
6/7/16, 1:01 PMGPU Gems - Chapter 39. Volume Rendering Techniques

Page 12 of 29http://http.developer.nvidia.com/GPUGems/gpugems_ch39.html

a. Test for intersections with the edges of the bounding box. Add each
intersection point to a temporary vertex list. Up to six intersections are
generated, so the maximum size of the list is fixed.

b. Compute the center of the proxy polygon by averaging the intersection points.
Sort the polygon vertices clockwise or counterclockwise by projecting them
onto the x-y plane and computing their angle around the center, with the first
vertex or the x axis as the reference. Note that to avoid trigonometric
computations, the tangent of the angle and the sign of the coordinates,
combined into a single scalar value called the pseudo-angle, can be used for
sorting the vertices (Moret and Shapiro 1991).

c. Tessellate the proxy polygon into triangles and add the resulting vertices to the
output vertex array. The slice polygon can be tessellated into a triangle strip or
a triangle fan using the center. Depending on the rendering algorithm, the
vertices may need to be transformed back to object space during this step.

39.4.3 Rendering

Transfer Functions

The role of the transfer function is to emphasize features in the data by mapping values
and other data measures to optical properties. The simplest and most widely used
transfer functions are one dimensional, and they map the range of data values to color
and opacity. Typically, these transfer functions are implemented with 1D texture lookup
tables. When the lookup table is built, color and opacity are usually assigned separately
by the transfer function. For correct rendering, the color components need to be
multiplied by the opacity, because the color approximates both the emission and the
absorption within a ray segment (opacity-weighted color)(Wittenbrink et al. 1998).

Example 39-2. The Fragment Program for 1D Transfer Function Dependent Textures

void main(uniform sampler3D dataTex,
 uniform sampler1D tfTex,
 float3 texCoord : TEXCOORD0,
 float4 color : COLOR)
{

 float v = tex3d(texCoord, dataTex); // Read 3D data texture and
 color = tex1d(v, tfTex); // transfer function texture
}

