Journal Papers: ISI.WOS.


  1. Rashidi Md. Razali, M. Z. Nashed & Ali Hassan Mohamed Murid, Numerical conformal mapping via the Bergman kernel, Journal of Computational and Applied Mathematics, 82 (1)(1997), 333-350. (WOS, 1997: IF= 0.402, Q=3)
  2. Ali Hassan Mohamed Murid, M. Z. Nashed &Mohd. Rashidi Md. Razali, Numerical conformal mapping for exterior regions via the Kerzman-Stein kernel, Journal of Integral Equations and Applications, 10 (4) (1998), 517-532. (WOS, 2012: IF=0.609, Q=3)
  3. Ali Hassan Mohamed Murid, M. Z. Nashed & Mohd. Rashidi Md. Razali, A domain integral equation for the Bergman kernel, Results in Mathematics, 35 (1999), 161-174. (WOS, 2009: IF=0.513, Q=4)
  4. Rashidi Md. Razali, M. Z. Nashed & Ali Hassan Mohamed Murid, Numerical conformal mapping via the Bergman kernel using the generalized minimum residual method, Computers and Mathematics with Applications, 40 (2000), 157-164. (WOS, 2000: IF=0.339, Q=3)
  5. Ali Hassan Mohamed Murid & Mohamed M. S. Nasser, Eigenproblem of the Generalized Neumann Kernel, Bulletin of the Malaysian Mathematical Sciences Society (Second Series), 26 (2003), 12-33. (WOS, 2009: IF=0.341, Q=4)
  6. Wegmann, A.H.M. Murid & M.M.S. Nasser, The Riemann-Hilbert problem and the Generalized Neumann Kernel, Journal of Computational and Applied Mathematics, 182 (2005) 388-415. (WOS, 2005: IF=0.569, Q=3)
  7. Mohamed M.S. Nasser, Ali H.M. Murid & Zamzana Zamzamir, A boundary integral method for the Riemann-Hilbert problem in domains with corners, Complex Variables and Elliptic Equations, Vol. 53 (11) (2008) 989-1008. (WOS, 2010: IF=0.409, Q=4)
  8. M.S. Nasser, A.H.M. Murid, M. Ismail, E. M. A. Alejaily, Boundary Integral Equations with the Generalized Neumann Kernel for Laplace’s Equation in Multiply Connected Regions, Applied Mathematics and Computation, Vol. 217 (Jan 2011), 4710 – 4727. (WOS, 2011: IF= 1.317, Q=1)
  9. W.K. Sangawi, A.H.M. Murid, M.M.S. Nasser, Linear Integral Equations forConformal Mapping of Bounded Multiply Connected Regions onto a Disk with Circular Slits, Applied Mathematics and Computation, 218(5) (2011), pp. 2055-2068. (WOS, 2011: IF= 1.317, Q=1) DOI: 10.1016/j.amc.2011.07.018
  10. W.K. Sangawi, A.H.M. Murid, M.M.S. Nasser, Parallel slits map of bounded multiply connected regions, Journal of Mathematical Analysis and Applications, 389 (2012) 1280–1290. (WOS, 2012: Impact Factor= 1.05, Q=1)
  11. W.K. Sangawi, A.H.M. Murid, M.M.S. Nasser, Annulus with Circular Slit Map of Bounded Multiply Connected Regions via Integral Equation Method, Bulletin of the Malaysian Mathematical Sciences Society (Second Series) 35 (4) (2012) 945-959. (WOS, 2012: Impact Factor= 0.798, Q=1 )
  12. W.K. Sangawi, A.H.M. Murid, M.M.S. Nasser, Circular Slits Map of Bounded Multiply Connected Regions, in “Trends in Classical Analysis, Geometric Function Theory, and Geometry of Conformal Invariants”, a special issue of Journal of Abstract and Applied Analysis, vol. 2012,(2012), Article ID 970928, 26 pages. doi:10.1155/2012/970928. (WOS, 2012: IF=1.102, Q=1)
  13. A. M. Yunus, Ali H. M. Murid & M. M. S. Nasser, Conformal Mapping of Unbounded Multiply Connected Regions onto Canonical Slit Regions, in “Trends in Classical Analysis, Geometric Function Theory, and Geometry of Conformal Invariants”, a special issue of Journal of Abstract and Applied Analysis, Volume 2012, Article ID 293765, 29 pages, doi:10.1155/2012/293765. (WOS, 2012: IF=1.102, Q=1)
  14. M. S. Nasser, Ali H.M. Murid & Samer A.A. Al-Hatemi, A Boundary Integral Equation with the Generalized Neumann Kernel for a Certain Class of Mixed Boundary Value Problem, Journal of Applied Mathematics, Volume 2012, Article ID 254123, 17 pages, doi:10.1155/2012/254123. (WOS, 2012: IF=0.834, Q=2)
  15. Samer A.A. Al-Hatemi, Ali H.M. Murid and Mohamed M.S. Nasser, A boundary integral equation with the generalized Neumann kernel for a mixed boundary value problem in unbounded multiply connected regions, Boundary Value Problems 2013, 2013:54, doi:10.1186/1687-2770-2013-54 (WOS, 2013: IF= 0.836, Q=1 ) (indexed by ISI, SCOPUS and several other databases)
  16. Ali W. K. Sangawi, Ali H. M. Murid & M. M. S. Nasser, Radial Slit Maps of Bounded Multiply Connected Regions, Journal of Scientific Computing, (2013) 55:309–326, doi: 10.1007/s10915-012-9634-3. (WOS, 2013: IF= 1.698, Q=1) (indexed by ISI, SCOPUS and several other databases)
  17. Arif A. M. Yunus, Ali H. M. Murid & M. M. S. Nasser, Numerical Evaluation of Conformal Mapping and its Inverse for Unbounded Multiply Connected Regions, Bulletin of the Malaysian Mathematical Sciences Society (2). Vol. 37 No. 1 (2014) 1-24 (WOS, 2014: IF= 0.586, Q=3) (indexed by ISI, SCOPUS and several other databases)
  18. Arif A. M. Yunus, Ali H. M. Murid & M. M. S. Nasser, Numerical conformal mapping and its inverse of unbounded multiply connected regions onto logarithmic spiral slit regions and straight slit regions, e-print Proceedings of the Royal Society of Edinburgh Section A-Mathematics, 2014 470, 20130514. (WOS,2014: Impact Factor= 1.009, Q=1) (indexed by ISI, SCOPUS and several other databases) doi:10.1098/rspa.2013.0514. (GUP Q.J130000.2526.04H62, Q.J130000.2426.01G11)
  19. Mohamed M.S. Nasser, Takashi Sakajo, Ali H.M. Murid, and Lee Khiy Wei, A fast computational method for potential flows in multiply connected coastal domains, Japan Journal of Industrial and Applied Mathematics, Vol. 32, No. 1, 2015 (WOS, 2015: IF=0.377, Q=4) (indexed by ISI) DOI 10.1007/s13160-015-0168-6.
  20. Ali W. K. Sangawi, Ali H. M. Murid and Lee Khiy Wei, Fast Computing of Conformal Mapping and Its Inverse of Bounded Multiply Connected Regions onto Second, Third and Fourth Categories of Koebe’s Canonical Slit Regions, Journal of Scientific Computing, DOI 10.1007/s10915-016-0171-3, Published Online: 2 Feb. 2016. (WOS, 2015: IF=1.946, Q=1 ) (indexed in ISI, SCOPUS and several other databases)
  21. Shwan Hassan, Ali H. M. Murid, Munira Ismail, and Mukhiddin I. Muminov, “Solving Robin Problems in Multiply Connected Regions via an Integral Equation with the Generalized Neumann Kernel”, Boundary Value Problems 2016, 2016:91, DOI 10.1186/s13661-016-0599-2 (WOS, 2015: IF= 0.642, Q=2) (indexed by ISI, SCOPUS and several other databases)
  22. Mukhiddin I. Muminov and A. H. M. Murid, Boundary value formula for the Cauchy integral on elliptic curve, Journal of Pseudo-Differential Operators and Applications, DOI 10.1007/s11868-017-0212-1 (2016 IF=0.529, Q=3). (indexed by ISI, SCOPUS and several other databases)
  23. Ali W.K. Sangawi, Ali H.M. Murid,and Lee Khiy Wei, Conformal Mappings of Bounded Multiply Connected Regions onto Circular and Parallel Slits Regions and their Inverses with GUI, ScienceAsia, ScienceAsia 43S (2017): 79–89 (indexed in SCOPUS and Thomson Reuters’ Science Index Expanded Edition 2007, Impact Factor for 2016 is 0.343, Q=3).
  24. Shwan H. H. Al-Shatri, Ali H. M. Murid, and Munira Ismail, Solving a Class of Robin Problems in Simply Connected Regions via Integral Equations with the Generalized Neumann Kernel, ScienceAsia, ScienceAsia 43S (2017): 69–78, (indexed in SCOPUS and Thomson Reuters’ Science Index Expanded Edition 2007, Impact Factor for 2016 is 0.343, Q=3).
  25. Mukhiddin I. Muminov, and A. H. M. Murid, Boundary value formula for the Cauchy integral on elliptic curve, Journal of  Pseudo-Differential Operator s and Applications (2018) 9:837–851 https://doi.org/10.1007/s11868-017-0212-1, (2017 IF=0.649, Q=3), (indexed by ISI, SCOPUS and several other databases)
  26. Amir S. A. Hamzah and Ali H. M. Murid, Nonlinear Partial Differential Equations Model Related to Oxidation Pond Treatment System: A Case Study of mPHO at Taman Timor Oxidation Pond, Johor Bahru, MATEMATIKA, 2018, Volume 34, Number 2, 293–311 (indexed in WOS).
  27. Chai Jin Sian, Yeak Su Hoe and Ali H. M. Murid, Some Numerical Methods and Comparisons for Solving Mathematical Model of Surface Decontamination by Disinfectant Solution, MATEMATIKA, 2018, Volume 34, Number 2, 271–291 (indexed in WOS).

Facebook Comments