CHAPTER 2 OBSERVATIONAL PRELIMINARIES

2.1 THE CONTINUOUS MODEL

a) Fluid as continuum

The action of forces on fluids can be determine either by:

- Counting the effect of each and every molecule or
- by considering the average effect of the molecules in a given volume, i.e. treating the fluid as a continuum

Continuum can be assumed only when the number of molecules in a small volume (which is much smaller than the body immersed in the fluid) is sufficiently great so that average effects within the volume will be varying smoothly with time.

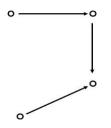
b) Material derivatives

Suppose $\vec{v}(x, y, z, t)$ be a vector function associated with some property

of the fluid (eg. Velocity etc.) then $\frac{D\vec{v}}{Dt} \text{ or } \frac{d\vec{v}}{dt} = \frac{\partial\vec{v}}{\partial t} + \vec{q} \cdot \nabla \vec{v} \text{ where } \vec{q} = u, v, w$ $\frac{D\vec{v}}{Dt} \text{ or } \frac{d\vec{v}}{dt} \text{ is called the material derivative, } \frac{\partial\vec{v}}{\partial t} \text{ is called the local}$ derivative and it is associated with time variation at a fixed position

2.2 FLUID VELOCITY AND PARTICLE PATH

Particle path or path lines are the trajectories that individual with fluid particle follows.



If the velocity at some point, \vec{r} of time *t* is $\vec{v}(\vec{r},t)$, the particle at this point and time move along this velocity vector satisfy

 $\frac{d\vec{r}}{dt} = \vec{v}(\vec{r},t)$ where $\vec{r} = x(t)\hat{i} + y(t)\hat{j} + z(t)\hat{k}$ gives the path of the particle at different time

Example 1:

Given velocity, $\vec{v} = (ay, -ax, 0)$, find particles path where *a* is constant

Solution:

We know that, $\vec{v} = \frac{d\vec{r}}{dt} = \frac{dx}{dt}\hat{i} + \frac{dy}{dt}\hat{j} + \frac{dz}{dt}\hat{k}$

Differentiating (1) w.r. to t,

$$\frac{d^2x}{dt^2} = a\frac{dy}{dt}$$
....(4)

Substituting (2) into (4)

$$\frac{d^2x}{dt^2} = a(-ax)$$
$$\frac{d^2x}{dt^2} + a^2x = 0$$

To find the solution of ODE:

$$m^{2} + a^{2} = 0$$

$$m = \pm ai$$

$$\therefore x(t) = A\cos at + B\sin at \dots (5)$$

From (1),

To plot

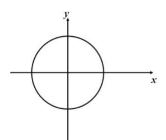
$$x^{2} = A^{2} \cos^{2} at + B^{2} \sin^{2} at + 2AB \cos at \sin at$$

$$y^{2} = A^{2} \sin^{2} at + B^{2} \cos^{2} at - 2AB \cos at \sin at$$

$$x^{2} + y^{2} = A^{2} (\cos^{2} at + \sin^{2} at) + B^{2} (\cos^{2} at + \sin^{2} at)$$

$$x^{2} + y^{2} = A^{2} + B^{2}$$

By plotting path lines,



Example 2:

Given velocity, $\vec{v} = (ay, -a(x-bt), 0)$, find particles path where *a* and *b* are constant

Solution:

..... solve it

2.3 DEFINITIONS

a) Two dimensional flow

- Flow conditions change along two dimensions only

- If x, y, z are coordinates of any point in the fluid, then all physical quantities (velocity, density, pressure etc.) associated with the fluid are independent of z. Thus u, v are functions of x, y and t and w=0 for such a motion.

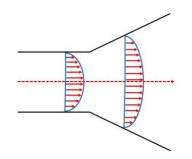


Fig 2.1 Two dimensional flow

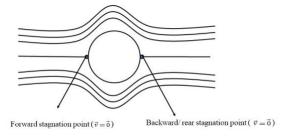
b) Steady flow

- At any given point, the velocity does not vary with time in magnitude or direction.

$$- \frac{\partial \vec{v}}{\partial t} = 0$$

c) Stagnation point

- A point in a flow field where the local velocity of the fluid is zero.
- Stagnation points exist at the surface of objects in the flow field, where the fluid is brought to rest by the object



Example 3:

A steady incompressible, two dimensional flow of velocity are given as

a) $\vec{v} = (0.5 + 0.5x)\hat{i} + (1.5 - 0.8y)\hat{j}$

b)
$$\vec{v} = \left(1 + \frac{10}{4}x + y\right)\hat{i} + \left(-\frac{1}{2} - \frac{3}{2}x - \frac{10}{4}y\right)\hat{j}$$

Find the stagnation point of this flow field

Solution:

a)
$$\vec{v} = \vec{0} \implies (0.5 + 0.5x)\hat{i} + (1.5 - 0.8y)\hat{j} = 0$$

 $0.5 + 0.5x = 0$
 $x = -1$
 $1.5 - 0.8y = 0$
 $y = 1.875$

So, (-1,1.875) is the stagnation point

b) solve it

2.3.1 Method of describing fluid motion

a) Eulerian description

- The velocities are given at fixed point in a space $\vec{v} = (\hat{r}, t)$ at time varies
- In this approach, individual fluid particles are considered and their motion tracked:

Position of fluid particle:

 $(\vec{r},t) = x\hat{i} + y\hat{j} + z\hat{k}$ with x, y, z as coordinates and $\hat{i}, \hat{j}, \hat{k}$ as unit vectors

Velocity of fluid particle:

 $(\vec{v},t) = \frac{d\vec{r}}{dt} = \frac{dx}{dt}\hat{i} + \frac{dy}{dt}\hat{j} + \frac{dz}{dt}\hat{k}$ with u, v, w are velocity

components in x, y, z coordinates

b) Lagrangian description

- Quantities are given for a fixed particle at different time
- So, the velocity is $\vec{v} = (r_0, t)$ where r_0 is the particle position at t = 0

- In this approach, we are focusing on a certain point in space and consider the motion of fluid particles passing that point as time goes by:

Position in space:
$$P = [x, y, z]$$

Velocity at point P: $u = f_1(x, y, z, t)$
 $v = f_2(x, y, z, t)$
 $w = f_3(x, y, z, t)$

Example 4:

In a Lagrangian description, the fluid particle at time, t=0 is $(x_0 + y_0 t^2, y_0 + t, z_0)$

- a) Find the Eulerian velocity field
- b) Using velocity form a) if $\frac{D\vec{v}}{Dt} = \frac{\partial\vec{v}}{\partial t} + \vec{v} \cdot \nabla \vec{v}$, find $\frac{D\vec{v}}{Dt}$
- c) Show that $\frac{D\vec{v}}{Dt}$ is the same as the Lagrangian acceleration when t=0

Solution:

a) For fluid particle, $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ $\vec{r}_0 = x_0\hat{i} + y_0\hat{j} + z_0\hat{k}$ $\implies x = x_0 + y_0t^2$ $y = y_0 + t$ $z = z_0$ Since $\vec{v}(\vec{r}, t) = \frac{d\vec{r}}{dt}$ then,

$$\frac{dx}{dt} = 2y_0t$$
$$\frac{dy}{dt} = 1$$
$$\frac{dz}{dt} = 0$$

 $\Rightarrow \text{The Lagrangian velocity is } \vec{v}(\vec{r_0}, t) = 2y_0 t\hat{i} + \hat{j}$ $\Rightarrow \text{The Eulerian velocity field, } \vec{v} = 2t(y-t)\hat{i} + \hat{j}$

b)
$$\vec{v} = 2t(y-t)\hat{i} + \hat{j}$$

$$\frac{D\vec{v}}{Dt} = \frac{\partial\vec{v}}{\partial t} + \vec{v} \cdot \nabla\vec{v}$$
$$\frac{\partial\vec{v}}{\partial t} = (2y - 4t)\hat{i}$$

$$\vec{v} \cdot \nabla \vec{v} = \left[2t(y-t)\frac{\partial}{\partial x} + \frac{\partial}{\partial y} \right] \left[2t(y-t)\hat{i} + \hat{j} \right]$$
$$= 2t(y-t) \left[\frac{\partial}{\partial x} (2t(y-t)) + \frac{\partial}{\partial x} (1) \right] + \frac{\partial}{\partial y} (2t(y-t)) + \frac{\partial}{\partial y} (1)$$
$$= 2t\hat{i}$$

$$\frac{D\vec{v}}{Dt} = (2y - 4t)\hat{i} + 2t\hat{i}$$

$$= (2y - 2t)\hat{i}$$
c) When $t = 0$, $\frac{D\vec{v}}{Dt}(r_0, t) = 2y_0\hat{i}$
Lagrangian acceleration, $\vec{a}(r_0, t) = \frac{D\vec{v}}{Dt}(r_0, t) = \frac{\partial}{\partial t}(2y_0t)\hat{i}$
 $\vec{a} = 2y_0\hat{i}$

Hence, proved.

2.4 STREAMLINES AND STREAKLINES

Streamlines are family of curve that are instantaneously tangent to the velocity vector of the flow.

Streaklines are the locus point for a fluid particle that are pass continuously through the particles spatial point in the pass.

- By definition, different streamlines at the same instant in a flow do not intersect because of fluid particles cannot have to different velocity at the same point
- Similarly, streaklines cannot intersect themselves or other streaklines because two particles cannot be present at the same location at the same instant of time
- Streamlines, streaklines and pathlines are identical in steady flow. In general streamlines, streak line and path lines are not the same. However, they coincide when the flow is steady
- Streamlines is the curve that is everywhere tangent to the instantaneous local velocity vector
- If $d\vec{r} = dx\hat{i} + dy\hat{j} + dz\hat{k}$ and velocity vector, $\vec{v} = u\hat{i} + v\hat{j} + w\hat{k}$, then the equation of streamlines is $\frac{dx}{u} = \frac{dy}{v} = \frac{dz}{w}$. This shows that the curves are parallel to the velocity vector
- Similar to pathlines, calculation of streamlines need to consider initial value when $x = x_0$, $y = y_0$ and $z = z_0$.

Example 5:

Given $\vec{v} = (ay, -a(x-bt))$. Find streamlines

Solution:

$$u = ay, \qquad v = -a(x-bt)$$

$$\frac{dx}{u} = \frac{dy}{v} = \frac{dz}{w}$$

$$\frac{dx}{ay} = \frac{dy}{-a(x-bt)}$$

$$\int (-x+bt) \, dx = \int y \, dy$$

$$-\frac{x^2}{2} + btx = \frac{y^2}{2} + D$$

$$x^2 + y^2 - 2btx = D$$

$$(x-bt)^2 + y^2 = D + (bt)^2, D \text{ is constant}$$

Example 6:

Find the pathlines and streamlines if $\vec{v} = (2\cos \pi t, 2\sin \pi t, 0)$

Solution:

Pathlines:

$$\frac{dx}{dt} = 2\cos \pi t \dots (1)$$
$$\frac{dy}{dt} = 2\sin \pi t \dots (2)$$
$$\frac{dz}{dt} = 0$$

From (1)

$$\int dx = 2 \int \cos \pi t \, dt$$
$$x = \frac{2 \sin \pi t}{\pi} + c_1$$

$$(x-c_1) = \frac{2}{\pi} \sin \pi t$$

From (2)
$$\int dy = 2 \int \sin \pi t \, dt$$

$$y = -\frac{2\cos \pi t}{\pi} + c_2$$
$$(y - c_2) = -\frac{2}{\pi}\cos \pi t$$
$$\Rightarrow (x - c_1)^2 + (y - c_2)^2 = \frac{4}{\pi^2}, c_1 \text{ and } c_2 \text{ are constant}$$

Streamlines:

$$\frac{dx}{2\cos \pi t} = \frac{dy}{2\sin \pi t}$$
$$\frac{\sin \pi t}{\cos \pi t} dx = dy$$
$$\int \tan \pi t dx = \int dy$$
$$x \tan \pi t = y$$
$$\Rightarrow y = x \tan \pi t$$

Example 7:

Find pathlines and streamlines if $\vec{v} = (a(t)x, -a(t)y, 0)$ where a(t) is scalar function of t

Solution:

..... solve it

Practice problems

- For a two dimensional flow the velocities at a point in a fluid may be expressed in the Eulerian coordinates by u = x + y + 2t and v = 2y + t. Determine the Lagrangian coordinates as function of the initial positions x₀, y₀ and the time t.
- 2. If the velocity distribution is $\vec{q} = Ax^2y\hat{i} + By^2z\hat{j} + Czt^2\hat{k}$ where A, B, C are constants, then find the acceleration and velocity component.

- 3. The velocity components of a flow in a cylindrical polar coordinates are $(r^2 z \cos \theta, rz \sin \theta, z^2 t)$. Determine the components of the acceleration of a fluid particle.
- 4. Obtain the streamlines of a flow u = x, v = -y
- 5. The velocity field at a point in fluid is given as $\vec{q} = \left(\frac{x}{t}, y, 0\right)$. Find pathlines and streamlines.
- 6. Find the streamlines and path of the particle when

$$u = \frac{x}{1+t}; v = \frac{y}{1-t}; w = \frac{z}{1+t}.$$