CHAPTER 3 MASS CONVERSATION AND STREAM FUNCTIONS

3.1 CONTINUITY EQUATION

Fig 3.1 Finite control volume fixed in space

- Continuity equation is a statement of mass conservation converted into a differential equation
- From the Fig 3.1, rate of flow of mass into *V* , given as

$$
-\int_{S} \rho \vec{v} \cdot dS, \qquad \rho = \rho(x, y, z, t)
$$

where $\rho \vec{v}$ is a mass flux with density, ρ

- This integral measure the total fluid across the surface *S* per unit time
- Also rate of increases of mass into *V* , given as

$$
\frac{d}{dt}\int\limits_V \rho \ dV
$$

And since *V* is a fix region this can be return as *V* $\int \frac{d\rho}{dt} dV$

Due to mass is conserve, we must have

$$
\int\limits_V \frac{d\rho}{dt} \ dV = -\int\limits_S \rho \vec{v} \cdot dS \qquad \qquad (1)
$$

Knowing the divergence theorem is

$$
\int\limits_V \nabla \cdot \vec{A} \, dV = \int\limits_S \vec{A} \cdot dS
$$

$$
\int_{S} \rho \vec{v} \cdot dS = \int_{V} \nabla \cdot \rho \vec{v} \ dV \qquad \qquad (2)
$$

Substitute (2) into (1)

$$
\int_{V} \frac{d\rho}{dt} dV = -\int_{V} \nabla \cdot \rho \vec{v} dV
$$
\n
$$
\int_{V} \left[\frac{d\rho}{dt} + \nabla \cdot \rho \vec{v} \right] dV = 0 \qquad \dots \dots \dots \dots \dots \dots \dots \dots \dots \tag{3}
$$

Then from (3)

$$
\frac{d\rho}{dt} + \nabla \cdot \rho V = 0 \tag{4}
$$

Equation (4) is called continuity equation or mass conservation equation.

Notes:

- 1. If ρ is constant, then the continuity equation is $\nabla \cdot \vec{v} = 0$ (incompressible)
- DR. ZUHAILA ISMAIL 2. If ρ in independent of t, then the continuity equation is $\nabla \cdot \rho \vec{v} = 0$ (compressible)

3.2 THE CONVECTIVE DERIVATIVE

- In the case of incompressible fluid, ρ does not depend on \vec{v} , but each of the particles keep its density
- Suppose a particle of one position, \vec{r} and time t has density of $\rho(\vec{r},t)$ when it moves and when $\vec{r} + \vec{v}\delta t$ and $t + \delta t$ the density must become $\rho(\vec{r} + \vec{v}\delta t, t + \delta t)$. So, clearly a change on density, ρ is

$$
\rho(\vec{r}+\vec{v}\delta t,t+\delta t)-\rho(\vec{r},t)
$$

If we consider

$$
\lim_{\delta t \to 0} \frac{\rho(\vec{r} + \vec{v}\delta t, t + \delta t) - \rho(\vec{r}, t)}{\delta t} = \vec{v} \cdot \nabla \rho + \frac{\partial \rho}{\partial t}
$$
 (Taylor's theorem)

so,

Or we write

D v Dt t = ⁺ ……………….(5)

Equation (5) is known as **convective derivative**

Using vector identity $\nabla \cdot \phi \vec{A} = \vec{A} \cdot \nabla \phi + \phi \nabla \cdot \vec{A}$ into (5), then

$$
\frac{D\rho}{Dt} = \frac{\partial \rho}{\partial t} + \nabla \cdot \rho \vec{v} - \rho \nabla \cdot \vec{v}
$$

or

$$
\frac{D\rho}{Dt} + \rho \nabla \cdot \vec{v} = 0 \text{ since } \frac{\partial \rho}{\partial t} + \nabla \cdot \rho \vec{v} = 0
$$

3.4 THE STREAM FUNCTION FOR 2D FLOW

- $\frac{D\rho}{Dt} + \rho \nabla \cdot \vec{v} = 0$ since $\frac{\partial \rho}{\partial t} + \nabla \cdot \rho \vec{v} = 0$
 ESTREAM FUNCTION FOR 2D FLOW

om the continuity equation for incompressible fluid $\nabla \cdot \vec{v} = 0$

using divergence theorem that is no total volume thro - From the continuity equation for incompressible fluid $\nabla \cdot \vec{v} = 0$ means by using divergence theorem that is no total volume through and closed surface as much flows out as flow in.
- For the same of mathematics simply we choose to investigate the flow in which there are two non-zero velocity and two effective coordinates.
- There are:
	- i. Two-dimensional flow where the velocity defines as

 $\vec{v} = u(x, y)\hat{i} + v(x, y)\hat{j}$

Or in polar plane

$$
\vec{v} = V_r(r, \theta)\hat{r} + V_\theta(r, \theta)\hat{\theta}
$$

ii. Asymmetric flow (no swirl)

ˆ $\vec{v} = V_r(r, z)\hat{r} + V_\theta(r, z)\theta$

Which shows that velocity not depend on θ

iii. In cylindrical coordinate, vector \vec{v} is independent of θ and there is no θ velocity. Such flow has two velocity components V_r , V_z and one differential equation $\nabla \cdot \vec{v} = 0$ connecting them

$$
\vec{v} = V_r(r, z)\hat{r} + V_z(r, z)\hat{k}
$$

4.3.1 Existence of Stream Function

• In 2D flow of incompressible fluid

$$
\vec{v} = u(x, y)\hat{i} + v(x, y)\hat{j}
$$

Continuity equation is given as

$$
\nabla \cdot \vec{v} = 0 \tag{9}
$$

Equation (9) is fully satisfied equations

$$
u = \frac{\partial \psi}{\partial y}, \quad v = -\frac{\partial \psi}{\partial x} \qquad \qquad \dots \dots \dots \dots \dots (10), (11)
$$

DR. ZUHAILA ISMAIL For any suitable differential function $\psi(x, y)$. Function $\psi(x, y)$ is known as **stream function.**

To proof:

$$
\nabla \cdot \vec{v} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}
$$

= $\frac{\partial}{\partial x} \left(\frac{\partial \psi}{\partial y} \right) + \frac{\partial}{\partial y} \left(-\frac{\partial \psi}{\partial x} \right)$
= 0

To show that $\psi(x, y)$ exist and can be written in terms u and v, integrate *u y* $=\frac{\partial \psi}{\partial y}$ with respect to y and let $y = N$ ($b \le N \le y$) where b is

constant, gives

(,) () *y b* ⁼ ⁺ *^U ^x ^N dN ^x* ……………...(12)

where $x(t)$ is a function of x and b is constant.

Differentiate (12) with respect to *x*

(,) () *y b U ^x N dN ^x x x* = + ………….(13)

From (9)

$$
\nabla \cdot \vec{v} = 0
$$

$$
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0
$$

$$
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial N} = 0
$$

$$
\frac{\partial u}{\partial x} = -\frac{\partial v}{\partial N}
$$

so from (13)

$$
\frac{\partial \psi}{\partial x} = \int_{b}^{y} -\frac{\partial \psi}{\partial N} dN + \alpha'(x)
$$

= $-v(x, y) + v(x, b) + \alpha'(x)$

Using (11)

$$
-v(x, y) = -v(x, y) + v(x, b) + \alpha'(x)
$$

$$
\alpha'(x) = -v(a, b)
$$

Integrate $\alpha'(x)$ with respect to x and let $x = M$ $(a \le M \le x)$

$$
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial N} = 0
$$
\n
$$
\frac{\partial u}{\partial x} = -\frac{\partial v}{\partial N}
$$
\nfrom (13)\n
$$
\frac{\partial \psi}{\partial x} = \int_{b}^{y} -\frac{\partial \psi}{\partial N} dN + \alpha'(x)
$$
\n
$$
= -v(x, y) + v(x, b) + \alpha'(x)
$$
\n
$$
\text{sing (11)}
$$
\n
$$
-v(x, y) = -v(x, y) + v(x, b) + \alpha'(x)
$$
\n
$$
\alpha'(x) = -v(a, b)
$$
\n
$$
\alpha(x) = -\int_{a}^{M} v(M, b) dM \text{ where } a \text{ is constant}
$$
\n
$$
\text{as a constant}
$$
\n
$$
\text{as a constant}
$$
\n
$$
\alpha(x) = -\int_{a}^{y} v(M, b) dM \text{ where } a \text{ is constant}
$$
\n
$$
\alpha(x) = \int_{a}^{y} v(M, b) dM \text{ where } a \text{ is constant}
$$

Then from (12),

$$
\varphi = \int_{b}^{y} u(x, N) dN - \int_{a}^{x} v(M, b) dM
$$
. It shows that $\psi(x, y)$ exist in

terms of u and v for any constants a and b .

- ➢ Determination of *u y* $=\frac{\partial \psi}{\partial v}$ and *v x* $=-\frac{\partial \psi}{\partial x}$
	- If $\nabla \cdot \vec{B} = 0$, so there exists a vector A such that $\vec{B} = \nabla \times \vec{A}$, A is called the vector potential of \vec{B} .
- By using definition, we can say that $\nabla \cdot \vec{v} = 0$, there exist A such that $\vec{v} = \nabla \times \vec{A}$
- If we write $\vec{A} = \psi(x, y)\hat{k}$ $\overline{A} = \psi(x, y)$ *k* then

$$
\vec{v} = \nabla \times \vec{A} \n= \n=
$$

$$
\Rightarrow u = \frac{\partial \psi}{\partial y} \text{ and } v = -\frac{\partial \psi}{\partial x}
$$

4.4 PROPERTIES OF STREAM FUNCTION

Let
$$
\vec{v} = \nabla \psi + \hat{k}
$$

 $\Rightarrow u = \frac{\partial \psi}{\partial y}$ and $v = -\frac{\partial \psi}{\partial x}$

DPERTIES OF STREAM FUNCTION

t $\vec{v} = \nabla \psi + \hat{k}$
 ψ

SENTIES OF STREAM FUNCTION
 $\psi = \nabla \psi + \hat{k}$

SENTIES

SENTIES OF STREAM FUNCTION

SENTIES

SENTIES

SENTIES

SENTIES

SENT Vector, \vec{v} is perpendicular to $\nabla \psi$ and $\nabla \psi$ is perpendicular to $\psi = c$ where c is constant. Therefore, vector \vec{v} is parallel to the curve $\psi = c$. Curve $\psi = c$ are streamlines.

Example 1:

Given $\psi(x, y) = Uy$, where U is a constant. Sketch the streamlines.

4.5 SOME BASIC STREAM FUNCTIONS

a) Flows parallel to the x-axis

- *i. Uniform stream of speed U parallel to the x-axis* Let $\vec{v} = U\hat{i} + 0\hat{j}$, U is constant. Find $\psi(x, y)$ *Solution:*
- Uniform shear flow
Let $\vec{v} = \beta y \hat{i} + 0 \hat{j}$, β is constant. Find $\psi(x, y)$ *ii. Uniform shear flow*

Let $\vec{v} = \beta y \hat{i} + 0 \hat{j}$, β is constant. Find $\psi(x, y)$

iii. First flow near a wall in channel

Let $\vec{v} = U \ln \left| \frac{y}{i} \right| \hat{i} + 0 \hat{j}$ $\vec{v} = U \ln\left(\frac{y}{a}\right) \hat{i} + 0 \hat{j}$ where U and a are constant. Find $\psi(x, y)$

iv. Transition layer

Let
$$
\vec{v} = \left(U_0 + \frac{1}{2} (U_1 - U_0) \left[1 + \tanh\left(\frac{y}{a}\right) \right] \hat{i} + 0 \hat{j}
$$
 where U_0 , U_1 and a

are constant. Find $\psi(x, y)$.

b) Flow radially outwards

Flow leaves the vicinity/ source radially with the same speed at all angles .

Given $\vec{v} = f(r)\hat{r} + 0\hat{\theta}$ $\vec{v} = f(r)\hat{r} + \theta\hat{\theta}$. We need to consider stream function in plane polar coordinates.

In polar coordinates,

$$
\vec{v} = V_r \hat{r} + V_\theta \hat{\theta}
$$

To show the relationship between velocity, v and stream function .. in polar coordinates

$$
\vec{v} = \nabla \psi \times \hat{k}
$$

We need to use cylindrical polar coordinates,

Given $\vec{v} = f(r)\hat{r} + 0\hat{\theta}$ $\vec{v} = f(r)\hat{r} + 0\theta$. Find $\psi(x, y)$ 0(1) *r* 1 ()(2) *f r r* $\frac{\partial \psi}{\partial r} =$ ψ θ $\frac{\partial \psi}{\partial \theta} =$

We can show that

$$
\psi = rf(r)\theta
$$
(3)

But to satisfy (1), $\psi(r, \theta)$ is independent of r and $\frac{\partial \psi}{\partial \theta}$ θ д $\frac{\partial \varphi}{\partial \theta}$ must be

independent of θ .

Let
$$
\frac{\partial \psi}{\partial \theta} = A
$$

Since

$$
u(x, y, z), u(x, y, z) = \text{Im} z + \text{Im} z
$$
\n
$$
u(x, y, z), u(x, y, z) = \text{Im} z + \text{Im} z
$$
\n
$$
u(x, y, z) = \text{Im} z + \text{Im} z
$$
\n
$$
u(x, y, z) = \text{Im} z + \text{Im} z
$$
\n
$$
v(x, y, z) = \text{Im} z + \text{Im} z
$$
\nand

\n
$$
V_x = \frac{1}{r} \frac{\partial \psi}{\partial \theta}
$$
\n
$$
V_y = \frac{1}{r} \frac{1}{r} A
$$
\nor

\n
$$
v(x, y, z) = \text{Im} z + \text{Im} z
$$
\nand

\n
$$
V_y = \frac{1}{r} \frac{\partial \psi}{\partial \theta}
$$
\n
$$
= \frac{1}{r} A
$$
\nor

\n
$$
v = r \left(\frac{1}{r} A\right) \theta
$$
\n
$$
= A \theta
$$
\nand

\n
$$
u(x, y) = \frac{1}{r} A
$$
\nor

\n
$$
v = r \left(\frac{1}{r} A\right) \theta
$$
\n
$$
= A \theta
$$

From (3),

$$
\psi = r \left(\frac{1}{r} A \right) \theta
$$

$$
= A \theta
$$

c) A dipole along the x-axis

Given velocity

$$
\vec{v}(r,\theta) = 0\hat{r} + V_{\theta}(r,\theta)\hat{\theta}
$$

The appropriate stream function is $\psi(r, \theta) = \frac{\mu}{r} \sin(r)$ $\psi(r,\theta) = \frac{\mu}{r} \sin \theta$ where μ is a constant

d) Fluid in circle

Given velocity

$$
\vec{v}(r,\theta) = 0\hat{r} + f(r)\hat{\theta}
$$

There are two special cases of $f(r)$:

i.
$$
V_{\theta} = f(r) = \frac{c}{r}
$$
 (line vortex)

ii.
$$
V_{\theta} = f(r) = Dr
$$
 (rigid body motion)

We know that,

$$
\vec{v}(r,\theta) = 0\hat{r} + f(r)\theta
$$
\nhere are two special cases of $f(r)$:
\n
$$
V_{\theta} = f(r) = \frac{c}{r}
$$
 (line vortex)
\n
$$
V_{\theta} = f(r) = Dr
$$
 (rigid body motion)
\ne know that,
\n
$$
V_{\theta} = -\frac{\partial \psi}{\partial r}
$$
\n
$$
\vec{v} = V_r \hat{r} + V_{\theta} \hat{\theta}
$$
\n
$$
V_r = \frac{1}{r} \frac{\partial \psi}{\partial \theta}
$$
\n
$$
V_{\theta} = -\frac{\partial \psi}{\partial r}
$$
\n
$$
-\frac{\partial \psi}{\partial r} = Dr
$$
\n
$$
\psi = -\frac{Dr^2}{2} + A(\theta)
$$

From (i),

$$
-\frac{\partial \psi}{\partial r} = \frac{c}{r}
$$

 $\psi = -c \ln\left(\frac{r}{a}\right)$; $c = \frac{k}{2\pi}$, where *k* is circulation

Therefore line vortex has stream function, $\psi = -\frac{k}{2\pi} \ln \left(\frac{r}{a} \right)$ $\psi = -\frac{k}{2\pi} \ln\left(\frac{r}{a}\right)$ $=-\frac{1}{2}$ $\ln |-|$.

3.6 THE STREAM FUNCTION FOR AXISYMMETRIC FLOW (STOKES)

In axisymmetric flow,

$$
\vec{v}(r,z) = U_r(r,z)\hat{r} + V_z(r,z)\hat{k}
$$

a) Existence of Stokes stream function, $\psi(r, z)$

Hence, we used cylindrical coordinates by taking

ˆ $\nabla \vec{v}(r, z) = U_r(r, z)\hat{r} + V_z(r, z)k$

istence of Stokes stream function, $\psi(r, z)$

ence, we used cylindrical coordinates by taking
 $\vec{v}(r, z) = U_r(r, z)\hat{r} + V_z(r, z)\hat{k}$

ad using continuity equation, $\nabla \cdot \vec{v} = 0$

e may consider, $\frac{\partial}{\partial r}(rU_r) + \frac{\partial}{\partial z}(rV_z) =$ And using continuity equation, $\nabla \cdot \vec{v} = 0$ We may consider, $\frac{\partial}{\partial r}(rU_r) + \frac{\partial}{\partial z}(rV_z) = 0$ ∂ ∂ $\frac{1}{\partial r}(rU_r) + \frac{1}{\partial z}(rV_z) =$

Therefore, it can be shown that the stream function in terms of U_r and V_z is

b) Determination of axisymmetric stream function in cylindrical and spherical coordinate

Since $\nabla \cdot \vec{v} = 0$, then axis vector A such that $\vec{v} = \nabla \times A$ where A is vector potential.

Let
$$
\vec{A} = \frac{1}{r} \psi \theta
$$

Therefore, by using cylindrical coordinates,

In axisymmetric flow, $\vec{v} = V_r(r, z)\hat{r} + V_z(r, z)\hat{k}$ $\vec{v} = V_r(r, z) \hat{r} + V_z(r, z) \hat{k}$

$$
\therefore V_r = -\frac{1}{r} \frac{\partial \psi}{\partial z}
$$

$$
\therefore V_z = \frac{1}{r} \frac{\partial \psi}{\partial r}
$$

Also, since $\nabla \cdot \vec{v} = 0$, then there exist A such that $\vec{v} = \nabla \times A$ where A is vector potential

$$
\vec{A} = \frac{1}{r \sin \theta} \psi \hat{\lambda}
$$

Therefore, in spherical coordinates,

In spherical we have,

$$
\vec{A} = \frac{1}{r \sin \theta} \psi \hat{\lambda}
$$

Therefore, in spherical coordinates,
spherical we have,

$$
\therefore V_r = \frac{1}{r^2 \sin \theta} \frac{\partial \psi}{\partial \theta}
$$

$$
\therefore V_z = -\frac{1}{r \sin \theta} \frac{\partial \psi}{\partial r}
$$