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CHAPTER 7 
EULER’S EQUATION OF MOTION 

 
7.1 DERIVATIVE OF EQUATION 

• Apply the principal of linear momentum is a small ‘dyed’ blob of 

fluid of volume vδ  

• Allow for the present of a gravitational body force per unit mass, F


 

• The total force on the blob is ( )p F vρ δ−∇ +


 

• This force must be equal to the product of the blob mass, which is 

conserves and acceleration is given as Duv
Dt

ρδ


 

• Therefore, we have 

( )
1   -------------- (1)

Dup F v v
Dt

Du p F
Dt

ρ δ ρδ

ρ

−∇ + =

= − ∇ +









 

Equation (1) is known as momentum equation of Euler’s equation. 

Together with the continuity equation  0  ---------- (2)u∇⋅ =  

both equations of motion for ideal fluid (inviscid) 

 

7.2 SOLUTION OF EULER’S EQUATION 

Consider the Euler’s equation 

1Du p F
Dt ρ

= − ∇ +




   or  

  ( ) 1   ------------- (3)u uu p F
t ρ

⋅∇
∂ + = − ∇ +
∂

 





 

We know that 
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  ( ) ( )21
2

u u u u w 
 
 

⋅∇ =∇ − ×     

Substitute this identity into (3) 

  ( ) 21 1   ------------- (4)
2

u u w u p F
t ρ

 
 
 

∂ − × = −∇ − ∇ +
∂





   

If we set = dpχ
ρ∫  hence, 1 pχ

ρ
∇ = ∇  

From (4), we get 

  ( ) 21   ------------- (5)
2

u u w u F
t

χ 
 
 

∂ − × = −∇ −∇ +
∂





   

External force, F


 is conservative, a potential function φ  such that 

  F φ= −∇


 

From (5), the equation becomes 

  ( ) 21   ------------- (6)
2

u u w u
t

χ φ 
 
 

∂ − × = −∇ + +
∂



   

Equation (6) is known as the Euler’s equation for the barotropic fluid 

 

Case I: Steady and Irrotational Flow 

From (6) 

  1)      0

2)    0

u
t

u w

∂ =
∂
× =



 

 

Therefore, (6) becomes 

                                                                               ------------- (7)  

Integrate (7) 

                                                          ------------- (8)  

The fluid is incompressible,  ρ  is constant and the external force is a force 

due to gravity, ˆF gk= −
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Therefore, from (8) 

                                         ------------- (9) (Bernoulli equation) 

 

Case II: Steady and Rotational 

From (6): 0u
t

∂ =∂



 

 

 

 

 

 

 

 

 

 

 

But 21
2

uu
u

χ φ 
 
 

∇ + + ⋅




 means the directional derivative of function 

21
2

u χ φ 
 
 

+ +  in the direction of u
u





, so we have the derivation along the 

streamlines 21
2

u cχ φ+ + = , for any constant c  
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Case III: Unsteady and Irrotational Flow 

From (6):   0   w u φ= ⇒ =∇   
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7.3 PRESSURE GRADIENT 

We consider the flow which is steady, irrotational incompressible fluid and 

influence by the gravity 

Therefore,  

  

1)   0

2)      0   
    3)  0

u
t
w u
u

φ

∂ =
∂

= ⇒ =∇
∇⋅ =



 



 

From the Bernoulli equation, 

  21
2

pu gz cρ+ + =  

Suppose at 00z p p= ⇒ =  and u U= , where 0p  and U  are constants, then 

 

 

 

Therefore,  

 
                                                                               ------------- (10)  

 

a) If we consider a situation of no flow ( )0u v= = , from (10) 

 

 

 
b) If the flow moving without the influence of gravity, then (10) becomes 

 

 
                                                                                           ------------- (11)  
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There are two cases: 

i. If 0pC =  

0p p⇒ =  means that the pressure is at free stream pressure 

ii. If 1pC =  (occurs when 0u = ) 

2
0

1
2

p p Uρ⇒ = +  means the pressure is at stagnation point 

Here the stagnation point pressure is at greatest pressure that can be 

occur anywhere 

 

Exercise 

1) Find pC  for an irrotational flow over a fixed sphere with radius, a  

and the velocity potential, 
3

2 cos
2
aU r
r

φ θ
 
  
 

= +  

2) Show that 
3

2 cos
2
aU r
r

φ θ
 
  
 

= +  is the solution for an irrotational 

flow about a fixed impermeable sphere, where the flow being 

uniform magnitude in the z -direction at infinity 

3) A liquid of constant density, ρ  is rotating about a vertical axis with 

angular velocity, k̂Ω=Ω  as if it where a rigid body in a pressure of 

a uniform gravitational field, ˆF gk= −


 Compute the pressure 

distribution in this flow and show that the constant pressure surface 

is parabolic of concave upward.  
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