Influence of Ni to Co ratio supported on ZrO₂ catalysts in phenol steam reforming for hydrogen production

Walid Nabgana,b, Tuan Amran Tuan Abdullah a,b,*, Ramli Matb, Bahador Nabgana,b, Yahya Gambo, Sugeng Triwahyonoc

a Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
b Department of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
c Centre for Sustainable Nanomaterials (CSNano), Department of Chemistry, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia

Article info
Article history:
Received 12 July 2016
Received in revised form 26 September 2016
Accepted 12 October 2016
Available online 27 October 2016

Keywords:
Ni to Co ratio
ZrO₂
Phenol steam reforming
Hydrogen production

Abstract
In this work, catalytic steam reforming of phenol for hydrogen production was investigated. This study focuses on the effects of Ni to Co ratio supported on ZrO₂ catalysts. The NiₙCoₙ/ZrO₂ (x = 0, 1, 2, 3, 4 where x + y = 4) catalysts were prepared by impregnation method. Steam reforming activity was tested in a fixed bed reactor at 600 °C using a feed of phenol/water mixture at a molar ratio of 1:9 and a constant liquid feed rate of 0.36 ml/min. The catalysts were characterized by BET surface area, X-ray diffraction (XRD), transmission electron microscopy (TEM), NH₃ Temperature-Programmed Desorption (NH₃-TPD), CO₂ Temperature-Programmed Desorption (CO₂-TPD), H₂ Temperature-Programmed Reduction (H₂-TPR) and thermo-gravimetric analysis (TGA). The increase in the Co content from 0 to 4, caused a decrease in the crystal size, the t-ZrO₂ phase and the reducibility of the catalysts. However, it only slightly affected the total surface area. It was found that metallic Ni₄ and Co₄ catalysts have lower activity towards phenol steam reforming and deposit higher coke due to having higher acidity sites compare to bimetallic catalysts. In contrast, Ni₃Co₁ displayed a superior catalytic activity among all the catalysts, suggesting the presence of the highest basic site and high coking resistance. Phenol conversion of 53.5% and hydrogen yield of 50.4% were achieved with the Ni₃Co₁ catalyst, even though its activity decreased by increasing the cobalt content.

Introduction
Global climate changes associated with the emission of greenhouse gases, and the reduction of natural fossil-fuel resources have attracted great concern around the world [1,2]. It is urgent to decrease the emission of greenhouse gases for environmental protection. Hydrogen is considered as a clean and environmentally friendly energy carrier. Therefore, it stands a better candidature as an energy technology in the
future global energy scenario [3–5]. Currently, hydrogen production is mainly through steam reforming of fossil fuels, which are primarily composed of natural gas, coal, and naphtha [6]. These non-renewable sources are not friendly due to the high emission of CO₂, SO₂, and NOₓ gases as a result of the combustion of the fossil fuels [7]. A clean renewable fuel produced from bio-oil derivative components has attracted great interest [8].

Phenolic compounds are the major component of a bio-oil (up to 30%) [9]. The steam reforming of phenol can reduce CO₂ which are the main greenhouse gases [10–12]. The reaction product of biomass pyrolysis typically contains a high molecular weight of hydrocarbon, phenolic compounds, acid, and water. Phenol was further recognized as the main component of tar formed following wood biomass gasification by steam in a fluidized bed reactor in the low-temperature range (600–700 °C) [12–14]. Phenol also can be obtained from industrial wastewater and is considered as toxic waste for many aquatic organisms. Due to its high solubility in water, it can directly convert to highly valuable gas hydrogen via catalytic steam reforming. The steam reforming of phenol, Reaction (1) and water gas shift reaction, Reaction (2) [15,16], are two major side reactions that contribute to the deposition of carbon on the catalyst surface. These lead to deactivation of the catalysts and subsequently plugged the catalyst bed [17]:

\[
\begin{align*}
\text{C}_6\text{H}_5\text{OH} + 5\text{H}_2\text{O} & \rightarrow 6\text{CO} + 8\text{H}_2 \quad \Delta H^\circ = 710.91 \text{ kJ/mol} \\
\text{CO} + \frac{1}{2}\text{H}_2\text{O} & \rightarrow \text{CO}_2 + \text{H}_2 \quad \Delta H^\circ = -41.15 \text{ kJ/mol}
\end{align*}
\]

(1)

(2)

However, one of the major problems in the phenol steam reforming is the high-potential formation of some by-products such as carbon [17–19]. This carbon formation will lead to catalyst deactivation and can make troubles for continuous steam reforming process and sustainable production of hydrogen.

Many typical active metals such as Ni [18,20], Rh [21,22], Fe [17], Rh-Fe [14], CaO [23], Pt, Pd, and Rh [24] over metal oxide supports such as γ-Al₂O₃ [20,24,25], La₂O₃ [18,22,25,26], ZrO₂ [14,18,21,22,24], MgO [14,17,21], and CeO₂ [14,17,18,21,22,24] has been studied in terms of phenol reforming. Catalysts containing a noble metal such as Ru show good stability towards coke deposition and high activity for the phenol steam reforming reaction [13,19,21,22,27,28]. However they suffer the disadvantage of having low availability and high cost, which make them not economically competitive in comparison with other transition metals based materials [29]. As a result, great potential lies in the development of an active, carbon-resistant transition metal catalyst, which is capable of promoting enhanced hydrogen production via phenol steam reforming. Ni-based catalysts with a high activity for the steam reforming process have been investigated extensively in recent years [12,18,30]. Moreover, Ni has exhibited strong ability in cleavage of C–C, O–H, and C–H bonds [31]. From the industrial standpoint, it is more practical to develop Ni-based catalysts because of their low price and wide availability [32]. However, they are prone to deactivation, mainly by carbon deposition [30]. Therefore, it is highly desirable for exploring stable and active Ni-based reforming catalysts. Many efforts have been made to improve the carbon deposition resistance of the Ni-based catalysts in other feeds such methane [33,34], ethanol [35] glycerol [36], acetic acid [37,38] etc. Some reports indicated that the addition of cobalt to nickel catalysts reduces coke formation during reaction [39–48]. The integrity of the surface nickel ensembles will be broken by adding of cobalt to the nickel catalysts. This causes a decrease in the amount of nickel particle size and consequently, reduces the carbon formation [41]. Zhao et al. [49] used Ni–Co/Al₂O₃ catalyst for steam reforming of ethanol. They found that the ethanol conversion on Ni–Co/Al₂O₃ catalyst was 68.7% at 350 °C, corresponding to the metal species dispersion data 31.5%. They stated that higher dispersed catalyst exhibited higher anti-coking properties and stabilities. In our previous research [38], we found that the bimetallic Ni–Co/La₂O₃ gives the maximum acetic acid conversion and hydrogen production.

Furthermore, the metal-support interaction plays important roles in carbon deposition over supported metal catalysts during the reforming reaction. ZrO₂ as a support for Ni-based reforming catalysts has attracted interest towards strengthening the metal support interaction. This is due to its unique acidic and basic properties as well as reducing and oxidizing abilities [50]. Zirconia, not only gave rise to an exclusive kind of interaction between the active phase and support but also displayed more chemical inertness than other classical supports. Zirconia has attracted increasing attention both as catalyst support material and catalysts in a variety of catalyst systems because of its high chemical stability and redox properties, as well as the acidic and basic character of its surface hydroxyl groups [51]. In general, ZrO₂ exists in three different polymorphs at ambient pressures: monoclinic (m-ZrO₂), tetragonal (t-ZrO₂), and cubic (c-ZrO₂). The t-ZrO₂ phase shows higher stability, performance and metal dispersion for chemical reactions [31,50,52].

There is, however, a lack of systematic studies of catalyst deactivation on phenol steam reforming for hydrogen production. The present work aims to explore the influence of Ni to Co ratio supported on ZrO₂ catalysts in phenol steam reforming for hydrogen production. Catalysts with various Ni–Co contents were prepared by the incipient wetness impregnation method. Phenol was mixed with steam in a molar ratio of 1–9. In order to clarify the relationship between catalytic performance and the catalyst structural properties, the Niₓ–Coᵧ/ZrO₂ (x = 0, 1, 2, 3, 4 where x + y = 4) catalysts were characterized extensively using the techniques of XRD, BET, TPR, TPD-CO₂, TPD-NH₃, TEM and TGA. In addition, the kinetic study of phenol steam reforming for Niₓ–Coᵧ/ZrO₂ has also been discussed.

Experimental

Catalyst preparation

Cobalt and nickel supported on zirconia (all components from Aldrich) were prepared using the impregnation technique. The advantage of impregnation method is that it produces a high concentration of the active materials on the catalyst surface [53]. The procedure of this method was reported by
Athanassios et al. [54]. The weight percent compositions of the catalysts are displayed in Table 1.

The mix was heated up to 90 °C and held until it turned into a highly viscous paste. The paste was dried at 110 °C overnight in an oven. The catalysts were calcined at 750 °C for three hours. Subsequently, the catalysts were pelletized and sieved on two layers of 35 and 34 mesh to obtain particles size between 1.0 mm and 1.4 mm.

Catalyst characterization

The BET method to the isotherms of N\textsubscript{2} adsorption would be applied for the catalyst specific surface area calculation, measured at a temperature of liquid nitrogen on a Micromeritics Gemini 2360. Multiple point absorptions was used.

The crystalline structure of the reduced catalyst was determined by X-ray diffraction (High-Resolution X-Ray Diffractometer brand Bruker D8 Advance) using a Cu Kα radiation at 40 kV and 30 mA. Diffraction angles was measured in steps of 0.02°, at 1 s/step in the range of 20–80 (2θ). The size of the metal crystallites was calculated from line broadening with the help of the Scherrer equation. The total surface area of catalysts was measured using the multipoint BET-N\textsubscript{2} on a Micromeritics Gemini 2360. Prior to the analysis, the samples were degassed at 200 °C for 2 h to remove unwanted components on the surface before outgassing the samples. Morphologies and properties of the metal particles on catalysts were obtained by JEM-2100 transmission electron microscopy (TEM) instrument operated at 200 kV.

A chemisorption analyser, Micromeritics Chemisorb 2720, was used to evaluate the reducibility of the active metals (nickel and cobalt) on the support by applying a temperature-programmed reduction of hydrogen (TPR-H\textsubscript{2}). Before the reduction, 25 mg of the catalyst was treated at 300 °C under high purity 99.99% helium with the flow rate of 20 ml/min for an hour to remove moisture and other gas impurities. The TPR-H\textsubscript{2} profile was obtained by ramping the temperature at 10 °C/min, 20 ml/min of 10% (vol.) H\textsubscript{2}/Ar between 50 °C and 800 °C.

The same apparatus, Micromeritics Chemisorbsorb 2720 Chemisorption was used for CO\textsubscript{2}-TPD. Prior to adsorption, to remove the adsorbed impurities completely, 35 mg of the sample was kept under 30 ml/min of argon flow rate at 600 °C, for 60 min, then cooled down to 25 °C and kept under 20 ml/min of helium flow rate for 30 min. The CO\textsubscript{2} saturation of the catalyst was carried out for 30 min of CO\textsubscript{2} flowing at 20 ml/min. A 10 °C/min linear heating rate in the temperature range of 50–800 °C was used for the CO\textsubscript{2} desorption. A similar method was applied for TPD-NH\textsubscript{3} except that the adsorbate gas was 5% NH\textsubscript{3} in Argon.

Thermogravimetric analysis (TGA) profiles were carried out in Perkin Elmer TGA instrument operated under nitrogen flowing in the heating rate of 10 °C/min. Exothermic weight loss was observed at the temperature range between 30 and 950 °C. This can be assigned to the combustion of deposited carbon, and the amount of coke deposited on the catalyst surface was measured by the amount of CO\textsubscript{2} formed during the steam reforming.

Activity test

Activity tests were performed using 0.2 g of catalyst. The catalyst bed was placed in a 0.5-inch OD quartz tubular reactor with a coaxially centred thermocouple. Prior to reaction, the catalyst’s bed was flushed with nitrogen at 300 °C, followed by a reduction in situ at 600 °C for 1 h with 30 ml/min of pure hydrogen. Phenol and water were fed independently into the pre-heater by means of HPLC pump (Bio-Rad, Series 1350) with 0.36 ml/min before mixing with carrier N\textsubscript{2}. The reduced samples were tested for steam reforming of phenol (H\textsubscript{2}O/phenol (mol/mol) = 10) at atmospheric pressure. The reaction was maintained for 6 h in order to check if there was any deactivation of the catalysts. The reaction products were analysed on-line by GC with TCD (Agilent 6890N) equipped with Carboxen Plot 1010 capillary column (Fused Silica, 30 m × 0.53 mm) connected in series, using argon as a carrier gas. Meanwhile, the liquid product was analysed using a GC-FID (HP 5890 Series II) and a 0.53 mm DB-Wax capillary column. The flow diagram of this work is shown in Fig. 1. Equations (3) and (4) were applied to compute the phenol conversion and the product (X: H\textsubscript{2} (or) CO (or) CO\textsubscript{2}) yield.

\[
\text{Conversion} (\%) = \frac{\text{[feed}_{\text{in}} - \text{[feed}_{\text{out}}]}{\text{[feed}_{\text{in}}]} \times 100\% \quad (3)
\]

\[
\text{X-yield} (\%) = \frac{\text{moles of X}_{\text{obtained}}}{\text{moles of X}_{\text{obtained from stochiometric potential}} \times 100} \quad (4)
\]

Table 1 — Ratio and weight percentage of metals in the catalyst.

<table>
<thead>
<tr>
<th>Catalysts’ symbol ratio</th>
<th>Nickel (wt.%)</th>
<th>Cobalt (wt.%)</th>
<th>ZrO\textsubscript{2} (wt.%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni\textsubscript{1}</td>
<td>9.98</td>
<td>0</td>
<td>90</td>
</tr>
<tr>
<td>Ni\textsubscript{2}Co\textsubscript{1}</td>
<td>7.48</td>
<td>2.51</td>
<td>90</td>
</tr>
<tr>
<td>Ni\textsubscript{1}Co\textsubscript{2}</td>
<td>4.96</td>
<td>4.96</td>
<td>90</td>
</tr>
<tr>
<td>Ni\textsubscript{3}Co\textsubscript{1}</td>
<td>2.48</td>
<td>7.56</td>
<td>90</td>
</tr>
<tr>
<td>Co\textsubscript{2}</td>
<td>0</td>
<td>9.99</td>
<td>90</td>
</tr>
</tbody>
</table>

* The metal content was measured by ICP test.
Results

Characterization of the fresh catalysts

Table 2 shows the BET specific surface areas of the NiₓCoᵧ/ZrO₂ (x = 0, 1, 2, 3, 4 where x + y = 4) catalysts after calcination at 750 °C. The values range between 57.9 and 66.3 m²/g, with insignificant differences. The surface area follows the order Ni₄ > Ni₁Co₃ > Co₄ > Ni₁Co₂ > Ni₂Co₂. Previous research [55,56] revealed that the BET area did not follow a significant diminishing trend when the Ni content is increased.

XRD analysis was used to identify crystal phases of the catalysts. The XRD patterns of the NiₓCoᵧ/ZrO₂ (x = 0, 1, 2, 3, 4 where x + y = 4) catalysts after reduction at 600 °C are displayed in Fig. 2. The XRD spectrum was characterized by several intense peaks between the diffraction angles of 2θ and 80°. The XRD pattern of the NiₓCoᵧ/ZrO₂ catalysts contains Bragg peaks at around 2θ = 44.52° which correspond to metallic Ni°. This can be attributed the presence of the cubic [JCPDS 45-1027] structure of Ni° and is in agreement with the previous researches [20,38,57,58]. The diffraction peaks at 2θ = 44.37° is corresponding to metallic Co° [JCPDS 01-1254], similar to reports from previous works [59] and [60]. It can be inferred that NiO and CoO were reduced at 600 °C to metallic Ni° [61,62] and metallic Co° [63], respectively. As shown in Table 2, the range of the particle size is in the magnitude of 80.4 and 44.6 nm corresponding to the sizes of Ni₄ and Co₄ catalysts respectively. The relative intensity of XRD peaks of the supported catalysts depends on the nature of the metal oxide precursors formed during the calcination step [64]. In all the NiₓCoₓ/ZrO₂ catalysts, an increase in the Ni content shifted the peaks to higher 2θ values. As a result, the only single peak was detected. This reveals that the bimetallic Ni–Co is formed during the reduction [64]. The XRD patterns of the ZrO₂ support resulted in a number of peaks located at 2θ of 24.47, 28.19, 31.48, 34.45, 40.73, 50.61, 55.62, 58.3, 60.02, 62.83, 69.67, 71.29° corresponding to (111), (200), (210), (211), (300), (320), (400), (410), (411), (331), (332) and (422) crystal planes, which can be attributed to the monoclinic ZrO₂ (m-ZrO₂) and tetragonal ZrO₂ (t-ZrO₂) [JCPDS 83-0943] structure of the ZrO₂. This is in conformity with previous research works [50,65–67].

To have better insights into the nature of the cobalt and nickel phases, TPR-H₂ of the calcined catalysts was carried out. This helped to explore the level of reduction of the Co and Ni oxides species. The total consumptions of hydrogen for all catalysts were summarized in Table 2. Fig. 3 shows that only single reduction zones were observed. This corresponds to the area below 400 °C (~280–450 °C), corresponding to the reduction of NiO [68,69] and CoO [4,70,71] particles with weak metal-support interaction. Thus, the reduction of the NiO and CoO to metallic Ni° and Co° agrees with the XRD analysis. In particular, the reductions were peaks shifted to higher temperatures as the Co content in the catalysts increase. It suggests that higher temperatures are needed in order to reduce the cobalt oxides (~452 °C) completely as compared to nickel oxides [72]. Therefore, these catalysts were reduced at 600 °C. Additionally, the total peak area of the TPR profile presented in Table 2 shows that the reducibility of the catalysts decreased with increasing Co content. This suggests that the Co catalyst’s species are more difficult to be reduced.

The corresponding CO₂ desorption profiles of the catalysts after reduction at 600 °C are displayed Fig. 4. The figure shows that the TPD-CO₂ desorption curve of the Ni₃Co₁ exhibited two
desorption small shoulder peaks centred at 293.6 and 739.2 °C. These two peaks were attributed to weak and strong basic sites, as inferred from results reported in the literature concerning the basicity of reduced Ni-based catalysts [73]. For the three catalysts, Ni₄, Ni₃Co, and Co₄ there were no peaks detected, which means the basicity of these samples was very low. On the other hand, Ni₂Co₂ catalyst displayed a single desorption peak with a maximum at 752.1 °C attributed to the strong basic site. It can be seen that Ni₂Co₂ desorption peak shifted to higher temperature compared to the Ni₃Co₁ catalyst. It indicates that Co⁰ species on the ZrO₂ surface were more difficult to be oxidised by CO₂ than Ni⁰.

The acid properties of the catalysts involved in the present study investigated via the TPD–NH₃ technique is shown in Fig. 5. The acid site distributions are mainly classified by temperature range as weak (<250 °C), medium (250–400 °C) and strong (>400 °C) acidic sites [74]. All tested samples showed different acid site curves. For the Ni₃Co₁, Ni₂Co₂ and Ni₁Co₃ catalysts, there were no peaks observed but only very small shoulders at 250 °C, 250 °C, and 600 °C respectively. It can be seen that within the Co₄ and Ni₄ catalysts, the number of strong acid sites increased simultaneously. For the Ni₄ catalyst, two peaks between 490 and 620 °C were observed. This indicates that there was a remarkable difference in acid strength for the concerned Ni₄ catalyst. For the Co₄, there was only a single peak which appears at 190 °C. This corresponds to the weak acid site. From the TPD–NH₃ profile, it shows that the bimetallic Ni₃Co₁ and Ni₂Co₂ catalysts neutralized the acidity, but Ni₄ and Co₄ can help the acid properties of the catalysts.

Catalytic activity testing

Fig. 6 shows the phenol conversion and the product gas yield as a function of Ni–Co ratio over zirconia. The experimental data were carried out at 600 °C, 0.2 g catalyst, and 0.36 ml/min feed flow rate. In general, the order of the catalyst’s activity (in terms of phenol conversion) was found to be Ni₂Co₁ > Ni₂Co₂ > Ni₁Co₃ > Co₄ > Ni₄. Alaric et al. [72] used bimetallic Ni–Co catalysts supported on CaNi₅O₆/Al₂O₃ for partial oxidation of methane. They found that Ni₂Co catalyst has superior activity towards methane conversion, as well as CO and H₂ selectivity. However, they had lower stability compared to other ratios of Ni and Co. Moreover, studies by Nianjun et al. [71] used Ni₁Co₅/Al₂O₃ catalysts to investigate the activity of glycerin liquid reforming. They revealed that Ni₁Co₅ and Ni₁Co₃ catalysts were confirmed to own excellent hydrogen selectivity. They noticed that increase in Co content (for Ni₁Co₅ catalyst) results in maximum H₂ and minimum CH₄ production. They mentioned that low content of Ni is unfavourable for carbon–carbon breaking for the production of CO₂ during the reforming process. Consequently, the performance of this process was lowered. In our present study, Ni₂Co₁ was observed to have better activity as...
compared with other catalysts. Increase in the Co content in the NiₓCoᵧ catalysts beyond 25% (Ni₃Co₁), obviously decreased the catalytic performance in all the samples investigated. This decrease can be related to the structural properties of the NiₓCoᵧ catalysts such as acidity and basicity (Figs. 4 and 5). From the XRD and TPR analysis previously, the addition of Co decreased the amount of the hydrogen consumption. The phenol conversion and hydrogen yield for Ni₄ catalyst were 32.4% and 24.8% respectively. This confirms that the metallic Ni⁰ was the active site for the steam reforming reaction. Better performance in the catalytic activity of the catalyst was noticed with the increase in the amount of Co (Ni₃Co₁ and Ni₂Co₂ catalysts). From Fig. 6, it can be seen that the highest phenol conversion was achieved with Ni₃Co₁ and Ni₂Co₂ catalysts. The results can be attributed to the basicity of the two samples compared to other samples. It can be observed that the H₂ yield slightly decreases as Co content increases as depicted in Ni₃Co₁ to Co₄ catalysts. For the Ni₄Co₁ sample, the hydrogen yield was 50.4%, which decreased to 31.8% at the Co₄ catalyst. Besides, CO and CO₂ yield slightly decreased by increasing the cobalt content in the catalyst. CO yield decreased from 14.6% to 6.1% and CO₂ yield from 24.5% to 21% once cobalt content in the catalyst increased in Ni₃Co₁ to Co₄ catalysts. Decrease in CO and CO₂ yield might be attributed to the occurrence of the water-gas shift reaction (WGS: CO + H₂O → CO₂ + H₂). The metallic Co⁰ particle (as shown in XRD analysis) might be less active for reforming reaction [64], due to its lowest activity and lowest phenol conversion. According to a study by Len et al. [75] on methane Oxy-CO₂ reforming, the poor activity of high content of Co in the catalyst might be due to oxidation of the Co catalyst during the reforming process. Increasing the Co content in the catalysts, the amount of t-ZrO₂ phases (which has higher stability, performance and metal dispersion than m-ZrO₂ [31,50,52]) decreased and consequently, led to lower steam reforming activity.

The effect of the time-on-stream (TOS) behaviour of the NiₓCoᵧ/ZrO₂ (x = 0, 1, 2, 3, 4 and x + y = 4) catalyst on phenol steam reforming was investigated for a period of time (6 h) to further examine the catalyst deactivation. The phenol conversion and gas product yield as a function of time can be seen in Fig. 7. The experimental data were carried out at 600 °C, 0.2 g catalyst, and 0.36 ml/min feed flow rate. As it is shown in Fig. 7, for 6 h time on stream, no appreciated variation was observed in phenol conversion and H₂ and CO yield for NiₓCo₂ and NiₓCo₁ catalysts. Thus, the stability and activity of the catalyst remained almost constant for these two catalysts for 6 h time-on-stream. The phenol conversion and the H₂ and CO yield decreased slowly with time for Niₓ and Co₄ catalysts. On the other hand, the CO₂ yield gradually increased with time for all the catalysts. In an overall, we can conclude that Ni₃Co₁ catalyst has the most activity, and stability compare to other catalysts.

Fig. 8 shows the plots of the dependence of activity hydrogen yield upon surface area of catalysts the hydrogen uptake capacity. The results showed a direct correlation between hydrogen uptake and the activity of NiₓCoᵧ/ZrO₂ catalysts in phenol steam reforming reaction at 600 °C. As it seen in the Figure, the ratio of hydrogen yield to hydrogen uptake capacity did not change much for any of the NiₓCoᵧ/ZrO₂ catalysts, indicating that the activity of NiₓCoᵧ/ZrO₂ catalysts is clearly correlated with the number of hydrogen uptake on NiₓCoᵧ/ZrO₂ catalysts.

As one of the most important factors in catalysis, metal particle morphology and size distribution which have great effects on catalytic activity. In this work, the sizes and

![Fig. 7 – Effect of time on stream (TOS) on (a) phenol conversion, (b) hydrogen yield, (c) carbon monoxide yield, and (d) carbon dioxide yield.](image-url)
dispersions of Ni and Co particles on Ni₃Co₁/ZrO₂ catalyst (which had the best activity toward hydrogen production and phenol conversion) could be obtained in TEM images (Fig. 9). The micrographs show the irregular succession of the atomic planes corresponding to the different planes of the Ni₃Co₁/ZrO₂ lattice. The bright field TEM image of the Ni₃Co₁/ZrO₂ catalyst shows good dispersion of the metal-containing particles. Isolated crystals (crystal size ~50–100 nm) of formed Ni/Co particles can be found along with smaller metal particles of mainly ZrO₂ supported. The metal particles were segregated well from each other and suffered no sintering.

Coke analysis

The changes occurring during the steam reforming of catalysts were studied through thermo-gravimetric analyses (TGA) of the used catalysts and shows in Fig. 10. Table 3 shows the quantification of weight loss during the phenol steam reforming for NiₓCoₙ/ZrO₂ (x = 0, 1, 2, 3, 4 and x + y = 4) catalysts supported on ZrO₂. They had different amount corresponding to the weight loss associated with decomposition/oxidation of graphic from the catalyst. However in general, these data show the presence of a significant carbon deposit. The carbon deposits types were known subject on carbon oxidation temperature. In Fig. 10, the curves of weight loss as a function of temperature can be divided into three parts: below 200 °C (WL₁), 200–600 °C (WL₂) and above 600 °C (WL₃). In literature, the region bellows 200 °C have been attributed to the water and moisture evaporation. The weight loses between 200 and 600 °C have been ascribed to less stable deposits [76], whereas the weight loss above 600 °C is generally attributive to oxidation of coke deposits with the more stable [76] and/or different degree of graphitization [77]. It can be seen that from the WL₁ region the maximum weight loss (4.99%) recorded for Ni₄ catalyst due to water and moisture desorption. It can be observed that the increasing the Co content in the catalyst would avoid the adsorption of water and moisture on the catalyst surface. The WL₂ region illustrates that the weight loss of the Ni₄ is the maximum followed by Ni₂Co₂ and weight loss of Ni₁Co₃ is negligible, but some precursor residues were still present (0.01%). The TGA result shows that the Co and the Ni₃Co₁ catalysts did not suffer from coke formation on their surface in WL₁ and WL₂ regions. These two catalyst’s profile exhibited additional weight gained, this might due to the oxidation of the metallic active sites [78,79]. The maximum weight loss (9.5%) was corresponding to Ni₄ catalyst.

Table 3 – Weight loss and amount of coke formation on the spent catalysts.

<table>
<thead>
<tr>
<th>Catalysts</th>
<th>WL₁ (%)</th>
<th>WL₂ (%)</th>
<th>WL₃ (%)</th>
<th>Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni₄</td>
<td>4.99</td>
<td>2.78</td>
<td>1.73</td>
<td>9.50</td>
</tr>
<tr>
<td>Ni₃Co₁</td>
<td>0.05</td>
<td>0</td>
<td>3.40</td>
<td>3.45</td>
</tr>
<tr>
<td>Ni₂Co₂</td>
<td>1.40</td>
<td>0.99</td>
<td>4.88</td>
<td>7.27</td>
</tr>
<tr>
<td>Ni₁Co₃</td>
<td>0.29</td>
<td>0.01</td>
<td>3.70</td>
<td>4.00</td>
</tr>
<tr>
<td>Co₄</td>
<td>0.08</td>
<td>0</td>
<td>2.21</td>
<td>2.29</td>
</tr>
</tbody>
</table>
Conclusion

In conclusion, the ratio of nickel and cobalt directly affects the activity of phenol steam reforming. Even though nickel catalysts were subjected to deactivation due to a high level of coking, yet they displayed an excellent activity and selectivity for this reaction. Ni₄Co₄ bimetallic catalyst supported on ZrO₂ was found to be highly active in the catalytic steam reforming of phenol. The presence of t-ZrO₂ phase structure and basic properties of Ni₃Co₁ directly affected the activity of the catalyst. Increase in Co content beyond 25% (as in Ni₂Co₂, Ni₁Co₃ and Co₄ catalysts) caused a decrease in the basic sites, a decrease in the catalyst activity with an increase in the coke deposition. 345% of weight loss was detected for Ni₃Co₁ catalyst due to its lower acidity. It was found that 53.5% of phenol conversion and 50.4% of hydrogen yield was achieved with the Ni₃Co₁ catalyst.

Acknowledgement

The authors acknowledge the financial support given for this work by Universiti Teknologi Malaysia (UTM) under the Research University Grant (10H19 and 13H36) and The Malaysian Ministry of Higher Education under FRGS 4F403.

REFERENCES

