 6.7593                  | 0.24035 2576.0 | 2768.3 | 6.6616 |
| 200  | 0.42503                 | 2643.3 | 2855.8 | 7.0610                  | 0.35212 | 2639.4 | 2850.6 | 6.9683                  | 0.26088 2631.1 | 2839.8 | 6.8177 |
| 250  | 0.47443                 | 2723.8 | 2961.0 | 7.2725                  | 0.39390 | 2721.2 | 2957.6 | 7.1833                  | 0.29321 2715.9 | 2950.4 | 7.0402 |
| 300  | 0.52261                 | 2803.3 | 3064.6 | 7.4614                  | 0.43442 | 2801.4 | 3062.0 | 7.3740                  | 0.32416 2797.5 | 3056.9 | 7.2345 |
| 350  | 0.57015                 | 2883.0 | 3168.1 | 7.6346                  | 0.47428 | 2881.6 | 3166.1 | 7.5481                  | 0.35442 2878.6 | 3162.2 | 7.4107 |
| 400  | 0.61731                 | 2963.7 | 3272.4 | 7.7956                  | 0.51374 | 2962.5 | 3270.8 | 7.7097                  | 0.38429 2960.2 | 3267.7 | 7.5735 |
| 500  | 0.71095                 | 3129.0 | 3484.5 | 8.0893                  | 0.59200 | 3128.2 | 3483.4 | 8.0041                  | 0.44332 3126.6 | 3481.3 | 7.8692 |
| 600  | 0.80409                 | 3300.4 | 3702.5 | 8.3544                  | 0.66976 | 3299.8 | 3701.7 | 8.2695                  | 0.50186 3298.7 | 3700.1 | 8.1354 |
| 700  | 0.89696                 | 3478.6 | 3927.0 | 8.5978                  | 0.74725 | 3478.1 | 3926.4 | 8.5132                  | 0.56011 3477.2 | 3925.3 | 8.3794 |
| 800  | 0.98966                 | 3663.6 | 4158.4 | 8.8240                  | 0.82457 | 3663.2 | 4157.9 | 8.7395                  | 0.61820 3662.5 | 4157.0 | 8.6061 |
| 900  | 1.08227                 | 3855.4 | 4396.6 | 9.0362                  | 0.90179 | 3855.1 | 4396.2 | 8.9518                  | 0.67619 3854.5 | 4395.5 | 8.8185 |
| 1000 | 1.17480                 | 4054.0 | 4641.4 | 9.2364                  | 0.97893 | 4053.8 | 4641.1 | 9.1521                  | 0.73411 4053.3 | 4640.5 | 9.0189 |
| 1100 | 1.26728                 | 4259.0 | 4892.6 | 9.4263                  | 1.05603 | 4258.8 | 4892.4 | 9.3420                  | 0 79197 4258 3 | 4891.9 | 9.2090 |
| 1200 | 1.35972                 | 4470.0 | 5149.8 | 9.6071                  | 1.13309 | 4469.8 | 5149.6 | 9.5229                  | 0.84980 4469.4 | 5149.3 | 9.3898 |
| 1300 | 1.45214                 | 4686.6 | 5412.6 | 9.7797                  | 1.21012 | 4686.4 | 5412.5 | 9.6955                  | 0.90761 4686.1 | 5412.2 | 9.5625 |
|      |                         |        |        |                         |         |        |        |                         |                |        |        |



.

|                       | No. Kad Pengenalan/No. ISID:                                             |                                                                  | Jangan tulis apa-                                             |
|-----------------------|--------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------|
|                       | No. Soalan                                                               | $+ \frac{16}{16} = \frac{20}{20}$ Muka surat<br>Page             | apa di ruangan ini<br>Do not write anything<br>in this column |
| · 0)                  | PV=C, P=C/V                                                              | $W_{23} = P_2(V_3 - V_2)$                                        | - Y2                                                          |
|                       | $W_{12} = \int p dV = C \int dV - 2$                                     | = 400 (0.25-0.5)                                                 |                                                               |
|                       |                                                                          | = -100.00 kJ                                                     | - 12                                                          |
|                       | $= C \ln V = P_1 V_1 (\ln V_2 - \ln V_1)$                                | W <sub>31</sub> = 0                                              | -1 12                                                         |
|                       |                                                                          |                                                                  |                                                               |
|                       | = P,V, In V2/V, *                                                        | iv) Q12·mCv (Iz=Fr)+W12                                          | - 1/2/                                                        |
|                       | [4]                                                                      | Q1= W1= 138.63 +J -                                              | - 1/2,                                                        |
| b)                    | PI= 800 KPA expansion 12=0.5m3                                           |                                                                  |                                                               |
|                       | $T_1 = 600 \text{ K}$ $T_2 = T_1$                                        | $Q_{23} = m C_v (T_3 - T_2) + W_{23}$                            | - 1/2                                                         |
|                       | V = 0.25m <sup>2</sup> T=C                                               | $m = P_1 V_1 = 800 \times 0.25 = 1.161$                          | 4  kg - 1                                                     |
|                       | Heating Compression                                                      | 1, 0.287 × 600                                                   | •                                                             |
|                       | Y= c P= C                                                                | Q23 = 1.1614×0.718 (300-600)+                                    | (-100.00)                                                     |
|                       |                                                                          | =-350.17 kJ                                                      | 1/2                                                           |
|                       | P3=P2                                                                    | OR Q23=m (p (T3-T2)                                              | 1                                                             |
|                       | i) $P_2 = P_1 V_1 = 800 \times 0.25$                                     | \$23 = X1614 × 1.005 × 300-600 )=-                               | 350.16kJ                                                      |
| 0                     | V <sub>2</sub> 0.5                                                       | Q31=m(v(T,-T3)+W370 -                                            |                                                               |
| 12= A00 + B           | -> Pa = 400 kPa ; 1/2                                                    | = 1.1614 × 0.718 (600-300)                                       |                                                               |
| T2: 600Klg            | $\rightarrow T_2: T_1: 600 \text{K} - \text{K}$                          | = 250.17 kJ                                                      | Y2 4                                                          |
| $V_2 = 0.5m^2$        | $\rightarrow V_2 = 0.5 \text{ m}^3 - \frac{1}{2}$                        | _0                                                               |                                                               |
| P3 = 400 kg           | $P_2 = P_2 = AOO \times Pq - h$                                          | V) 6Up = m(v(It) = 0 -                                           | 1                                                             |
| $T_3 = 300 \text{ K}$ | R3 Y3 = R2 V2 T3 = T2 V3                                                 | AU23 = Q23 - W23                                                 | -12                                                           |
| V2=0.25m3             | T3 T2 V2                                                                 | = -350.17 - (-100.00)                                            |                                                               |
|                       | $T_3 = 600 \times 0.25 = 300 \text{ K} - \text{K}$                       | = -250.17 kJ                                                     | -n <sub>1</sub>                                               |
|                       | 0.5                                                                      | QU31 = Q31 - 4310                                                | _ n                                                           |
|                       | $Y_3 = V_1 = 0.25 m^3 - h$                                               | = 250,17kJ                                                       | - Ky 3                                                        |
| •                     | 3                                                                        |                                                                  |                                                               |
|                       | ii) R + X R = C                                                          | $vi) Z \Delta U = \Delta U_{12} + \Delta U_{23} + \Delta U_{23}$ | 31                                                            |
|                       | V=C V B                                                                  | = 0 + (-250.17) + 250.13                                         |                                                               |
|                       |                                                                          | = 0                                                              | <u> </u>                                                      |
|                       | $P_2 = P_3 = \frac{1}{3} + \frac{1}{3} + \frac{1}{10} = C_1 = T_1 = T_2$ | $OR ZQ = Q_{12} + Q_{23} + Q_{31}$                               |                                                               |
|                       |                                                                          | = 138.63+(350.17)+2                                              | 5017                                                          |
|                       |                                                                          | = 38.63KJ                                                        |                                                               |
|                       | 111) W12= PiVi In V2/V 12                                                | $ZW = W_{12} + W_{23} + W_{31}$                                  |                                                               |
|                       | = 800×0.25 m 0.5                                                         | = 138.63+(-100.00) +                                             | 0                                                             |
|                       | = 138.63 kJ - 0.25 1/2                                                   | = 38.63 KJ > ZQ=                                                 | ΞW                                                            |
|                       |                                                                          |                                                                  |                                                               |



| No. Kad Pengenalan/No. IS<br>I.C. No./ISID No.<br>No. SoalanQuestion No. | ID:                   |                       | Muka<br>Page                           | surat                                  | Jangan tulis apa-<br>apa di ruangan ini<br>Do not write anything<br>in this column                              |
|--------------------------------------------------------------------------|-----------------------|-----------------------|----------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------|
|                                                                          | 2                     | h=hp +                | zhee                                   | 3                                      |                                                                                                                 |
| Valle                                                                    | ,                     | f 17                  | 1(                                     | 12                                     |                                                                                                                 |
| ŤΤ                                                                       |                       | $\chi_n = V_n$        | -Vfr                                   |                                        |                                                                                                                 |
| 1                                                                        | /                     | Ver                   | - Ver                                  |                                        |                                                                                                                 |
| ""                                                                       |                       | : 2.95                | 556-0.                                 | 001010                                 |                                                                                                                 |
| m= Gkg/s                                                                 | $d_2 = 1.12 m$        | 14.6                  | 70 - 0.                                | 001010                                 |                                                                                                                 |
| $P_1 = 600 \text{ kg}$                                                   | P2=10×Pa              | = 0.2                 | 014                                    | •••••••••••••••••••••••••••••••••••••• | _ 2                                                                                                             |
| T1 = 550°C                                                               | $\nabla_2 = 18  m/s$  | h = 191.81-           | + 0.2014                               | + (2392.1)                             |                                                                                                                 |
| SKE-0 D                                                                  | PE = 0                | = 673.6               | KS/Kg                                  | j                                      | <u> </u>                                                                                                        |
| Win = m Wiz                                                              |                       | W12 = 3592.           | 6 - 673                                | .6                                     |                                                                                                                 |
| $h_1 = h_2 + U$                                                          | Niz                   | = 2919                | · OKJ/                                 | 5                                      |                                                                                                                 |
| $W_{12} = h_1 - 1$                                                       | n, <u>Z</u>           | $W_{12} = 6 \times 7$ | 2919.0                                 | 0                                      |                                                                                                                 |
| State 1: At a                                                            | 500kpa Tsat = 158-830 | = 1751                | 4 KW                                   |                                        |                                                                                                                 |
| Ti>Trat                                                                  | s.h.v                 | ٩                     | 17.5                                   | ww -                                   |                                                                                                                 |
| At 0.6Mpa                                                                |                       |                       |                                        |                                        | -                                                                                                               |
| h T                                                                      |                       | b) Wiz will           | decrea                                 | sed!                                   |                                                                                                                 |
| 3483.4 500                                                               |                       | W12 = (h1-            | $(h_2) -$                              | Qloss                                  | · · · · · · · · · · · · · · · · · · ·                                                                           |
| h, 550                                                                   | <u> </u>              | Win' L Wi-            | 2                                      |                                        | <u> </u>                                                                                                        |
| 3701.7 600                                                               |                       |                       |                                        |                                        |                                                                                                                 |
| h 3483.4                                                                 | = 50                  | •                     |                                        |                                        |                                                                                                                 |
| 3701.7-3483.1                                                            | + 100                 | (a) + (               | (b)                                    |                                        |                                                                                                                 |
| h = 3592.6                                                               | KJ/Kg                 | 16 +                  | 4 =                                    | 20                                     |                                                                                                                 |
|                                                                          | 0                     | 16                    | 4                                      | 20                                     |                                                                                                                 |
| State 2: P2                                                              | = 101299              |                       |                                        |                                        |                                                                                                                 |
| $\dot{m} = A_1 V_1$                                                      | Va= AnVa              |                       | General 1                              |                                        | and and the second s |
| Va,                                                                      | Ŵ                     |                       |                                        |                                        |                                                                                                                 |
| An = Tidz = -                                                            | TI X 1.122            |                       |                                        |                                        |                                                                                                                 |
| Ā                                                                        | 4                     |                       |                                        |                                        |                                                                                                                 |
| = 0.9852                                                                 | m <sup>3</sup> — 1    | 350011                |                                        |                                        |                                                                                                                 |
| V= 0.9852                                                                | × 18                  |                       |                                        |                                        |                                                                                                                 |
| 6                                                                        |                       |                       | ······································ |                                        |                                                                                                                 |
| = 2.9556                                                                 | $m^{3}/k_{9} - 3$     |                       |                                        | ······                                 |                                                                                                                 |
| At IOKPA V                                                               | ILV2LVa               |                       |                                        |                                        |                                                                                                                 |
| . sat. mi                                                                | xt22                  |                       |                                        |                                        |                                                                                                                 |
|                                                                          |                       |                       |                                        |                                        |                                                                                                                 |
|                                                                          |                       |                       |                                        |                                        | L                                                                                                               |



|     | No. Kad Pengenalan/No. ISID:         | •                                     | langan tulis ana                                              |
|-----|--------------------------------------|---------------------------------------|---------------------------------------------------------------|
|     | Q3<br>No. Soalan<br>Question No.     | Muka surat<br>Page                    | apa di ruangan ini<br>Do not write anything<br>in this column |
| a); | 1-2: Revensible is thermal exp.      | ii) 7. = Whet. ont                    | -                                                             |
|     | 2-3: Reversible adia batic exp. 2    | th Qu                                 |                                                               |
|     | 3-4: Reversible isothermal comp.     | <u> </u>                              |                                                               |
|     | 4-1: Reversible adrabatic comp.      | = 35.28×10 ×10                        | 0                                                             |
| ii) | False! 7th > 7th all -1              | 1280 ×106)                            |                                                               |
|     |                                      | 3600                                  |                                                               |
| b)  | TH= 298K                             | = 45.36%                              | - 4                                                           |
| ,   | $Q_{H}$ $COP_{R} = 7.0$              |                                       |                                                               |
|     | (R) K- When, M                       |                                       |                                                               |
|     | Ja-                                  | (a) + (b)                             |                                                               |
|     | TL=261K                              | 4 + 16 = 20                           |                                                               |
|     | Cop = =                              | 4 16 20                               |                                                               |
|     |                                      |                                       |                                                               |
|     | = = 7.05                             |                                       | ·                                                             |
|     | 298 - 1                              |                                       |                                                               |
|     | 261 -5                               |                                       |                                                               |
|     | COP L COP                            |                                       |                                                               |
|     |                                      |                                       |                                                               |
|     | . a wevernble cycle!                 |                                       |                                                               |
|     | The claim is reasonable.             |                                       |                                                               |
| ``  |                                      |                                       | -                                                             |
| c)  |                                      |                                       |                                                               |
|     | $\varphi Q_{\mu} = 280  \text{GJ/h}$ |                                       |                                                               |
|     | (HE) -> Whet, out                    |                                       | -<br>-<br>                                                    |
|     |                                      |                                       |                                                               |
|     | V @_= 01145=15505                    |                                       |                                                               |
|     |                                      |                                       |                                                               |
|     | 1) What and $= (0, -0)$              |                                       |                                                               |
|     | = 280-153                            |                                       |                                                               |
|     | = 127 (GJ × h)                       |                                       |                                                               |
|     | h 36005)                             | · · · · · · · · · · · · · · · · · · · |                                                               |
|     | = 0.03528/dw x10M)                   |                                       |                                                               |
|     |                                      |                                       |                                                               |
|     | = 35.28 MW $- 4,$                    |                                       |                                                               |
|     | / 1                                  | · · · · · · · · · · · · · · · · · · · |                                                               |
|     |                                      |                                       |                                                               |