CHAPTER 7 EULER'S EQUATION OF MOTION

7.1 DERIVATIVE OF EQUATION

- Apply the principal of linear momentum is a small 'dyed' blob of fluid of volume δv
- Allow for the present of a gravitational body force per unit mass, *F* \overrightarrow{r}
- The total force on the blob is $(-\nabla p + \rho \vec{F}) \delta v$
- This force must be equal to the product of the blob mass, which is conserves and acceleration is given as $\rho \delta v \frac{D \vec{u}}{D t}$ \vec{r}
- Therefore, we have

$$
\left(-\nabla p + \rho \vec{F}\right)\delta v = \rho \delta v \frac{D\vec{u}}{Dt}
$$

$$
\frac{D\vec{u}}{Dt} = -\frac{1}{\rho}\nabla p + \vec{F}
$$
-----(1)

Allow for the present of a gravitational body force per unit m
The total force on the blob is $(-\nabla p + \rho \vec{F}) \delta v$
This force must be equal to the product of the blob mass, w
conserves and acceleration is given as $\rho \delta v \frac$ Equation (1) is known as momentum equation of Euler's equation. Together with the continuity equation $\nabla \cdot \vec{u} = 0$ ---------- (2) both equations of motion for ideal fluid (inviscid)

7.2 SOLUTION OF EULER'S EQUATION

Consider the Euler's equation

$$
\frac{D\vec{u}}{Dt} = -\frac{1}{\rho}\nabla p + \vec{F} \qquad \text{or}
$$

$$
\frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \nabla)\vec{u} = -\frac{1}{\rho}\nabla p + \vec{F} \qquad \text{or}
$$
(3)

We know that

$$
(\vec{u} \cdot \nabla)\vec{u} = \nabla \left(\frac{1}{2}u^2\right) - (\vec{u} \times \vec{w})
$$

Substitute this identity into (3)

$$
\frac{\partial \vec{u}}{\partial t} - (\vec{u} \times \vec{w}) = -\nabla \left(\frac{1}{2}u^2\right) - \frac{1}{\rho}\nabla p + \vec{F}
$$
 -------- (4)

If we set $\chi = \int \frac{dp}{\rho}$ hence, $\nabla \chi = \frac{1}{\rho} \nabla p$

From (4), we get

From (4), we get
\n
$$
\frac{\partial \vec{u}}{\partial t} - (\vec{u} \times \vec{w}) = -\nabla \left(\frac{1}{2}u^2\right) - \nabla \chi + \vec{F}
$$
\n
$$
\text{External force, } \vec{F} \text{ is conservative, a potential function } \phi \text{ such that}
$$
\n
$$
\vec{F} = -\nabla \phi
$$
\nFrom (5), the equation becomes
\n
$$
\frac{\partial \vec{u}}{\partial t} - (\vec{u} \times \vec{w}) = -\nabla \left(\frac{1}{2}u^2 + \chi + \phi\right)
$$
\n
$$
\text{Equation (6) is known as the Euler's equation for the barotropic fluid}
$$
\n
$$
\text{Case I: Steady and Irrotational Flow}
$$
\nFrom (6)
\n1)
$$
\frac{\partial \vec{u}}{\partial t} = 0
$$
\n2)
$$
\vec{u} \times \vec{w} = 0
$$

External force, \vec{F} is conservative, a potential function ϕ such that

$$
\vec{F} = -\nabla \phi
$$

From (5), the equation becomes

$$
\frac{\partial \vec{u}}{\partial t} - (\vec{u} \times \vec{w}) = -\nabla \left(\frac{1}{2}u^2 + \chi + \phi\right) \quad \text{---}
$$
 (6)

Equation (6) is known as the Euler's equation for the barotropic fluid

Case I: Steady and Irrotational Flow

From (6)

1)
$$
\frac{\partial \vec{u}}{\partial t} = 0
$$

2)
$$
\vec{u} \times \vec{w} = 0
$$

Therefore, (6) becomes

------------- (7)

Integrate (7)

------------- (8)

The fluid is incompressible, ρ is constant and the external force is a force due to gravity, $\vec{F} = -g\hat{k}$

Therefore, from (8)

------------- (9) (Bernoulli equation)

Case II: Steady and Rotational

II: Steady and Rotational

1(6): $\frac{\partial \vec{u}}{\partial t} = 0$ From (6): $\frac{\partial \vec{u}}{\partial t} = 0$ $\frac{\partial \vec{u}}{\partial t} =$

But $\nabla \left(\frac{1}{2} u^2 \right)$ 2 $u^2 + \chi + \phi$. ∇ $\left(\frac{1}{2}u^2 + \chi + \phi\right) \cdot \frac{\vec{u}}{|\vec{u}|}$ $\frac{u}{x}$ means the directional derivative of function $1, 2$ $\left(\frac{1}{2}u^2 + \chi + \phi\right)$ in the direction of $\frac{\vec{u}}{|\vec{u}|}$ \vec{r} $\frac{u}{\sigma}$, so we have the derivation along the streamlines $\frac{1}{2}u^2$ 2 $u^2 + \chi + \phi = c$, for any constant *c*

Case III: Unsteady and Irrotational Flow

From (6): $\vec{w} = 0 \implies \vec{u} = \nabla \phi$

7.3 PRESSURE GRADIENT

We consider the flow which is steady, irrotational incompressible fluid and influence by the gravity

Therefore,

1)
$$
\frac{\partial \vec{u}}{\partial t} = 0
$$

2)
$$
\vec{w} = 0 \implies \vec{u} = \nabla \phi
$$

3)
$$
\nabla \cdot \vec{u} = 0
$$

From the Bernoulli equation,

$$
\frac{1}{2}u^2 + gz + \frac{p}{\rho} = c
$$

DR. ZUHAILA ISMAIL Suppose at $z = 0 \Rightarrow p = p_0$ and $u = U$, where p_0 and *U* are constants, then

Therefore,

------------- (10)

a) If we consider a situation of no flow $(u = v = 0)$, from (10)

b) If the flow moving without the influence of gravity, then (10) becomes

------------- (11)

There are two cases:

i. If $C_p = 0$

 \Rightarrow *p* = *p*₀ means that the pressure is at free stream pressure

ii. If $C_p = 1$ (occurs when $\vec{u} = 0$)

 $v_0 + \frac{1}{2} \rho U^2$ $\Rightarrow p = p_0 + \frac{1}{2}\rho U^2$ means the pressure is at stagnation point Here the stagnation point pressure is at greatest pressure that can be

occur anywhere

Exercise

- 1) Find C_p for an irrotational flow over a fixed sphere with radius, *a* and the velocity potential, 3 $\frac{a}{2r^2}$ cos $U(r+\frac{a}{2})$ *r* $\phi = U \left(r + \frac{a^3}{2} \right) \cos \theta$ $\left(2r^2\right)$ $= U | r +$
- 2) Show that 3 $\frac{a}{2r^2}$ cos $U\left(r+\frac{a}{2}\right)$ *r* $\phi = U \left(r + \frac{a^3}{2} \right) \cos \theta$ $\left(2r^2\right)$ $= U | r + \frac{u}{2} |\cos \theta$ is the solution for an irrotational

flow about a fixed impermeable sphere, where the flow being uniform magnitude in the *z*-direction at infinity

occur anywhere

D. Find C_p for an irrotational flow over a fixed sphere with ra

and the velocity potential, $\phi = U \left(r + \frac{a^3}{2r^2} \right) \cos \theta$

2) Show that $\phi = U \left(r + \frac{a^3}{2r^2} \right) \cos \theta$ is the solution for an irro

flow 3) A liquid of constant density, ρ is rotating about a vertical axis with angular velocity, $\Omega = \Omega \hat{k}$ as if it where a rigid body in a pressure of a uniform gravitational field, $\vec{F} = -g\hat{k}$ Compute the pressure distribution in this flow and show that the constant pressure surface is parabolic of concave upward.