ENERGY EFFICIENT SCHEDULING FOR BATTERY DRIVEN REAL-TIME EMBEDDED SYSTEMS

Based on Paper:

Rolling-Horizon Scheduling for Energy Constrained Distributed Real-Time Embedded Systems by Chuan He et al.

AMEEN ALIU BAMIDELE MAN151073

EMBEDDED SYSTEM: State, Demand & Constraint

- Embedded systems are now ubiquitous. Most computing devices are based on embedded systems.
- Embedded systems are now going to Distributed Architectures because of its demands in Complex Systems e.g. Transport system, Smart homes.
- Energy consumption and battery life are major constraints in the embedded world.
- Embedded systems can either be real-time or non-real time

Real-Time Embedded Systems (RTES)

- Most embedded systems are real-time e.g. robotics, industry processing, microwave, etc.
- RTES are more challenging to build
- Correctness does not depend on result of computation alone, but with stringent consideration on timing of results

Energy Consumption of Embedded Systems

- Energy consumption is very important.
- Lots of hardware and software have been developed for low energy consumption.
- Mostly using the Dynamic Voltage Scaling (DVS) technique.
- What of Task Scheduling?

Purpose of Paper

- Tackles real-time embedded systems energy optimization and task scheduling challenge.
- DVS for energy optimization.
- Rolling Horizon (RH) and Energy-Efficient Adaptive Scheduling Algorithm (EASA) for task scheduling.

Related Works (Researchers Efforts)

BEATA

Considers both power consumption and schedule length to solve energy-latency problem in heterogeneous embedded systems.

GCS

an energy-aware scheduling algorithm for imprecise computation of real-time tasks to improve QoS and Energy Efficiency.

DVS-FS

a power-aware real-time scheduling scheme that applied the DVS technique and feedback control methodology to facilitate tradeoffs between energy consumption and control in embedded systems.

Lots of research in this area...

RH SCHEDULING: Targeted System and Outline

- Targets an embedded system with a set of heterogeneous Processor Elements (PEs).
- Scheduler model in distributed system can either be distributed or centralized
- RH scheduling uses centralized scheduler model
- In RH technique, a scheduler consists of a rolling-horizon, real-time controller and voltage controller

RH SCHEDULING: Outline

Fig. 1. Rolling-horizon energy-efficient real-time scheduler model.

RH SCHEDULING: Scheduling Objectives

- Priority to schedulability
- Next energy consumption to execute accepted task
- Energy consumption of a system is Dynamic and Static

RH-EASA: Dynamic Scheduling Approach

- Dynamic scheduling can either be immediate or batch mode
- RH-EASA uses immediate mode
- RH-EASA places all awaiting task in the rolling-horizon
- Schedules are adjusted for the schedulability of the new task and possible low-supply-voltage execution.

RH-EASA: Strategy

Decides for a task where and when to execute.

Fig. 3. Dynamic scheduling by employing rolling-horizon strategy.

- Task go from new task, to waiting task, then running task and.
- Migration does not incur any overhead.

Evaluation: Baseline Algorithms vs EASA

- Energy-Efficient Adaptive Scheduling Algorithm (EASA)
- Lowest Voltage Scheduling Algorithm (LVSA)
- High Voltage Scheduling Algorithm (HVSA)
- Greedy Scheduling Algorithm (GSA)
- RH-EASA, RH-LVSA, RH-HVSA, RH-GSA

Evaluation: PE Number Impact

Fig. 4. Performance impact of PE number.

Evaluation: Arrival Rate Impact

Fig. 5. Performance impact of arrival rate.

Evaluation: Task Deadline Impact

Fig. 6. Performance impact of task deadline.

Evaluation: Task Length Impact

Fig. 7. Performance impact of task length.

Conclusion

- RH can be smoothly integrated into any algorithm.
- RH strategy can achieve a higher guarantee ratio, less energy consumption, and higher CPU utilization
- RH-EASA is best tradeoff between schedulability and energy consumption
- RH can be extended for other design

