CHAPTER 6 (PART II)

SOLUTION OF NAVIER STOKES EQUATION

6.1 EXACT SOLUTION OF NAVIER STOKES EQUATION

¢) Unsteady Flow due to Oscillating Flow

Consider also two-dimensional flow moving in x-direction (uni-

directional flow)

The general solution is obtained similar to problem (b) as
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but the boundary conditions become
u(0,0)=ucost  -------- (ii)
u(oo,t) is bounded ----------- (iii)

To solve, need to consider method of separation of variables by taking
u(y,1)=¢“f(y)

and substitute into (i)

Second order homogeneous equation. Take f =e™”
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After using (2) and (3), the solution is
u is bounded if y —> o0 .

u(y,t)=

u=ucoswt, y=0.



d) Steady Flow under Gravity Down on Inclined Plane
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Consider the fluid as two-dimensional incompressible uni-directional
flow.
Simplification:
1. Steady - not depend on ¢
2. 2D -depend on x and y
- u(x,y)and v(x,y)

3. Uni-directional flow v(x,y)=0

From continuity equation:
=u=u(y)
From Equation (2) (Chapter 6 Part I)
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From Equation (3) (Chapter 6 Part I)

Therefore, since g, =gcosa

a—p:pgcosoz
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p(x.y)=ypgcosa+ f(x) -—mmmmmmmv (iif)



Equation (4) (Chapter 6 Part I) fully eliminated.

Note:

From (iii)

From (1)

Therefore,

Boundary conditions

u=0 at y=0
a—M:O at y=h
oy Y

Find 4 and B using BCs,

Then the solution becomes



e) Flow in a Pipe

Navier-Stokes equation in cylindrical coordinate is given as continuity
equation
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where v=(U,,U,,U. )

Momentum equation:
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Case I: Steady flow in a pipe

e Considered a fully developed laminar motion through a tube of

radius, a
e Flow through a tube is frequently called circular Poissule flow

¢ To solve the problem cylindrical coordinate (r,0,z) need to be

applied with the z axis coinciding with the axis of the pipe




e In this flow problem only velocity Uz(r,e,z) is known zero

components of velocity as the other U, =U, =0

Continuity equation:
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0z =0
UZ=UZ(r,9)

But axisymmetric flow (not depend on &), then
U.=U.(r)
Momentum equation:

X -component

y -component

z-component

The equation of motion becomes:
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And the boundary condition

U, is bounded at »=0
U.=0 at r=a

Solution of (v):

And boundary conditions:

U, is bounded at »=0

U,=0 at r=a



Case I1: Steady flow between two rotating cylinders
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e Consider the steady 2D velocity U =U 99 in between concentric

cylinder with radius » =a and r =b respectively and a <b
¢ In this concentric cylinder, the flow can only be steady if at least one
of the cylinders is forces to rotate
e Therefore, the boundary condition can be stated as
a) By considering continuity equation in cylindrical coordinate,
show that
Uy=U,(r,2)
b) By considering momentum equation in cylindrical coordinate,

show that the equation of motion is
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c) Show that by solving equation in

Qa? Qa’b?
Ue(r):_bz_az r+(b2—a2)r
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