

Risk Management

Chapter 2 MKEP1643 Zulkurnain Abdul-Malek

Content

- 1. Introduction to LPS Standard
- 2. Risk Management Need and economic justification for LPS
- 3. Risk Assessment
- 4. Exercises

1. Introduction to LPS Standard

Sources of damage, types of damage and types of loss depending on the point of strike

Point of strike	Example	Type of damage	Type of loss
Structure S1	4	D1 D2 D3	L1, L4 ^b L1, L2, L3, L4 L1ª, L2, L4
Near structure S2	4	D3	L1ª, L2, L4
Incoming line S3	4	D1 D2 D3	L1, L4 ^b L1, L2, L3, L4 L1ª, L2, L4
Near incoming line S4	4	D3	L1ª, L2, L4

Sources of damage, types of damage and types of loss depending on the point of strike

Sources of damage, types of damage and types of loss depending on the point of strike LEMP

Sources of damage, types of damage and types of loss depending on the <u>point of strike</u>

Sources of damage, types of damage and types of loss depending on the point of strike

Note:

- Only sparks carrying lightning current (total or partial) are regarded as able to trigger fire
- Lightning flashes, direct to or near the incoming **pipelines**, do not cause damages to the structure, provided that they are bonded to the equipotential bar of the structure

Types of damage

			Building or structure	
Point of Strike	Example	Source of damage	Type of damage	Type of loss
Building or structure		S1	D1	L1, L4 ^b
	1		D2	L1, L2, L3, L4
			D3	L1ª, L2, L4
Earth next to the structure		52	D3	L1ª, L2, L4
Entering supply line		53	D1	L1, L4 ^b
			D2	L1, L2, L3, L4
			D3	L1 ^a , L2, L4
Earth next to the entering supply line	1	54	D3	L1ª, L2, L4

Types of loss and corresponding risks resulting from different types of damage

IEC 2613/10

a Only for hospitals or other structures where failure of internal systems immediately endanger human life.

^b Only for properties where animals may be lost.

Fundamentals of risk analysis

• Risk is expressed as

$$\mathbf{R}_{\mathbf{x}} = \mathbf{N}_{\mathbf{x}} \cdot \mathbf{P}_{\mathbf{x}} \cdot \mathbf{L}_{\mathbf{x}}$$

where

 N_x is the number of dangerous events, i.e. the frequency of lightning strikes causing damage in the area under consideration (How many dangerous events occur each year?);

 P_x is the probability of damage (What is the probability that a dangerous event causes certain damage?);

 L_x is the loss factor, i.e. the quantitative evaluation of damage (What are the effects, amount of loss, extent and consequences of a certain damage?).

Types of Loss

Types of Loss

$$N_D = N_g \cdot A_d \cdot C_d \cdot 10^{-6}$$

$$N_M = N_g \cdot A_m \cdot 10^{-6}$$

$$N_L = N_g \cdot A_l \cdot C_e \cdot C_t \cdot 10^{-6}$$

$$N_l = N_g \cdot A_i \cdot C_t \cdot C_e \cdot 10^{-6}$$

$$N_D = N_g \cdot A_d \cdot C_d \cdot 10^{-6}$$

 A_d is the equivalent interception area of the isolated building or structure (Figure 3.2.3.2), C_d a site factor so that the influence of the surroundings (built-up, terrain, trees, etc.) can be taken into account (Table 3.2.3.1).

Fig. 3.2.3.2 Equivalent interception area A_d for direct lightning strikes into a stand-alone structure

Relative site of the building or structure	
Object is surrounded by higher objects or trees	
Object is surrounded by objects or trees of the same or lower height	
Free-standing object: no further objects near by (within a distance of 3H)	
Free-standing object on top of a moutain or a rounded hilltop	

Table 3.2.3.1 Site factor C_d

$$N_M = N_g \cdot A_m \cdot 10^{-6}$$

Fig. 3.2.3.3 Equivalent interception areas A_d, A₁, A_a for direct lightning strikes into structures/ supply lines and A_m, A_i for indirect lightning strikes near the structures/supply lines

$$N_L = N_g \cdot A_l \cdot C_e \cdot C_t \cdot 10^{-6}$$

The area A_1 (Figure 3.2.3.3) is a function of the type of line (overhead line, cable), the length L_c of the line; in the case of cables, it is a function of the earth resistivity ρ ; and for overhead lines it is a function of height H_c of the line above ground level (Table 3.2.3.2). If the length of the line is not known, or if it is very time-consuming to ascertain it, then, as a worst-case scenario, a value of $L_c = 1000$ m can be set.

- H_c Height (m) of the line above ground level;
- ρ Earth resistivity (Ωm) in, or on, which the line is laid, up to a maximum value of ρ = 500 Ωm;
- Length (m) of the line, measured from the building or structure to the first distribution junction, or to the first location where surge protective devices are installed, up to a maximum length of 1000 m;
- H Height (m) of the building or structure;
- H_b Height (m) of the building or structure;
- H_a Height (m) of the neighbouring building or structure connected via the line.

$$N_L = N_g \cdot A_l \cdot C_e \cdot C_t \cdot 10^{-6}$$

	Overhead line	Underground cable
A	$\left[L_{c}-3 \cdot \left(H_{a}+H_{b}\right)\right] \cdot 6 \cdot H_{c}$	$\left[L_{c}-3 \cdot \left(H_{a}+H_{b}\right)\right] \cdot \sqrt{\rho}$
A _i	$1000 \cdot L_c$	$25 \cdot L_c \cdot \sqrt{ ho}$

Table 3.2.3.2 Equivalent interception areas $A_{\rm I}$ and $A_{\rm i}$ in m^2

Environment	C _e
Urban with high buildings or structures (higher than 20 m)	0
Urban (buildings or structures of heights between 10 m and 20 m)	0.1
Suburban (buildings or structures not higher than 10 m)	0.5
Rural	1

Table 3.2.3.3 Environment factor C_e

Number of Hazardous Events

$$N_l = N_g \cdot A_i \cdot C_t \cdot C_e \cdot 10^{-6}$$

Probabilities of damage

- P_A Electric shock suffered by living beings as a result of a direct lightning strike to the building or structure;
- P_B Fire, explosion, mechanical and chemical reactions as a result of a direct lightning strike to the building or structure;
- P_{c} Failure of electrical / electronic systems as a result of a direct lightning strike to the building or structure; $P_{c} = P_{SPD}$
- P_M Failure of electrical / electronic systems as a result of a lightning strike to the ground next to the building or structure;
- P_U Electric shock suffered by living beings as a result of a direct lightning strike to the utility lines entering the building or structure;
- P_v Fire, explosion, mechanical and chemical reactions as a result of a direct lightning strike to a utility line entering the building or structure;
- P_w Failure of electrical / electronic systems as a result of a direct lightning strike to a utility line entering the building or structure;
- Pz Failure of electrical / electronic systems as a result of a lightning strike to the ground next to a utility line entering the building or structure.

Probabilities of damage

Characteristics of building or structure	Class of lightning protection system (LPS)	P _B
Building or structure is not protected by LPS	_	1
Building or structure is protected by LPS	IV	0.2
	III	0.1
	II	0.05
	I	0.02
Building or structure with air-termination system accord metal facade or a concrete reinforcement as natural dov	0.01	
Building or structure with metal roof or with air-termination system, preferably including natural components, which protect all roof superstructues entirely against direct lightning strikes, and a metal facade or concrete reinforcement a natural down conductor system.		0.001

Table 3.2.4.1 Damage factor P_B to describe the protective measures against physical damage

Probabilities of damage

Lightning protection level (LPL)	Damage factor P _{SPD}
No coordinated surge protection	1
III – IV	0.03
	0.02
	0.01
Surge protective devices (SPD) having a protective characteristic better than for LPL I (higher lightning current carrying capability, lower protection level, etc.)	0.005 – 0.001

Table 3.2.4.2Damage factor PPprotective measures surge protective devices as a function of the lightning protection level

Types of Loss

Risks

Source of	Lightning strike (with regard to the structure)				
damage	Direct	Indirect			
	S1	S2	\$3	S 4	
	Direct lightning	Lightning strike	Direct lightning	Lightning strike	
Type of	structure	next to the	entering supply	next to the ente-	
damage		structure	line	ring supply line	
D1					
Electric shock to living beings	$R_A = N_D \cdot P_A \cdot r_a \cdot L_t$		$\mathbf{R}_{U} = (\mathbf{N}_{L} + \mathbf{N}_{DA}) \cdot \mathbf{P}_{U} \cdot \mathbf{r}_{a} \cdot \mathbf{L}_{t}$		$R_{s} = R_{A} + R_{U}$
D2					
Fire, explosions, mechanical and chemical effects	$\begin{split} \textbf{R}_{B} &= \textbf{N}_{D} \cdot \textbf{P}_{B} \cdot \textbf{r} \cdot \textbf{h} \cdot \\ & \textbf{r}_{f} \cdot \textbf{L}_{f} \end{split}$		$R_{V} = (N_{L} + N_{DA}) \cdot P_{V} \cdot r \cdot h \cdot r_{f} \cdot L_{f}$		$R_{f} = R_{B} + R_{V}$
D3					
Interferences on electrical and electronic systems	$R_{C} = N_{D} \cdot P_{C} \cdot L_{o}$	$R_{M} = N_{M} \cdot P_{M} \cdot L_{o}$	$\begin{aligned} R_W &= (N_L + N_DA) \cdot \\ P_W \cdot L_o \end{aligned}$	$\begin{aligned} R_{Z} &= (N_{I} - N_{L}) \cdot \\ P_{Z} \cdot L_{o} \end{aligned}$	$R_{o} = R_{C} + R_{M} + R_{W} + R_{Z}$
	$R_{d} = R_{A} + R_{B} + R_{C}$	R _i =	$= R_{M} + R_{U} + R_{V} + R_{W}$	+ R _Z	

Risks from the view of Strikes

$$R_d = R_A + R_B + R_C$$

$$R_i = R_M + R_U + R_V + R_W + R_Z$$

Risks from the view of Cause of damage

2. Risk Management -Need and economic justification for LPS

Need for Lightning Protection

- The need in order to reduce the loss of social values L1, L2 and L3
- In order to evaluate whether or not LP of a structure is needed, a **risk assessment** in accordance with the procedures contained in **IEC 62305-2** is made.
- The following risks shall be taken into account
 - $-R_1$: risk of loss or permanent injury of human life
 - R₂: risk of loss of services to the public
 - $-R_3$: risk of loss of cultural heritage
- Protection against lightning is needed if the risk R (R₁ to R₃) is higher than the tolerable level R_T

 In this case, protection measures shall be adopted in order to reduce the risk R to tolerable level R_T

$\mathbf{R} \leq \mathbf{R}_{\mathrm{T}}$

• If more than one type of loss could appear, the condition $R \le R_T$ shall be satisfied for each type of loss (L1, L2 and L3)

Typical values for the tolerable risk RT

Types of loss		R _T
L1	Loss of human life (injury to, or death of, persons)	10 ⁻⁵ /year
L2	Loss of services for the public	10 ⁻³ /year
L3	Loss of irreplaceable cultural asset	10 ⁻³ /year

Protection Measures Selection

LPMS: LEMP Protection Measures System

Zulkurnain Abdul-Malek, Mar 2021 innovative • entrepreneurial • global

Flow diagram for determining the need of protection and for selecting measures in case of types of loss L1 to L3

Risk components:

 R_A human life (S₁) R_B fire (S₁) R_C overvoltage (S₁)

R_M overvoltage (S₂)

 R_{U} human life (S₃) R_{V} fire (S₃) R_{W} overvoltage (S₃)

R_z overvoltage (S₄)

Economic Justification of Lightning Protection

- The type of loss L4, economic losses, is relevant for many buildings or structures.
- Here it is no longer possible to work with a tolerable risk of damage RT.
- One rather has to compare, whether the protective measures are justifiable from an economical point of view.
- Not an absolute parameter, such as a specified tolerable risk of damage RT, is standard of comparison, but a relative one:
 - Different states of protection of the building or structure are compared and the optimal solution, i.e. the cost of damage as a result of lightning strikes remaining as low as possible, will be realised.
 - So several variants can and shall be examined.
 - But for L1-L3 (public interest), R < RT, is always the first criterion.

Economic Justification of Lightning Protection

- Besides the need for LP for the structure to be protected, it may be useful to evaluate the economic benefits of providing protection measures in order to reduce the economic loss L4.
- R4 allows for the evaluation of the cost of the economic loss with and without the adopted protection measures.
- <u>LP</u> is <u>cost effective</u> if the sum of the cost of residual loss in the presence of protection measures, CRL, and the cost of protection measures, CPM, is lower than the cost of total loss without protection measures, CL

CRL + CPM < CL

Flow diagram for selecting protection measures in case of loss of economic value

Fig. 3.2.10.1 Basic procedure in case of a purely economic consideration and calculation of the yearly costs

3. Risk Assessment

innovative ${\ensuremath{\bullet}}$ entrepreneurial ${\ensuremath{\bullet}}$ global

Overview of risk components R_{χ}

Complete Lightning Protection System (LPS)

Protection goal: Reduction of the risk below the value of the tolerable risk $R_{T} \end{tabular}$

Protection goal: Reduction of the risk below the value of the tolerable risk $R_{T}\,$

Protection goal: Reduction of the risk below the value of the tolerable risk $R_{T} \end{tabular}$

Protection goal: Reduction of the risk below the value of the tolerable risk $R_{T} \end{tabular}$

Risk composition

Risks

The interaction of the before mentioned factors leads to the following risks of damage which have to be assessed for a building:

Ќ́́́	R _l :	Risk of loss of human life (including permanent injury)	RT (1/year) 10-5
	R ₂ :	Risk of loss of service to the public	10-3
	R₃:	Risk of loss of cultural heritage	10-4
€	R4:	Risk of loss of economic value	

Risk R₂ Service

Serivce – Service to the public Risk R ₂		
Primary service	Secondary service	
Gas	Banking	
Water	Transportation service	
Electricity	Trade	
Telecommunication	Civil service	
TV	Administration	
	Industry	
	Health sector	
Service does not only refer to basic needs,	Food industry	
but also to the economic dependency on a material good.	Digital radio systems of security authorities (BOS)	

Risk composition

Overview of the risk components $R_{\rm X}$

Risk components R_A, R_B, R_C Source of damage S₁

Injury of human beings caused by touch and step voltage inside and outside the structure.

```
Possible types ofdamage:
L<sub>1</sub>:human life
L<sub>4</sub>:economic loss
(only in case of
agricultural buildings)
```


Physical damage caused by dangerous sparking inside the structure resulting in fire and explosion.

Possible types ofdamage: L₁: human life L₂: service L₃: cultural heritage L₄: economic loss

R_c= overvoltage (LEMP)

Failure of internal systems as a result of LEMP.Electromagnetic effects of lightning currents.

```
Possible types of damage:
L1: human life (systems in
hazardous areas,
hospitals)
L2: service
L4: economic loss
```


Risk component R_M Source of damage S_2

Failure of internal systems as a result of LEMP.Electromagnetic effects of lightning currents.

```
Possible types of damage:
L1: human life (systems in
hazardous areas,
hospitals)
L2: service
L4: economic loss
```

```
0
```


Risk components R_U, R_V, R_W Source of damage S₃

Injury of human beings inside the structure caused by touch voltage resulting from injected lightning currents.

Possible types of damage: L₁: human life L₄: economic loss (only in case of agricultural buildings)

Physical damage resulting from lightning currents injected into the structure via supply lines.

Possible types of damage: L₁: human life L₂: service L₃: cultural heritage L₄: economic loss

R_w= overvoltage

Failure of internal systems as a result of surges induced on the supply lines.

Possible types of damage: L₁: human life (systems in hazardous areas, hospitals) L₂: service L₄: economic loss

Risk component R_Z -Overvoltage Source of damage S_4

Failure of internal systems as a result of surges induced on the supply lines which are injected into the structure.

Possible types ofdamage: L1: human life (systems in hazardous areas, hospitals) L2: service

L₄: economic loss

Risks, types of damage, causes of damage and risk components

Risk	Type of damage	Causes of damage	Risk component s
		Electric shock (1)	$R_A; R_U$
Rı	Injury/death of persons (L1)	Fire, etc.	$R_{\rm B_{\rm s}}R_{\rm V}$
		Overvoltage (2)	$R_{C_{\sigma}}R_{M_{\sigma}}R_{W_{\sigma}}R_{Z}$
D.	Loss of service to the public (L2)	Fire, etc.	$R_{\rm B_{\rm c}}R_{\rm V}$
12		Overvoltage (3)	$R_{C_0}R_{M_0}R_{W_0}R_Z$
\mathbb{R}_3	Loss of cultural heritage (L3)	Fire, etc.	$R_{\rm B_{\rm s}}R_{\rm V}$
	Loss of economic value (L4)	Electric shock (4)	$R_{\Lambda_{o}^{*}}R_{U}$
\mathbb{R}_4		Fire, etc.	$R_{\rm B_{\rm b}}R_{\rm V}$
		Overvoltage	$R_{C_s}R_{M_s}R_{W_s}R_Z$

(2) If overvoltages directly threaten human lives (e.g. hospitals),
 (3) If overvoltages directly threaten services (e.g. systems in sensitive electronic equipment),

(4) If touch and step voltages threaten animals (e.g. agricultural buildings).

Collection area for lightning strikes

Collection area AD for lightning strikes to an isolated structure

Collection area for lightning strikes

Collection area A₁ for lightning strikes next to a line

Collection area for lightning strikes

Collection area A_{DJ} for lightning strikes to a connected structure

Equivalent collection area A_D for direct lightning strikes to an isolated structure

Location factor Cd for the structure

Note:

A more precise evaluation of the surrounding objects' influence can be obtained considering the relative height of the structure with respect to the surrounding objects or the ground within a distance of 3 x from the structure and assuming $C_d = 1$.

Location factor $C_{\!E}\, for\, lines$

Administration and production building Division into zones Z_S (areas)

Zones Zs are mainly defined by:

- Type of soil or floor (risk components R_A and R_U)
- 2 Fireproof compartments (risk components R_B and R_V)
- 3 Spatial shields (risk components R_C and R_M)
- 4 Layout of internal systems (risk components R_C and R_M)
- 5 Existing protection measures or protection measures to be provided (all risk components)

Protection goal: Reduction of the risk below the value of the tolerable risk $R_{T} \end{tabular}$

Protection goal: Reduction of the risk below the value of the tolerable risk R_{T}

Reduced Risk > tolerable Risk

$R > R_T$

What should Ido, if I could not reduce the Risk to a tolerable level?

Lightning and surge protection measures and their influences on the individual risk components

Properties of the structure or internal systems – Protection measures	R _A	R _B	R _c	R _M	Ru	Rv	Rw	Rz
Physical restrictions, insulation, warning notice, potential control on the ground	•				•			
Lightning protection system (LPS)	•	•	•	● a	• b	• b		
Surge protective device for lightning equipotential bonding	•	•			•	•		
Isolating interfaces			• C	• C	•	•	•	•
Coordinated SPD system			•	•			•	•
Spatial shielding			•	•				
Shielding of external lines					•	•	•	•
Shielding of internal lines			•	•				
Routing precautions			•	•				
Equipotential bonding network			•					

- a Only for grid-like external LPS
- ^b Due to equipotential bonding
- ^c Only if they belong to equipment to be protected

4. Exercises

Exercise

Carry out a risk assessment exercise on the following hospital

Risk Assessment type: R1

Hospital and Detailed Parameters GFD = 0.7 strikes/yr/km2

Lb	Length:	50.00 m
Wb	Width:	150.00 m
Нb	Height:	10.00 m
H _{pb}	Highest point (if applicable):	10.00 m

The environment surrounding the structure is an important factor for determining the number of possible direct / indirect lightning strikes. This is defined as follows for the structure Hospital without measures: Relative location C_{db} : 1.00

Division of the structure into lightning protection zones/zones

- LPZ 0B Structure protected against direct lightning strikes
 zone 1 outside building
- LPZ 1 Inner zone of the protected structure
 - zone 2 rooms block
 - zone 3 operating blook
 - zone 4 intensive care unity

Supply lines

- Internal power system and relevant incoming power line characteristics
- Internal telecom system and relevant incoming line characteristics

5.1 Internal power system and relevant incoming power line characteristics

Line type:	Aerial
Ground resistance:	200.00
Relative location:	Object is surrounded by objects or trees of the same height or smaller
Environment:	Suburban (buildings smaller than 10 m)
Transformer:	Supply with double-winding transformer - conductor with HV/LV isolation transformer

The conductor length outside the structure up to the next node is 500.00 m.

Supply lines

The dielectric strength of the electrical equipment which is connected with the Internal power system and relevant incoming power line characteristics was defined per zone:

	Internal power system and relevant incoming power line
	characteristics - Uw
zone 1 outside building	2.5 kV < Uw <= 4.0 kV
zone 2 rooms block	2.5 kV < Uw <= 4.0 kV
zone 3 operating blook	2.5 kV < Uw <= 4.0 kV
zone 4 intensive care unity	2.5 kV < Uw <= 4.0 kV

Supply lines

The conductors in the building of the Internal power system and relevant incoming power line characteristics are installed per zone:

	Internal power system and relevant incoming power line characteristics - pint		
zone 1 outside building	Unshielded cables - precautions taken to prevent large installtion loops		
zone 2 rooms block	Unshielded cables - precautions taken to prevent large installtion loops		
zone 3 operating blook	Unshielded cables - precautions taken to prevent large installtion loops		
zone 4 intensive care unity	Unshielded cables - precautions taken to prevent large installtion loops		

Supply lines

5.2 Internal telecom system and relevant incoming line characteristics

Line type:	Buried
Ground resistance:	200.00
Relative location:	Object is surrounded by objects or trees of the same height or smaller
Environment:	Suburban (buildings smaller than 10 m)
Transformer:	Supply line only - line without transformer

The conductor length outside the structure up to the next node is 300.00 m.

Supply lines

	Internal telecom system and relevant incoming line characteristics - Uw
zone 1 outside building	1.5 kV < Uw <= 2.5 kV
zone 2 rooms block	1.5 kV < Uw <= 2.5 kV
zone 3 operating blook	1.5 kV < Uw <= 2.5 kV
zone 4 intensive care unity	1.5 kV < Uw <= 2.5 kV

The conductors in the building of the Internal telecom system and relevant incoming line characteristics are installed per zone:

	Internal telecom system and relevant incoming line characteristics - pint		
zone 1 outside building	Unshielded cables - precautions taken to prevent installation loops		
zone 2 rooms block	Unshielded cables - precautions taken to prevent installation loops		
zone 3 operating blook	Unshielded cables - precautions taken to prevent installation loops		
zone 4 intensive care unity	Unshielded cables - precautions taken to prevent installation loops		

6. Properties of the structure

6.1 Risk of fire

The risk of fire is one of the most important criteria for determining whether an LPS (lightning protection system) must be installed. The risk of fire is classified according to the specific fire load. The fire load should be determined by a fire safety expert or defined after consultation with the proprietor of the building and his / her insurance company. A distinction is made according to the following criteria:

- None
- Low (specific fire load in the building less than 400 MJ/m²)
- Ordinary (specific fire load in the building between 400 MJ/m² and 800 MJ/m²)
- High (specific fire load in the building greater than 800 MJ/m²)
- Explosion: zone 2 / 22
- Explosion: zone 1 / 21
- Explosion: zone 0 / 20

The risk of fire in a structure is an important factor for determining the required protection measures. The risk of fire for the structure Hospital with measures, first solution was defined as follows:

	Z1	Z2	Z3	Z4
None				
Low (sports stadium, railway station, telephone exhange)				
Ordinary (office, school, theatre, hotel, museum, shop)				
High (paper mill, industrial warehouse with flammable stock)				
Explosion (petrochemical plant, ammunition store, gas compound)				

6.2 Measures to reduce the consequences of a fire

The following measures were selected to reduce the consequences of a fire:

	Z1	Z2	Z3	Z4
No measures	N	M	\checkmark	N
Fire extinguishers, manual fire alarm system, hydrants, fire-proof compartments, protected escape routes				
Automatic fire extinguishing system/fire alarm system				

6.3 Special hazards in the building for persons

Due to the number of persons, the possible risk of panic for the structure Hospital with measures, first solution was defined as follows:

	Z1	Z2	Z3	Z4
No specific threat	M			
Low danger of panic (up to approx. 100 persons)				
Average danger of panic (from approx 100 to approx. 1000 persons)				
Evacuation problems (persons in need of help)				
High danger of panic (from approx. 1000 persons)				
Threat for surrounding area or environment				
Contamination of surrounding area or environment				

Spatial shielding attenuates the magnetic field within a structure caused by lightning strikes to or near the object and reduces internal surges.

This can be achieved by an intermeshed equipotential bonding network in which all conductive parts of the structure and the internal systems are integrated. Consequently, the external / internal spatial shield is only a part of a shielded building structure. It must be observed that metal coverings and claddings are connected to one another and conductively to the equipotential bonding of the building. In this context, the relevant normative requirements must be observed.

Covering of the structure Hospital with measures, first solution:

- No shielding

The risk was reduced to an acceptable level by selecting the following protection measures.

This selection of protection measures is part of the risk management for the object Hospital with measures, first solution and is only valid in connection with this object.

Measures Hospital with measures, first solution:

Area		Measures	Factor
	pB:	Lightning protection system (LPS) Class of LPS II	5.000E-02
		Internal power system and relevant incoming power line characteristics:	
	pEB:	Lightning equipotential bonding Improved equipotential bonding for LPL II	2.000E-03
		Internal telecom system and relevant incoming line characteristics:	
	pEB:	Lightning equipotential bonding Improved equipotential bonding for LPL II	2.000E-03

LPZ 1:

zone 2 rooms block

	rp:	Fire precautions Automatic fire extinguishing system/fire alarm system	2.000E-01
		Internal power system and relevant incoming power line characteristics:	
	pSPD:	Coordinated SPD system Improved SPD protection according to LPL II	2.000E-03
		Internal telecom system and relevant incoming line characteristics:	
	pSPD:	Coordinated SPD system Improved SPD protection according to LPL II	2.000E-03
zone 3 operating blook			
	KS2:	Internal spatial shielding Mesh-like shield	6.000E-02
	KS2W:	Mesh size	0.5

		Internal power system and relevant incoming power line characteristics:	
	pSPD:	Coordinated SPD system Improved SPD protection according to LPL II	2.000E-03
		Internal telecom system and relevant incoming line characteristics:	
	pSPD:	Coordinated SPD system Improved SPD protection according to LPL II	2.000E-03
zone 4 intensive care unity			
	KS2:	Internal spatial shielding Mesh-like shield	6.000E-02
	KS2W:	Mesh size	0.5
		Internal power system and relevant incoming power line characteristics:	
	pSPD:	Coordinated SPD system Improved SPD protection according to LPL II	2.000E-03
		Internal telecom system and relevant incoming line characteristics:	
	pSPD:	Coordinated SPD system Improved SPD protection according to LPL II	2.000E-03

Change from Class II to I